Journal Menu
Volume 4, Issue 2 (2014), Pages [55] - [118]
TOWARDS BIOETHANOL: AN OVERVIEW OF WHOLE LIGNOCELLULOSE PROCESSING
[1] M. Asgher, M. J. Asad, S. U. Rahman and R. L. Legge, A thermostable a-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing, Journal of Food Engineering 79(3) (2007), 950-955.
[2] P. Alvira, E. Tomás-Pejó, M. Ballesteros and M. J. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresource Technology 101(13) (2010), 4851-4861.
[3] R. Ranjan, S. Thust, C. E. Gounaris, M. Woo, C. A. Floudas and M. Keitz et al., Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery, Microporous and Mesoporous Materials 122(1-3) (2009), 143-148
[4] M. Ballesteros, J. M. Oliva, P. Manzanares, M. J. Negro and I. Ballesteros, Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis, World Journal of Microbiology & Biotechnology 18(6) (2002), 559-561.
[5] B. C. Saha, N. N. Nichols, N. Qureshi and M. A. Cotta, Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5, Applied Microbiology and Biotechnology 92(4) (2011), 865-874.
[6] Z. Shengdong, W. Yuanxin, Z. Yufeng, T. Shaoyong, X. Yongping and Y. Ziniu et al., Fed-batch simultaneous saccharification and fermentation of pretreated rice straw for production of ethanol, Chemical Engineering Communication 193(5) (2006), 639-648.
[7] E. Palmqvist and B. Hahn-Hagerdal, Fermentation of lignocellulosic hydrolyzates, II: Inhibitors and mechanisms of inhibition, Bioresource Technology 74(1) (2000), 25-33.
[8] H. J. Huanga, S. Ramaswamy, U. W. Tschirner and B. V. Ramaraob, A review of separation technologies in current and future biorefineries, Separation and Purification Technology 62 (2008), 1-21.
[9] S. Banerjee, S. Mudliar, R. Sen, B. Giri, D. Satpute and T. Chakrabarti et al., Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies, Biofuels, Bioproducts Biorefinering 4(1) (2010), 77-93.
[10] S. S. Adav, L. T. Chao and S. K. Sze, Quantitative secretomic analysis of trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation, Molecular and Cellular Proteomics 11(7) (2012).
[11] A. K. Chandel, G. Chandrasekhar, K. Radhika, R. Ravinder and P. Ravindra, Bioconversion of pentose sugars into ethanol: A review and future directions, Biotechnology and Molecular Biology Review 6(1) (2011), 8-20.
[12] M. J. Taherzadeh and K. Karimi, Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review, Bioresources 2(4) (2007), 707-738.
[13] M. Zhang, F. Wang, R. Su, W. Qi and Z. He, Ethanol production from high dry matter corncob using fed-batch simultaneous, Bioresource Technology 101(13) (2010), 4959-4964.
[14] B. C. Saha, L. B. Iten, M. A. Cotta and Y. V. Wu, Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol, Process Biochemistry 40(12) (2005), 3693-3700.
[15] Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: A review, Bioresource Technology 83(1) (2002), 1-11.
[16] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee and M. Holtzapple et al., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology 96(6) (2005), 673-686.
[17] Y. Zheng, Z. Pan and R. Zhang, Overview of biomass pretreatment for cellulosic ethanol production, International Journal of Agricultural and Biological Engineering 2(3) (2009), 51.
[18] R. Harun and M. K. Danquah, Influence of acid pretreatment on microalgal biomass for bioethanol production, Process Biochemistry 46(1) (2011), 304-309.
[19] S. Octave and D. Thomas, Biorefinery: Toward an industrial metabolism, Biochimie 91(6) (2009), 659-664.
[20] Z. Zheng, Z. Pan and R. Zhang, Overview of biomass pretreatment for cellulosic ethanol production, International Journal of Agriculture 2(3) (2009).
[21] M. FitzPatrick, P. Champagne, M. F. Cunningham and R. A. Whitney, A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products, Bioresource Technology 101(23) (2010), 8915-8922.
[22] M. Galbe and G. Zacchi, Pretreatment of lignocellulosic materials for efficient bioethanol production, Advances in Biochemical Engineering Biotechnology 108 (2007), 41-65.
