Journal Menu
Volume 5, Issue 1 (2015), Pages [1] - [78]
SORPTION PROPERTIES OF MODIFIED CLINOPTILOLITE-AND MORDENITE-RICH TUFFS FOR MANGANESE REMOVAL FROM AQUEOUS SYSTEMS
[1] C. L. Beh, L. Chuah, T. S. Y. Choong, M. Z. B. Kamarudzaman and A. Abdan, Adsorption study of electric arc furnace slag for the removal of manganese from solution, American Journal of Applied Sciences 7(4) (2010), 442-446.
[2] D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons,
[3] B. Concepción-Rosabal, G. Rodríguez-Fuentes, N. Bogdanchikova, P. Bosch, M. Avalos and V. H. Lara, Comparative study of natural and synthetic clinoptilolites containing silver in different states, Microporous and Mesoporous Materials 86 (2005), 249-255.
[4] M. C. Diaz-Nava, M. Olguín, M. Solache-Ríos, M. T. Alarcón-Herrera and A. Aguilar-Elguezabal, Characterization and improvement of ion exchange capacities of Mexican clinoptilolite-rich tuffs, Journal of Inclusion Phenomena and Macrocyclic Chemistry 51 (2005), 231-240.
[5] M. K. Doula, Removal of ions from drinking water by using clinoptilolite and a clinoptilolite-Fe oxide system, Water Research 40 (2006), 3167-3176.
[6] M. K. Doula, Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form, Water Research 43 (2009), 3659-3672.
[7] N. Esfandiar, B. Nasernejad and T. Ebadi, Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): Application of response surface methodology (RSM), Journal of Industrial and Engineering Chemistry 20(5) (2014), 3726-3736.
[8] P. C. C. Faria, J. J. M. Órfão and M. F. R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Research 38 (2004), 2043-2052.
[9] A. García-Mendieta, M. Solache-Ríos and M. T. Olguín, Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for iron, Microporous and Mesoporous Materials 118 (2009), 489-495.
[10] A. García-Mendieta, M. T. Olguín and M. Solache-Ríos, Biosorption properties of green tomato husk (Physalisphiladelphica Lam) for iron, manganese and iron–manganese from aqueous systems, Desalination 284 (2012), 167-174.
[11] Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process Biochemistry 34 (1999), 451-465.
[12] V. J. Inglezakis, M. K. Doula, V. Aggelatou and A. A. Zorpas, Removal of iron and manganese from underground water by use of natural minerals in batch mode treatment, Desalination Water Treatment 18 (2010), 341-346.
[13] M. J. Jiménez-Cedillo, M. T. Olguín and C. Fall, Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite-rich tuffs, Journal of Hazardous Materials 163 (2009), 939-945.
[14] M. J. Jiménez-Cedillo, M. T. Olguín, C. Fall and A. Colin-Cruz, As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from petroselinum crispum (parsley), Journal Environmental Management 117 (2013), 242-252.
[15] S. Kesraoui-Ouki, C. R. Cheeseman and R. Perry, Natural zeolite utilization in pollution control: A review of applications to metals effluents, Journal of Chemical Technology and Biotechnology 59 (1994), 121-126.
[16] S. M. Lee, W. G. Kim, J. K. Yang and D. Tiwari, Sorption behaviour of manganese-coated calcined-starfish and manganese-coated sand for Mn(II), Environmental Technology 31 (2010), 445-453.
[17] G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Surface area and pore texture of catalysts, Catalysis Today 41 (1998), 207-219.
[18] R. R. Leyva, C. M. A. Sánchez, S. M. V. Hernández and C. R. M. Guerrero, Remoción de metales pesados de solución acuosa por medio de clinoptilolitas naturals, Revista Internacional de Contaminación Ambiental 17 (2001), 129-136.
[19] M. Loizidou and R. P. Townsend, Ion-exchange properties of natural clinoptilolite, ferrierite and mordenite: Part 2, lead-sodium and lead-ammonium equilibria, Zeolites 7 (1987), 153-159.
[20] M. V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla and F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon 37 (1999), 1215-1221.
