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Abstract

In a previous paper, [3], we determined the J,(N) -radical, v € {0, 1, 2}, and

semisimplicity of the kernel of a covered group with operators from a Clifford
semigroup. In this paper we generalize these results to operators from an

arbitrary inverse semigroup.

1. Introduction

Let (G, +) be a group with identity 0, written additively, but not

necessarily commutative. A set C = {C;|i € I} of subgroups is called a

cover of G, if G = Uie[ C;. The pair (G, C) is called a covered group

with cells C;. A semigroup S of endomorphisms of G is called a

semigroup of operators for (G, C), if for all o € S, C; € C, there exists a
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cell Cj e C such that o(C;) c C;. To each triple (G, C, S), we can
associate the near-ring Mg(G, C) ={f : G - G|f(0) =0, f(C;) < C; for
alliel and foo = oo f forall o € S}. In fact, under the operations of
function addition and composition, Mg(G, C) is a zero-symmetric, right
near-ring with identity, called the kernel of (G, C, S). In [1], [6] and [7], a

connection between covered groups and generalized translation spaces is
established, the kernel has been introduced in [7]. For general
information on near-rings consult [2], [9], and [12]. Also recall that for a
nearring N and v € {0, 1, 2}, the radical J, (V) is defined as

J,(N) = [©: 1),

where T' is an N-group of type v and (0:T):={n e N|nl' = {0}}, see
[12], Section 5. N is called v -semisimple, if J,(N) = 0.

In [3] we determined for a Clifford semigroup S the </, -radicals,
v € {0, 1, 2} of the kernel and characterized when it is 2-semisimple. The

aim of the present paper is to generalize these results to arbitrary inverse
semigroups S of operators of a finite covered group (G, C). Recall that a
semigroup S is inverse, if S is regular and its idempotents commute.
Alternatively, S is inverse, if every s € S has a unique inverse s_l, that
is there is a unique element s~ such that ss™'s = s and s 'ss™! = s71.

Without loss of generality we may assume that {0, id} < S.

If C={G}, then Mg(G, C) is equal to the centralizer near-ring
Mg(G)=1{f:G—>G|f(0)=0,foc=cof for all ce S}, see, for
example, [5], [8] and [12], Chapter 9h for an overview. Thus the results in
this paper also apply to centralizer near-rings. In [5], Kabza laid some of
the groundwork for centralizer near-rings over inverse semigroups, to

which we often refer.
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We now give a brief summary of the paper. In [4], we studied the
kernel M 4(G, C) of a covered group (G, C, A), where A is a group of

operators. In Theorem II.2 of that paper 2-semisimplicity has been
characterized. This work has been continued in [3], where we determined
the J, -radicals of M 4(G, C) for v € {0, 1, 2}. In the present paper, we

show that for an arbitrary inverse semigroup S and a covered group
(G, C, S) such that {0,id} = S and e(C)c C for every idempotent

eeS and C e C, some quotient of the kernel Mg(G, C) is a direct
product of kernels of the form M4 (G;, C;), where the A; are groups of
operators. This will finally enable us to determine J,(Mg(G, C)) for
v €{0,1,2}. We also characterize the 2-semisimplicity of Mg(G, C)

using Theorem II.2 in [4] for the components.

2. Radical of Mg(G, C)

For all of the following, we let (G, C) be a finite covered group with
operators from an inverse semigroup S such that {0, id} < S and
e(C) c C for every idempotent e € S and C € C. In [3], page 1557, a
decomposition of the group G has been derived. The same procedure is
possible for arbitrary inverse semigroups. For A c G let A* .= A - {0}.
We denote by E the set of all idempotents of S. If e € E, then for
geG, g=ce(g)+(-e(g)+ g), hence G = ¢(G)® ker(e). Since different
primitive idempotents are orthogonal, we obtain as in [8] for the set

{eo1s -+-» €opy | of all primitive idempotents
ng
G =01 (G)® -+ @ e, (G) @ ﬂ ker(eg, ).
t=1

We now decompose ﬂtn_ol ker(ep;) further to arrive at a complete

decomposition of G.