[23] D. Chiaramonti, M. Prussi, S. Ferrero, L. Oriani, P. Ottonello and P. Torre et al., Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method, Biomass and Bioenergy 46 (2012), 25-35.
[24] B. C. Saha and M. A. Cotta, Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol, Journal of Chemical Technology and Biotechnology 82 (2007), 913-919.
[25] K. Hoyer, M. Galbe and G. Zacchi, Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter, Biotechnology for Biofuels 3 (2010), 14.
[26] Z. Lin, H. Huang, H. Zhang, L. Zhang, L. Yan and J. Chen, Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis, Applied Biochemistry and Biotechnology 162(7) (2010), 1872-1880.
[27] Z. Miao, T. E. Grift, A. C. Hansen and K. C. Ting, Energy requirement for comminution of biomass in relation to particle physical properties, Industrial Crops and Products 33 (2011), 504-513.
[28] P. Kumar, D. M. Barrett, M. J. Delwiche and P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Industrial & Engineering Chemistry Research 48(8) (2009), 3713-3729.
[29] Z. Lin, L. Liu, R. Li and J. Shi, Screw extrusion pretreatments to enhance the hydrolysis of lignocellulosic biomass, Journal of Microbial and Biochemical Technology S12 (2012), 002.
[30] M. J. Bussemaker and D. Zhang, Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications, Industrial and Engineering Chemistry Research 52 (2013), 3563-3580.
[31] S. Larsson, P. Cassland and L. J. Jonsson, Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolyzates by heterologous expression of laccase, Applied and Environmental Microbiology 67(3) (2001), 1163-1170.
[32] X. Zhao, K. Cheng and D. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Applied Microbiology and Biotechnology 82 (2009), 815-827.
[33] L. Tao, A. Aden, R. T. Elander, V. R. Pallapolu, Y. Y. Lee and R. J. Garlock et al., Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass, Bioresource Technology 102(24) (2011), 11105-11114.
[34] Y. Zheng, H. Lin and G. T. Tsao, Pretreatment for cellulose hydrolysis by carbon dioxide explosion, Biotechnology Progress 14(6) (1998), 890-896.
[35] J. Spronsen, M. A. T. Cardoso, G. J. Witkamp, W. Jong and M. C. Kroona, Separation and recovery of the constituents from lignocellulosic biomass by using ionic liquids and acetic acid as co-solvents for mild hydrolysis, Chemical Engineering and Processing 50(2) (2011), 196-199.
[36] A. Pinkert, K. N. Marsh, S. Pang and M. P. Staige, Ionic liquids and their interaction with cellulose, Chemical Reviews 109(12) (2009), 6712-6728.
[37] D. Fu, G. Mazza and Y. Tamaki, Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues, Journal of Agricultural and Food Chemistry 58 (2010), 2915-2922.
[38] H. Zhao, C. L. Jones, G. A. Baker, S. Xia, O. Olubajo and V. N. Person, Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis, Journal of Biotechnology 139(1) (2008), 47-54.
[39] S. H. Lee, T. V. Doherty, R. J. Linhardt and J. S. Dordick, Ionic liquid-mediated selective extravtion of lignin from wood leading to enhanced enzymatic cellulose hydrolysis, Biotechnology and Bioengineering 102(5) (2009), 1368-1376.
[40] H. Zhang, J. Wu, J. Zhang and J. He, 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose, Macromolecules 38 (2005), 8272-8277.
[41] I. Kilpelainen, H. Xie, A. King, M. Granstrom, S. Heikkinen and D. S. Argyropoulos, Dissolution of wood in ionic liquids, Journal of Agricultural and Food Chemistry 55 (2007), 9142-9148.
[42] C. Li, Q. Wang and Z. K. Zhao, Acid in ionic liquid: An efficient system for hydrolysis of lignocellulose, Green Chemistry 10 (2008), 177-182.
[43] D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna and R. D. Rogers, Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride, Green Chemistry 9 (2007), 63-69.
[44] M. López-Abelairas, T. A. Lu-Chau and J. M. Lema, Fermentation of biologically pretreated wheat straw for ethanol production: Comparison of fermentative microorganisms and process configurations, Applied Biochemistry Biotechnology 170(8) (2013), 1838-1852.
[45] A. I. Hatakka, Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose, European Journal of Applied Microbiology and Biotechnology 18(6) (1983), 350-357.
[46] J. Zhang, X. Ren, W. Chen and J. Bao, Biological pretreatment of corn stover by solid state fermentation of Phanerochaete chrysosporium, Frontiers of Chemical Science and Engineering 6(2) (2012), 146-151.
[47] N. N. Nichols, B. S. Dien and M. A. Cotta, Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors, Bioresource Technology 101(19) (2010), 7545-7550.
[48] B. Alriksson, Ethanol from Lignocellulose - Alkali Detoxification of Dilute-acid Spruce Hydrolysates, Licenciate Thesis, 2006.
[49] M. Tu, X. Zhang, M. Paice, P. McFarlane and J. N. Saddler, Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine, Biotechnology Progress 25(4) (2009), 1122-1129.
[50] A. K. Chandel, S. S. Silva and O. Singh, Detoxification of lignocellulosic hydrolysates for improved bioethanol production, In: M. A. S. Bernardes Editor, Biofuel Production-Recent Developments and Prospects (2011), ISBN 978-953-307-478-8.
[51] M. Ask, M. Bettiga, V. Mapelli and L. Olsson, The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae, Biotechnology for Biofuels (2013), 6-22.
[52] T. Sainio, I. Turku and J. Heinonen, Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass, Bioresource Technology 102(10) (2011), 6048-6057.
[53] K. Zhang, M. Agrawal, J. Harper, R. Chen and W. J. Koros, Removal of the fermentation inhibitor, furfural, using activated carbon in cellulosic-ethanol production, Industrial & Engineering Chemistry Research 50(24) (2011), 14055-14060.
[54] L. J. Jonsson, B. Alriksson and N. O. Nilvebrant, Bioconversion of lignocellulose: Inhibitors and detoxification, Biotechnology for Biofuels 6 (2013), 16.
[55] E. Palmqvist and B. Hahn-Hagerdal, Fermentation of lignocellulosic hydrolyzates, I: inhibition and detoxification, Bioresource Technology 74(1) (2000), 17-24.
[56] B. Carter, P. Squillace, P. C. Gilcrease and T. J. Menkhaus, Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency, Biotechnology and Bioengineering 108(9) (2011), 2053-2060.
[57] A. Arora, E. M. Martin, M. H. Pelkki and D. J. Carrier, Effect of formic acid and furfural on the enzymatic hydrolysis of cellulose powder and dilute acid-pretreated poplar hydrolyzates, ACS Sustainable Chemistry and Engineering 1(1) (2012), 23-28.
[58] A. Tofighi, M. Azin, M. Mazaheri Assadi, M. H. A. Assadi-rad, T. Nejadsattari and M. R. Fallahian, Inhibitory effect of high concentrations of furfural on industrial strain of Saccharomyces cerevisiae, International Journal of Environmental Research 4(1) (2010), 137-142.
[59] R. Wikandari, R. Millati, S. Syamsiyah, R. Muriana and Y. Ayuningsih, Effect of furfural, hydroxymethylfurfural and acetic acid on indigeneous microbial isolate for bioethanol production, Agricultural journal 5(2) (2010), 105-109.
[60] Y. J. Kwon, A. Z. Ma, Q. Li, F. Wang, G. Q. Zhuang and C. Z. Liu, Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis, Bioresource Technology 102(17) (2011), 8099-8104.
[61] Y. Zha, B. Muilwijk, L. Coulier and P. J. Punt, Inhibitory compounds in lignocellulosic biomass hydrolyzates during hydrolyzate fermentation processes, Bioprocesses and Biotechniques 2 (2012), 1.
[62] C. Tengborg, M. Galbe and G. Zacchi, Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood, Enzyme and Microbial Technology 28(9-10) (2001), 835-844.
[63] D. L. Grzenia, D. J. Schell and R. Wickramasinghe, Membrane extraction for detoxification of biomass hydrolyzates, Bioresource Technology 111 (2012), 248-254.
[64] B. Qi, J. Luo, X. Chen, X. Hang and Y. Wan, Separation of furfural from monosaccharides by nanofiltration, Bioresource Technology 102(14) (2011), 7111-7118.
[65] Y. H. Weng, H. J. Wei, T. Y. Tsai and T. H. Lin, Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration, Bioresource Technology 101(13) (2010), 4889-4894.
