Journal Menu
Volume 1, Issue 1 (2019) , Pages [1] - [182]
FOCUSED ULTRASOUND STIMULATION OF THE PERIPHERAL NERVOUS SYSTEM: PHYSICAL BASIS AND PRACTICAL APPLICATIONS (REVIEW)
[1] C. R. Hill and G. R. ter Haar, Review article: High intensity focused ultrasound: potential for cancer treatment, Br. J. Radiol. 68 (1995), 1296-1303.
[2] T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas and J. H. Hwang, High intensity focused ultrasound: current potential and oncologic applications, AJR Am. J. Roentgenol. 190 (2008), 191-199.
[3] G. Malietzis, L. Monzon, J. Hand, H. Wasan, E. Leen, M. Abel, A. Muhammad, P. Price and P. Abel, Review article. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology, Br. J. Radiol. 86(1024):20130044 (2013), 1-12.
[4] A. Bystritsky, A. S. Korb, P. K. Douglas, M. S. Cohen, W. P. Melega, A. P. Mulgaonkar, A. Desalles, B. K. Min and S. S. Yoo, A review of low-intensity focused ultrasound pulsation, Brain Stimulat. 4 (3) (2011), 125-136.
[5] S. B. Jun, Ultrasound as a noninvasive neuromodulation tool, Biomed.
[6] E. Sassaroli and
[7] O. Naor, S. Krupa and S. Shoham, Ultrasonic neuromodulation, J. Neural
[8] L. D. Rozenberg, Ultrasonic Focusing Radiators, In L.D. Rozenberg (Ed.). Physics and Engineering of High Power Ultrasound, Vol. 1: Sources of High-Intensity Ultrasound, Chapter 3, 223-309. New York/Plenum, 1969.
[9] E. S. Ebbini and C. A. Cain, Multiple-focus ultrasound phased array pattern synthesis: Optimal driving signal distributions for hyperthermia, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 36(5) (1989), 540-548.
[10] L. R. Gavrilov and E. M. Tsirulnikov, Focused Ultrasound in Physiology and Medicine,
[11] L. Bergmann, Der Ultraschall und seine Anwendung in Wissenschaft und Technik, Zurich/Hirzel, 1954.
[12] W. L. Nyborg, Physical Mechanisms for Biological effects of Ultrasound, DHEW 78-8062,
[13] NCRP Report № 74, Biological effects of ultrasound: mechanisms and clinical implications, Prepared by Committee headed by W. Nyborg,
[14] T. G. Leighton, The Acoustic Bubble, London/Academic Press, 1994, 613 p.
[15] C. R. Hill, J. C. Bamber and G. R. ter Haar, (Editors), Physical Principles of Medical Ultrasonics, 2nd Edition, Chichester; Hoboken, NJ/John Wiley & Sons, 2004, 528 pp.
[16] B. C. Tran, J. Seo, T. L. Hall, J. B. Fowlkes and C. A. Cain, Effect of contrast agent infusion rates on thresholds for tissue damage produced by single exposures of high-intensity ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(7) (2005), 1121-1130.
[17] F. A. Duck, Radiation pressure and acoustic streaming, In F. A. Duck, A. C. Baker and H. C. Starritt (Eds.), Ultrasound in medicine,
[18] T. F. Hueter and R. H. Bolt,
[19] L. R. Gavrilov, G. V. Gersuni, O. B. Ilyinski, L. A. Popova, M. G. Sirotyuk and E. M. Tsirulnikov, Stimulation of human peripheral neural structures by focused ultrasound, Sov. Phys.-Acoust. 19 (1974), 332-334.
[20] L. R. Gavrilov, G. V. Gersuni, O. B. Ilyinski, M. G. Sirotyuk, E. M. Tsirulnikov and E. E. Shchekanov, The effect of focused ultrasound on the skin and deep nerve structures of man and animal, In: Progress in Brain Research,
[21] L. R. Gavrilov, G. V. Gersuni, O. B. Ilyinski, E. M. Tsirulinkov and E. E. Shchekanov, Reception and Focused Ultrasound, Leningrad/Nauka, 1976, 70 pp (in Russian).
[22] L. R. Gavrilov, G. V. Gersuni, O. B. Ilyinski, E. M. Tsirulinkov and E. E. Shchekanov, A study of reception with the use of focused ultrasound, I. Effects on the skin and deep receptor structures in man, Brain Res. 135 (1977), 265-277.
[23] L. R. Gavrilov, E. M. Tsirulnikov and
[24] L. R. Gavrilov, G. V. Gersuni, O. B. Ilyinski, E. M. Tsirulinkov and E. E. Shchekanov, A study of reception with the use of focused ultrasound, II. Effects on the animal receptor structures, Brain Res. 135 (1977), 279-285.
[25] I. ab I. Davies, L. R. Gavrilov and E. M. Tsirulnikov, Application of focused ultrasound for research on pain, Pain 67 (1996), 17-27.
[26] L. R. Gavrilov and E. M. Tsirulnikov, Focused ultrasound as a tool to input sensory information to humans (Review), Acoustical Physics 58(1) (2012), 3-27.
[27] I. A. Vartanyan, L. R. Gavrilov, G. V. Gersuni, A. S. Rozenblyum and E. M. Tsirulnikov, Sensory Perception, Research with the Use of Focused Ultrasound, Nauka/Leningrad, 1985, 189 pp.
[28] L. R. Gavrilov, Use of focused ultrasound for stimulation of various neural structures, Nova Science Publishers/ N.Y., 2014, 172 pp.
[29] L. R. Gavrilov, G. V. Gersuni, V. I. Pudov, A. S. Rosenblyum and E. M. Tsirulnikov, Human hearing in connection with the action of ultrasound in the megahertz range on the aural labyrinth, Sov. Phys.-Acoust. 26(4) (1980), 290-292.
[30] L. R. Gavrilov, Use of focused ultrasound for stimulation of nerve structures, Ultrasonics 22(3) (1984), 132-138.
[31] E. Zwicker and R. Feldtkeller, The ear as a communication receiver, Woodbury, N.Y./Acoustical Society of
[32] L. D. Enin, E. M. Tsirulnikov, I. L. Potehina and L. R. Gavrilov, The temperature dependence of receptors structures and thermal reception, Zh. Evol. Biokhim. Fiziol. 28(3) (1992), 353-358 (in Russian).
[33] G. R. Broun, L. R. Gavrilov, G. G. Zhadan, O. B. Ilinskii and E. M. Tsirulnikov, The effect of focused ultrasound on the electroreceptor system of skates and on some tissues of fishes and amphibians, J. Evol. Biochem. Physiol. 16(4) (1981), 263-268 (in English).
[34] L. R. Gavrilov, V. A. Kovalev and E. M. Tsirulnikov, Application of focused ultrasound for stimulation of the central nervous structures of invertebrates, Sov. Phys.-Acoust. 24(3) (1978), 231-234.
[35] L. R. Gavrilov and E. M. Tsirulnikov, Mechanisms of stimulation effects of focused ultrasound on neural structures: Role of nonlinear effects, In O. V. Rudenko & O. A. Sapozhnikov (Eds), Nonlinear Acoustics at the Beginning of 21st Century, Moscow/MSU 1 (2002), 445-448.
[36] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S. Y. Emelianov, Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics, Ultrasound in Med. and Biol. 24(9) (1998), 1419-1435.
[37] Yu. A. Pishchalnikov, O. A. Sapozhnikov and T. V. Sinilo, Increase in the efficiency of the shear wave generation in gelatine due to the nonlinear absorption of a focused ultrasound beam, Acoustical Physics 48(2) (2002), 253-259.
[38] D. Dalecki, S. Z. Child, C. H. Raeman and E. L. Carstensen, Tactile perception of ultrasound, J. Acoust. Soc. Am. 97, Pt. 1, (5) (1995), 3165-3170.
[39] К. Altenberg and S. Kästner, Demodulation von Ultraschallwellen in Flussigkeiten, Ann. Physik 1(2-3) (1952), 161-165.
[40] I. A. Vartanyan, L. R. Gavrilov, V. D. Zharskaya, G. I. Ratnikova and E. M. Tsirulnikov, The simulating effect of focused ultrasound on the auditory nerve fibers of the frog Rana temporaria, J. Evol. Biochem. Physiol. 17 (1982), 335-341.
