Journal Menu
Volume 2, Issue 1 (2014), Pages [1] - [103]
WEYL-TYPE INEQUALITY FOR OPERATORS IN BANACH SPACES
[1] H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 408-411.
[2] A. Pietsch, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149-168.
[3] M. F. Teixeira, Weyl’s inequality in Banach spaces, Bull.
[4] A. Hinrichs, Optimal Weyl inequality in Banach spaces, Proc. Amer. Math. Soc. 134(3) (2005), 731-735.
[5] B. Carl and A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11(1) (2007), 41-55.
[6] B. Carl, On a Weyl inequality of operators in Banach spaces, Proc. Amer. Math. Soc. 137(1) (2009), 155-159.
[7] B. Carl and A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc. 41(2) (2009), 332-340.
[8] A. Pietsch, Eigenvalues and s-numbers,
[9] H. König, Eigenvulue Distribution of Compact Operators, Operator Theory: Advances and Applications. Birkhäuser,
[10] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators,
[11] H. König, Some Inequalities for the Eigenvalues of Compact Operators, In Proc. Oberwolfach Conference General Inequalities 1983, Birkhäuser, Basel, 1984, 213C219.
[12] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223.
[13] A. Pietsch, Operator Ideals, Verlag