[66] Y. H. Weng, H. J. Wei, T. Y. Tsai, W. H. Chen, T. Y. Wei and W. S. Hwang et al., Separation of acetic acid from xylose by nanofiltration, Separation and Purification Technology 67(1) (2009), 95-102.
[67] L. Wang and H. Chen, Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors, Process Biochemistry 46(2) (2011), 604-607.
[68] J. R. Weil, B. Dien, R. Bothast, R. Hendrickson, N. S. Mosier and M. R. Ladisch, Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents, Industrial and Engineering Chemistry Research 41(24) (2002), 6132-6138.
[69] T. Gutiérrez, L. Ingram and J. F. Preston, Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: An enzyme important in the detoxification of furfural during ethanol production, Journal of Biotechnology 121(2) (2006), 154-164.
[70] R. Chen and M. Agrawal, Industrial applications of a novel aldo/keto reductase of Zymomonas mobilis, WIPO Patent No. 2012106394. 10 Aug 2012.
[71] A. Petersson, J. R. Almeida, T. Modig, K. Karhumaa, B. Hahn-Hagerdal and M. F. Gorwa-Grauslund et al., A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance, Yeast 23(6) (2006), 455-464.
[72] A. Nilsson, G. Liden, M. F. Gorwa-Grauslund, B. Hahn-Haegerdal, M. Tobias and J. R. Moreira de Almeida, Ethanol productivities of Saccharomyces cerevisiae strains in fermentation of dilute-acid hydrolysates depend on their furan reduction capacities, U. S. Patent No. 20, 130, 023, 021. 24 Jan 2013.
[73] R. Boopathy, H. Bokang and L. Daniels, Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria, Journal of Industrial Microbiology 11 (1993), 147-150.
[74] P. Wang, J. E. Brenchley and A. E. Humphrey, Screening microorganisms for utilization of furfural and possible intermidiates in its degradative pathway, Biotechnology Letters 16(9) (1994), 977-982.
[75] R. Boopathy and L. Daniels, Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester, Current Microbiology 23 (1991), 327-332.
[76] M. J. Lopez, N. N. Nichols, B. S. Dien, J. Moreno and R. J. Bothast, Isolation of microorganisms for biological detoxification of lignocellulosic hydrolyzates, Applied Microbiology and Biotechnology 64 (2004), 125-131.
[77] Z. L. Liu, P. J. Slininger and S. W. Gorsich, Enhanced biotransformation of furfural and hydroxymethyl furfural by newly developed ethanologenic yeast strains, Applied Biochemistry and Biotechnology 121-124 (2005), 451-460.
[78] T. Gutierrez, M. L. Buszko, L. O. Ingram and J. F. Preston, Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose, Applied Biochemistry and Biotechnology 98-100 (2002), 327-340.
[79] M. Dimarogona,
[80] M. D. Sweeney and F. Xu, Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: Recent developments, Catalysts 2(2) (2012), 244-263.
[81] J. B. Kristensen, Enzymatic hydrolysis of lignocellulose substrate interactions and high solids loadings,
[82] G. M. Mathew, R. K. Sukumaran, R. R. Singhania and A. Pandey, Progress in research on fungal cellulases for lignocellulose degradation, Journal of Scientific and Industrial Research 67 (2008), 898-907.
[83] S. Obruca, I. Marova, P. Matouskova, A. Haronikova and A. Lichnova, Production of lignocellulose-degrading enzymes employing Fusarium solani F-552, Folia Microbiologica 57(3) (2012), 221-227.
[84] A. Verardi, I. Bari, E. Ricca and V. Calabro, Hydrolysis of lignocellulosic biomass: Current status of processes and technologies and future perspectives, In: M. Lima and A. Natalense, Bioethanol (2012), ISBN 978-953-51-0008-9.
[85] R. W. Souza, Microbial degradation of lignocellulosic biomass. In: A. Chandel and S. Silva, Sustainable Degradation of Lignocellulosic Biomass - 3-51-1119-1.
[86] M. Tuncer and A. S. Ball, Co-operative actions and degradation analysis of purified lignocellulose-degrading enzymes from Thermomonospora fusca BD25 on wheat straw, Turkish Journal of Biology 33 (2009), 291-300.