[21] W. Ma, N. Zhao, G. Yang, L. Tian and R. Wang, Removal of fluoride ions from aqueous solution by the calcination product of Mg-Al-Fe hydrotalcite-like compound, Desalination 268 (2011), 20-26.
[22] L. Ma, Y. Peng, B. Wu, D. Lei and H. Xu, Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution, Chemical Engineering Journal 225 (2013), 59-67.
[23] F. A. Mumpton and O. W. Clayton, Morphology of zeolites in sedimentary rocks by scanning electron microscopy, Clay and Clay Minerals 24 (1976), 1-23.
[24] NOM-127-SSA1-1994. Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamiento a que debe someterse el agua para su potabilización, México, Distrito Federal, 2000.
[25] M. T. Olguín, M. Solache-Rios, D. Acosta, P. Bosch and S. Bulbulian, Uranium sorption in zeolite X: The valence effect, Microporous and Mesoporous Materials 28 (1999), 377-385.
[26] C. Orha, F. Manea, C. Ratiu, G. Burtica and A. Iovi, Obtaining and characterization of Romanian zeolite supporting silver ions, Environmental Engineering and Management Journal 6 (2007), 541-544.
[27] V. J. Pereira, M. E. Nagel-Hassemer, L. F. Rubens and L. A. Recio, Simultaneous adsorption of iron and manganese from aqueous solutions employing an adsorbent coal, Environmental Technology 34 (2013), 275-282.
[28] J. Pérez-Ramírez, G. Mul, F. Kapteijin, J. A. Moulijn, A. R. Overweg, A. Doménech, A. Ribera and I. W. C. E. Arends, Physicochemical characterization of isomorphously substituted FeZSM-5 during activation, Journal of Catalysis 207 (2002), 113-126.
[29] N. Rajic, D. Stojakovic, S. Jevtic, L. N. Zabukovec J. Kovac and V. Kaucic, Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in
[30] P. Roccaro, C. Barone, G. Mancini F. G. A. Vagliasindi, Removal of manganese from water supplies intended for human consumption: A case study, Desalination 210 (2007), 205-214.
[31] M. J. Semmens, Cation-Exchange Properties of Natural Zeolites: In Zeo-Agriculture: Use of Natural Zeolites in Agriculture and Aquaculture, First Edition, Westview Press,
[32] K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry 54 (1982), 2201-2218.
[33] K. Sun, W. Su, F. Fan, Z. Feng, T. A. Jansen, R. A. Van Santen and C. Li, Location of Mg cations in mordenite zeolite studied by IR spectroscopy and density functional theory simulations with a CO adsorption probe, The Journal of Physical Chemistry A 112 (2008), 352-1358.
[34] S. R. Taffarel and J. Rubio, On the removal of ions by adsorption onto natural and activated Chilean zeolites, Minerals Engineering 22 (2009), 336-343.
[35] S. R. Taffarel and J. Rubio, Removal of from aqueous solution by manganese oxide coated zeolite, Minerals Engineering 23 (2010), 1131-1138.
[36] J. Torres-Pérez, M. Solache-Ríos and M. T. Olguín, Sorption of azo dyes onto a Mexican surfactant-modified clinoptilolite-rich tuff, Separation Science and Technology 42 (2007), 299-318.
[37] G. Tsitsishvilli, T. Andronikashuili, G. Kirov and L. D. Filizova, Natural Zeolites, Ellis Horwood Limited,
[38] K. Vijayaraghavan and U. M. Joshi, Application of Ulva sp. biomass for single and binary biosorption of chromium (III) and manganese (II) ions: Equilibrium modeling, Environmental Progress & Sustainable Energy 33 (2014), 147-153.
[39] S. Wang, T. Dou, Y. Li, Y., Zhang, X. Li and Z. Yan, Synthesis, characterization and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite, Journal of Solid State Chemistry 177 (2004), 4800-4805.
[40] WHO, Guidelines for Drinking Water Quality, Third Edition
[41] M. A. A. Zaini, R. Okayama and M. Machida, Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons, Journal of Hazardous Materials 170 (2009), 1119-1124.