[41] O. O. Godovanik, L. R. Gavrilov, O. B. Il’inskii, E. M. Tsirulnikov and E. E. Shchekanov, Use of focused ultrasound in studying the tactile sensitivity of neurologic patients, S. S. Korsakov Zh. Neuropatol. Psikhiatr. 78(8) (1978), 1189-1192 (in Russian).
[42]
[43] E. M. Tsirulnikov, V. A. Kudinov, K. N. Monachov and I. M. Raznatovski, Tactile sensitivity in skin diseases of various origins, Vestnik Dermatologii i Venerologii (Russian Bulletin of Dermatology and Venereology) 12 (1988), 11-14 (in Russian).
[44] A. Wright,
[45] E. M. Tsirulnikov, A. G. Gurgenidze, I. A. Vartanyan and L. R. Gavrilov, Features of tactile and pain sensitivity at acupuncture points, Fiziol. Chel. 12(3) (1986), 414-419 (in Russian).
[46] I. A. Vartanyan, L. R. Gavrilov, I. D. Svetlogorskaya, E. M. Tsirulnikov, A. S. Khachunts and N. A. Ajrapetyan, Effect of focused ultrasound pulse duration of on skin sensitivity, Sensory Systems 4(1) (1990), 52-59 (in Russian).
[47] L. R. Gavrilov, The possibility of generating focal regions of complex configurations in application to the problems of stimulation of human receptor structures by focused ultrasound, Acoustical Physics 54(2) (2008), 315-326.
[48] E. S. Ebbini and C. A. Cain, A spherical-section ultrasound phased-array applicator for deep localized hyperthermia, IEEE Trans. Biomed.
[49] L. R. Gavrilov and J. W. Hand, A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 47(1) (2000), 125-139.
[50] Y. Hertzberg, O. Naor, A. Volovick and S. Shoham, Towards multifocal ultrasonic neural stimulation: pattern generation algorithms, J. Neural Eng. 7(5) (2010), 056002.
[51] O. Naor, Y. Hertzberg, E. Zemel, E. Kimmel and S. Shoham, Towards multifocal ultrasonic neural stimulation II: Design considerations for an acoustic retinal prosthesis, J. Neural Eng. 9 (2012), 026006.
[52] L. R. Gavrilov, G. V. Gersuni, V. I. Pudov, A. S. Rosenhlyum and E. M. Tsirulnikov, The use of focused ultrasound in MHz-range in otology, Vestnik Otolaringologii 2 (1983), 3-8 (in Russian).
[53] E. M. Tsirulnikov, I. A. Vartanyan, G. V. Gersuni, A. S. Rosenblyum, V. I. Pudov and L. R. Gavrilov, Use of amplitude-modulated focused ultrasound for diagnosis of hearing disorders, Ultrasound in Med. and Biol. 14(4) (1988), 277-285.
[54] P. -H. Tsui, S. -H. Wang and C. -C. Huang, In vitro effects of ultrasound with different energies on the conduction properties on neural tissue, Ultrasonics 43 (2005), 560-565.
[55] J. L. Foley, J. W. Little, F. L. Starr, C. Frantz and S. Vaezy, Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain, Ultrasound Medi. Biol. 30 (2004), 1199-1207.
[56] J. L. Foley, J. W. Little and
[57] V. Colucci, G. Strichartz, F. Jolesz, N. Vykhodtseva and K. Hynynen, Focused ultrasound effects on nerve action potential in vitro, Ultrasound Med. Biol. 35(10) (2009), 1737-1747.
[58] Y. F. Lee, C. C. Lin, J. S. Cheng and Gin-Shin Chen, Nerve conduction blockade in diabetic rats using high-intensity focused ultrasound for analgesic applications, British Journal of Anaesthesia 114(5) (2015), 840-846.
[59] Y. F. Lee, C. C. Lin, J. S. Cheng and Gin-Shin Chen, High-intensity focused ultrasound attenuates neural responses of sciatic nerves isolated from normal or neuropathic rats, Ultrasound Med. Biol. 41(1) (2015), 132-142.