[87] D. Verma, A. Kanagaraj, S. Jin, N. D. Singh, P. E. Kolattukudy and H. Daniell, Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars, Plant Biotechnology Journal 8(3) (2010), 332-350.
[88] D. Gao, N. Uppugundla, S. P. S. Chundawat, X. Yu, S. Hermanson and K. Gowda et al., Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides, Biotechnology for Biofuels 4 (2011), 5.
[89] J. J. Chang, F. J. Ho, C. Y. Ho, Y. C. Wu, Y. H. Hou and C. C. Huang et al., Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production, Biotechnology for Biofuels 6 (2013), 19.
[90] T. Shimokawa, H. Shibuya, M. Ishihara, M. Yamaguchi, Y. Ota and K. Miyazaki et al., Screening of lignocellulolytic enzyme producers: Enzyme system from Aspergillus tubingensis for hydrolysis of sugi pulp, Bulletin of FFPRI 11(2) (2012), 57-63.
[91] J. Hu, V. Arantes and J. N. Sadd, The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect?, Biotechnology for Biofuels 4 (2011), 36.
[92] B. R. Mohapatra, M. Bapuji and A. Sree, Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms, Acta Biotechnologica 23(1) (2003), 75-84.
[93] A. S. Ball and A. M. Jackson, The recovery of lignocellulose-degrading enzymes from spent mushroom compost, Bioresource Technology 54(3) (1995), 311-314.
[94] C. C. Fu, T. C. Hung, J. Y. Chen, C. H. Su and W. T. Wu, Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction, Bioresource Technology 101(22) (2010), 8750-8754. ]
[95] S. Ho, S. Huang, C. Chen, T. Hasunuma, A. Kondo and J. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresource Technology 135 (2013), 191-198.
[96] B. Yang, Z. Dai, S. Y. Ding and C. E. Wyman, Enzymatic hydrolysis of cellulosic biomass, Biofuels 2(4) (2011), 421-450.
[97] M. Coronado, C. Vargas, J. Hofemeister, A. Ventosa and J. J. Nieto, Production and biochemical characterization of a K-amylase from the moderate halophile halomonas meridiana, FEMS Microbiology Letters 183(1) (2000), 67-71.
[98] C. Moukamnerd, M. Kino-Oka, M. Sugiyama, Y. Kaneko, C. Boonchird and S. Harashima et al., Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol, Applied Microbiology and Biotechnology 88(1) (2010), 87-94.
[99] L. Viikari, J. Vehmaanpera and A. Koivula, Lignocellulosic ethanol: From science to industry, Biomass and Bioenergy 46 (2012), 13-24.
[100] Y. Kim, L. O. Ingram and K. T. Shanmugam, Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign, Applied and Environmental Microbiology 73(6) (2007), 1766-1771.
[101] T. Eriksson, J. Borjesson and F. Tjerneld, Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose, Enzyme and Microbial Tecnhology 31(3) (2002), 353-364.
[102] J. B. Kristensen, J. Borjesson, M. H. Bruun, F. Tjerneld and H. Jorgensen, Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose, Enzyme and Microbial Technology 40 (2006), 888-895.
[103] Mushlihah S. Sulfahri, E. Sunarto, M. Y. Irvansyah, R. S. Utami and S. Mangkoedihardjo, Ethanol production from algae spirogyra with fermentation by zymomonas mobilis and Saccharomyces cerevisiae, Journal of Applied Sciences Research 1(7) (2011), 589-593.
[104] F. W. Bai, W. A. Anderson and M. Moo-Young, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnology Advances 26(1) (2008), 89-105.
[105] J. Becker and E. A. Boles, Modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol, Applied and Environmental Microbiology 69(7) (2003), 4144-4150.
[106] J. E. McGhee, G. St Julian, R. W. Detroy and R. J. Bothast, Ethanol production by immobilized Saccharomyces cerevisiae, Saccharomyces uvarum, and Zymomonas mobilis, Biotechnology and Bioengineering 24 (1982), 1155-1163.
[107] O. O. Kuloyo, Ethanol Production by Yeast Fermentation of an Opuntia Ficus-Indica Biomass Hydrolyzate, Master Thesis, 2012.
[108] P. Gunasekaran and K. Raj, Ethanol fermentation technology - Zymomonas mobilis, Current Science 77 (1999), 56-68.
