Journal Menu
Volume 2, Issue 1 (2014), Pages [1] - [103]
THE DEMYANOV CONTINUOUS AND CESARI’S PROPERTY
[1] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser,
[2] L. I. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints; II: Existence theorems for weak solutions, Trans. Amer. Math. Soc. 124 (1966), 369-412; 413-430.
[3] P. Diamond, P. Kloeden, A. Rubinov and A. Vladimirov, Comparative properties of three metrics in the space of compact convex sets, Set-Valued Analysis 5 (1997), 267-289.
[4] A. Lohne and C. Zalinescu, On convergence of closed convex sets, Journal of Mathematical Analysis and Applications 319 (2006), 617-634.
[5] A. Lohne, On semicontinuity of convex-valued multifunctions and Cesari’s property (Q), Journal of Convex Analysis 15(4) (2008), 803-818.
[6] A. Leśniewski and T. Rzeżuchowski, The Demyanov metric for convex, bounded sets and existence of Lipschitzan selectors, Journal of Convex Analysis 18(3) (2011), 737-749.
[7] R. T. Rockafellar, Convex Analysis,
[8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory,