Journal Menu
Volume 1, Issue 1 (2013), Pages [1] - [55]
DECOMPOSITION OF SYMPLECTIC STRUCTURES
[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd Edition,
[2] M. F. Atiyah, New Invariants of 3-and 4-Dimensional Manifolds, The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), 285-299, Proc. Sympos. Pure Math., 48, Amer. Math. Soc.,
[3] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308(1505) (1983), 523-615.
[4] O. E. Barndorff-Nielsen and P. E. Jupp, Yokes and symplectic structures, J. Statist. Plann. Inference 63(2) (1997), 133-146.
[5] C. M. de Barros, Sur la géometrie différentielle des formes différentielles extérieures quadratiques, In: Atti Convegno Intern. Geometria Differenziale,
[6] M. Błaszak and K. Marciniak, Dirac reduction of dual Poisson-presymplectic pairs, J. Phys. A 37(19) (2004), 5173-5187.
[7] M. Bordemann, M. Forger and H. Römer, Homogeneous Kähler manifolds: Paving the way towards new supersymmetric sigma models, Comm. Math. Phys. 102 (1986), 605-647.
[8] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221.
[9] F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds, J. Austral. Math. Soc. (Series A) 66 (1999), 303-330.
[10] S. K. Donaldson, Symmetric Spaces, Kähler Geometry and Hamiltonian Dynamics, Northern California Symplectic Geometry Seminar, 13-33, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc.,
[11] T. Friedrich, Die Fisher-information und symplectische Strukturen, Math. Nachr. 153 (1991), 273-296.
[12] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[13] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics,
[14] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom. 12 (1977), 253-300.
[15] T. Mabuchi, Some symplectic geometry on compact Kähler manifolds (I), Osaka J. Math. 24 (1987), 227-252.
[16] Y. Matsushima, Sur les espaces homogènes Kählériens d’un groupe de lie réductif, Nagoya Math. J. 11 (1957), 53-60.
[17] Y. Nakamura, Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions, Japan J. Indust. Appl. Math. 10 (1993), 179-189.
[18] L. K. Norris, Generalized Symplectic Geometry on the Frame Bundle of a Manifold, In Proc. Symp. Pure Math., R.E. Green and S. T. Yau Eds., 54 (1993), 435-466.
[19] C. Paufler and H. Roemer, Geometry of Hamiltonian n-vectors in Multisymplectic Field Theory, arXiv: math-ph/0102008.
[20] G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory, Constraint Systems, World Scientific,
[21] H. Toda and M. Mimura, Topology of Lie Groups, I and II, American Mathematical Society, Providence-Rhode Island, 1991.
[22] I. Vaisman, Geometric quantization on presymplectic manifolds, Monatsh. Math. 96(4) (1983), 293-310.
[23] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.