[109] C. W. Lina, C. H. Wub, D. T. Tranc, M. C. Shihd, W. H. Lie and C. F. Wuf, Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes, Process Biochemistry 46(2) (2011), 489-493.
[110] N. Rodrussamee, N. Lertwattanasakul, K. Hirata, Limtong S. Suprayogi and T. Kosaka et al., Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus, Applied Microbiology and Biotechnology 90(4) (2011), 1573-1586.
[111] A. Rudolf, M. Alkasrawi, G. Zacchi and G. Lidén, A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce, Enzyme and Microbial Technology 37(2) (2005), 195-204.
[112] B. Alriksson, A. Cavka and L. J. Jonsson, Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents, Bioresource Technology 102(2) (2011), 1254-1263.
[113] Y. Tang, D. Zhao, C. Cristhian and J. Jiang, Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media, Biotechnology for Biofuels 4 (2011), 22.
[114] C. Chen, X. Tang, Z. Xiao, Y. Zhou, Y. Jiang and S. Fu, Ethanol fermentation kinetics in a continuous and closed-circulating fermentation system with a pervaporation membrane bioreactor, Bioresource Technology 114 (2012), 707-710.
[115] R. Kumari and K. Pramanik, Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts, Applied Biochemistry and Biotechnology 167(4) (2012), 873-884.
[116] W. Zhang and A. Geng, Improved ethanol production by a xylose fermenting recombinant yeast strain constructed through a modified genome shuffling method, Biotechnology for Biofuels 5 (2012), 46.
[117] M. Oreb, H. Dietz, A. Farwick and E. Boles, Novel strategies to improve co-fermentation of pentoses with d-glucose by recombinant yeast strains in lignocellulosic hydrolyzates, Bioengineered 3(6) (2012), 347-351.
[118] R. Koppram, F. Nielsen, E. Albers, A. Lambert, S. Wännström and L. Welin et al., Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales, Biotechnology for Biofuels 6 (2013), 2.
[119] V. Novy, S. Krahulec, K. Longus, M. Klimacek and B. Nidetzky, Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae, Bioresource Technology 130 (2013), 439-448.
[120] P. Chandrakant and V. S. Bisaria, Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol, Biotechnology and Bioprocess Engineering 5(1) (2000), 32-39.
[121] Q. Xu, A. Singh and M. E. Himmel, Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose, Current Opinion in Biotechnology 20 (2009), 364-371.
[122] L. R. Lynd, W. H. Zyl, J. E. McBride and M. Laser, Consolidated bioprocessing of cellulosic biomass: An update, Current Opinion in Biotechnology 16 (2005), 577-583.
[123] D. G. Olson, J. E. McBride, A. J. Shaw and L. R. Lynd, Recent progress in consolidated bioprocessing, Current Opinion in Biotechnology 23 (2012), 396-405.
[124] B. G. Schuster and M. S. Chinn, Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production, Bioenergy Resource 6 (2013), 416-435.
[125] J. G. Gardner and D. H. Keating, Requirement of the type II secretion system for utilization of cellulosic substrates by cellvibrio japonicus, Applied and Environmental Microbiology (2010), 5079-5087.
[126] S. Brethauer and C. E. Wyman, Review: Continuous hydrolysis and fermentation for cellulosic ethanol production, Bioresource Technology 101 (2010), 4862-4874.
[127] L. Olsson and B. Hahn-Higerdal, Fermentation of lignocellulosic hydrolyzates for ethanol production, Enzyme Microbial Technology 18(5) (1996), 312-331.
[128] O. J. Sanchez and C. A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresource Technology 99 (2008), 5270-5295.
[129] M. J. Taherzadeh, R. Millati and C. Niklasson, Continuous cultivation of dilute-acid hydrolyzates to ethanol by immobilized Saccharomyces cerevisiae, Applied Biochemistry and Biotechnology 95(1) (2001), 45-57.
[130] C. Z. Liu, F. Wang and F. Ou-Yang, Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles, Bioresource Technology 100 (2009), 878-882.
[131] J. Zhao and L. Xia, Ethanol production from corn stover hemicellulosic hydrolyzate using immobilized recombinant yeast cells, Biochemical Engineering Journal 49 (2010), 28-32.
[132] G. Najafpour, H. Younesi and K. S. K. Ismail, Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae, Bioresource Technology 92 (2004), 251-260.