[60] M. Alhamami, S. Tran and J. Tavakkoli, Effects of high-intensity focused ultrasound with different acoustic doses on neural tissues in vitro, Canadian Acoustics/Acoustique Canadienne 39(3) (2011), 40-41.
[61] R. A. Wahab, M. Choi, Y. Liu, V. Krauthamer, V. Zderic and M. R. Myers, Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model, Med. Phys. 39(7) (2012), 4274-4283.
[62] H. Kim, S. J. Taghados, K. Fischer, L. S. Maeng, S. Park and S. S. Yoo, Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound, Ultrasound Med. Biol. 38(9) (2012), 1568-1575.
[63] T. C. Dickey, R. Tych, M. Kliot, J. D. Loeser, K. Pederson and P. D. Mourad, Intense focused ultrasound can reliably induce sensations in human test subjects in a manner correlated with the density of their mechanoreceptors, Ultrasound Med. Biol. 38(1) (2012), 85-90.
[64] R. E. Tych, M. Gofeld, J. G. Jarvik, M. Kliot, J. D. Loeser, A. M. McClintic, R. J. Ollos, K. D. Pederson, R. L. Sparks, G. W. Terman and P. D. Mourad, Neuropathic tissue responds preferentially to stimulation by intense focused ultrasound, Ultrasound Med. Biol. 39(1) (2013), 111-116.
[65] J. D. Garcia, M. Gofeld, P. Ray Illian, J. D. Loeser, M. Kliot, A. M. McClintic, A. Ward, A. Yao and P. D. Mourad, Intense focused ultrasound as a potential research tool for the quantification of diurnal inflammatory pain, Ultrasonics 53(1) (2013), 84-89.
[66] A. M. McClintic, T. C. Dickey, M. Gofeld, M. Kliot, J. D. Loeser, P. Richebe and P. D. Mourad, Intense focused ultrasound preferentially stimulates subcutaneous and focal neuropathic tissue: Preliminary results, Pain Med. 14(1) (2013), 84-92.
[67] A. M. McClintic, T. C. Dickey, M. Gofeld, P. R. Illian, M. Kliot, J. C. Kucewicz, J. D. Loeser, P. G. Richebe and P. D. Mourad, Rapid ultrasonic stimulation of inflamed tissue with diagnostic intent, J. Acoust. Soc. Am. 134(2), Pt. 2, (2013), 1521-1529.
[68] R. Muratore, J. LaManna, M. Lamprecht and B. Morrison, Bioeffects of low dose ultrasound on neuronal cell function, In M. Hodnett and R. Muratore (Eds.), Proceedings of the 38th Annual Ultrasonic Industry Association Symposium, March 23-25.
[69] R. Muratore, J. LaManna, E. Szulman, A. Kalisz, M. Lamprecht, M. Simon, Yu Zhe, Xue Nina and B. Morrison, Bioeffective ultrasound at very low doses: Reversible manipulation of neuronal cell morphology and function in vitro, In E. S. Ebbini (Ed.), Proceedings of the 8th International Symposium on Therapeutic Ultrasound. AIP Conference Proceedings 1113, Melville, NY/American Institute of Physics (2009), 25-29.
[70] R. Muratore, J. LaManna, M. Lamprecht and B. Morrison, Hippocampal culture stimulus with 4-Megahertz ultrasound, 11th Intern. Symp. on Therapeutic Ultrasound, AIP Conf. Proc. 1481 (2012), 254-258.
[71] R. Muratore and J. J. Vaitekunas, Ultrasonic bioeffects on peripheral nerves, Acoustics Today 8(4) (2012), 38-42.
[72] W. Legon, A. Rowlands, A. Opitz, T. Sato and W. J. Tyler, Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and fMRI, PLoS One 7(12) (2012).
[73] C. J. Wright, J. Rothwell and N. Saffari, Ultrasonic stimulation of peripheral nervous tissue: An investigation into mechanisms, 13th Anglo-French Physical Acoustics Conference (AFPAC2014), Journal of Physics/Conference Series 581 (2015), 012003, 1-12.
[74] M. D. Menz, O. Oralkan, P. T. Khuri-Yakub and S. A. Baccus, Precise neural stimulation in the retina using focused ultrasound, The Journal of Neuroscience 33(10) (2013), 4550-4560.