[133] B. Zhou, G. J. Martin and N. B. Pamment, Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture, Biotechnology and Bioengineering 100(4) (2008), 627-633.
[134] Y. Lin and S. Tanaka, Ethanol fermentation from biomass resources: Current state and prospects, Applied Microbiology and Biotechnology 69 (2006), 627-642.
[135] E. Winkelhausen, E. Velickova, S. A. Amartey and S. Kuzmanova, Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel, Applied Biochemistry and Biotechnology 162 (2010), 2214-2220.
[136] L. Domingues, A. A. Vicente, N. Lima and J. A. Teixeira, Applications of yeast flocculation in biotechnological processes, Biotechnology and Bioprocess Engineering 5(4) (2000), 288-305.
[137] T. J. Xu, X. Q. Zhao and F. W. Bai, Continuous ethanol production using self-flocculating yeast in a cascade of fermentors, Enzyme and Microbial Technology 37(6) (2005), 634-640.
[138] E. V. Soares, Flocculation in Saccharomyces cerevisiae: A review, Journal of Applied Microbiology 110(1) (2010), 1-18.
[139] F. B. Pereira, P. M. R. Guimarães, J. A. Teixeira and L. Domingues, Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs, Bioresource Technology 101 (2010), 7856-7863.
[140] P. Puligundla, D. Smogrovicova, V. S. Obulam and S. Ko, Very high gravity (VHG) ethanolic brewing and fermentation: A research update, Journal of Industrial Microbiology and Biotechnology 38(9) (2011), 1133-1144.
[141] C. G. Liu, N. Wang, Y. H. Lin and F. W. Bai, Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions, Biotechnology for Biofuels 5 (2012), 61.
[142] H. Jorgensen, Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content, Applied Biochemistry and Biotechnology 153 (2009), 44-57.
[143] F. B. Pereira, P. M. R. Guimarães, J. A. Teixeira and L. Domingues, Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes, Biotechnology Letters 32 (2010), 1655-1661.
[144] F. B. Pereira, D. G. Gomes, P. M. R. Guimarães, J. A. Teixeira and L. Domingues, Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2, Biotechnology Letters 34 (2012), 45-53.
[145] F. B. Pereira, P. M. R. Guimarães, D. G. Gomes, N. P. Mira, M. C. Teixeira and I. Sá-Correia et al., Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations, Biotechnology for Biofuels 4 (2011), 57.
[146] H. Chunkeng, Q. Qing and G. Peipei, Medium optimization for improved ethanol production in very high gravity fermentation, Biotechnology and Bioengineering - Chinese Journal of Chemical Engineering 19(6) (2011), 1017-1022.
[147] N. S. Kapu, M. Piddocke and J. J. N. Saddler, High gravity and high cell density mitigate some of the fermentation inhibitory effects of softwood hydrolyzates, AMB Express 3 (2013), 15.
[148] S. S. Gaykawad, Y. Zha, P. J. Punt, J. W. Van Groenestijn, L. A. van der Wielen and A. J. Staathof, Pervaporation of ethanol from lignocellulosic fermentation broth, Bioresource Technology 129 (2013), 469-476.
[149] S. Sharma and G. Rangaiah, Modeling and optimization of a fermentation process integrated with cell recycling and pervaporation for multiple objectives, Industrial Engineering Chemistry Research 51(15) (2012), 5542-5551.
[150] J. Chen, H. Zhang, P. Wei, L. Zhang and H. Huang, Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane, Bioprocess Biosystems Engineering (2013), DOI 10.1007/s00449-013-0984-5.
[151] I. Calinescu, P. Chipurici, A. Trifan and C. Badoiu, Immobilisation of Saccharomyces cerevisiae for the production of bioethanol, UPB Scientific Bulletin, Series B 74 (2012).
[152] T. Ikegami, H. Negishi, H. Yanase, K. Sakaki, M. Okamoto and N. Koura et al., Stabilized production of highly concentrated bioethanol from fermentation broths by Zymomonas mobilis by pervaporation using silicone rubber-coated silicalite membranes, Journal of Chemical Technology and Biotechnology 82 (2007), 745-751.
[153] L. M. Vane, A review of pervaporation for product recovery from biomass fermentation processes, Journal of Chemical Technology and Biotechnology 80(6) (2005), 603-629.