162 PETER R. FUCHS

Let KOI =G and

-1
Kyj = ﬂker(e[)t) for 2 < j < ny.
t=1

Now suppose i > 1 and we have already defined idempotents e;;, for all

k<i-land1<j<mnm,. If

i-1 ni_1
K; = ﬂ Kq N ﬂ ker(e;_1;) # O,
s=0 t=1

we let {e, ..., ey | = E be the set of all idempotents, which are

minimal (in the natural partial ordering for idempotents of S) with

respect to the property that e;(K;)# 0 for je {l, ..., n;}. Note that

such idempotents exist, since we have assumed that id € S and G is

finite. For 2 < j < n;, we define
j-1
Kij = Kil m ﬂker(eit).
t=1

Since id € S we have ﬂeEE ker(e) = 0, hence there exists an integer [
such that Kl+11 =0.

Kabza has shown in [5] that if the centralizer Mg(G), for a finite
inverse semigroup S, is simple, then K;; = 0. In Theorem 15 we shall
generalize this result to the case where Mg(G, C) is 2-semisimple.

The next two results can be proved like in [3].

Theorem 1 ([3], Theorem 1).

g

(1) Every g € G has a unique representation g = Zﬁ:o z]’=1 8ij» for

some gij € el](KU)
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(2 For all ief0,.., 1} jell,..,n, ej(K;)=ej(Ky) and
eii(K;j) # 0.

l i
Theorem 2 ([3], Theorem 3). Let g = Zi:o z;lzl 8ij € G, where
g;j < e;j(Kj;) for all i, j. Then for every cell C e C:
geC@Vi,j:gijeC.

We also need the following result from previous papers. For simplicity

of notation, we make the abbreviation K; = K;;, for i € {0, ..., [ +1}.
Theorem 3. Let {ej, ..., e, } be the set of primitive idempotents of S.
Then

(1) (8], page 48) G = ¢;(G)®--- @ e, (G)® K1, where K, = ﬂ?zlker(ei).

(2) ([8], page 53) If f € Mg(G, C) and x = x1 +---x, + k € G, where
x; € ¢;(G), k € Ky, then f(x)= f(x;)+ -+ f(x,)+ k' for some k' € K;.

(3) ([6], Lemma b) Ya. € S : a(K;) < K.

Theorem 4. For all i € {0, ..., I}, let T; := S|K; (restriction of S to
K;).

(1) T; is an inverse semigroup of endomorphisms of the group K; and
{ei| Kj, .., e, | K;} is the set of primitive idempotents of T;.

2) K; = e;(K;) ® - @ e, (K;) ® K.

B) Va e S: (K1) © Kipg-

Proof. We proceed by induction on i € {0, ..., I}. Since K, = G, the

result follows from Theorem 3 for i = 0. Now let { > 1 and suppose the

result has been shown for all j <i-1. By (3), a(K;) < K; for all a € S,
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hence T; = S|K; is a semigroup of endomorphisms of the group K;.
Since the restriction map S — S|K; is a semigroup epimorphism and S
is inverse, it follows from [11], Lemma II.1.10 that 7} is also an inverse
semigroup. Let O # f € T; be an idempotent. By [11], Lemma 1.7.10,
f = e| K; for some idempotent e € S. Since ¢(K;) # 0 and {e;1, ..., €;,, }

is the set of all idempotents of S, which are minimal with respect to the

property that e;;(K;) # 0 for j e {1, ..., n;} (in the sequel we shall refer
to this saying “by the minimality of the eij”), it follows that e; < e for
some j € {1, ..., n;}. But then, ¢;; |K; < e|K; = f and (1) follows.

(2) By Theorem 3, we have for f; =e¢;|K;, jell, .., n;}

that K; = f1(K;)® @ [, (K;)® K, where K = ﬂ?izlker(fj). But

K = K; nﬂ;’il ker(e;;) = K;,1, from which we obtain (2). Finally, (3)
follows from (2) and Theorem 3. O
The semigroup 7; will be used in Theorems 14 and 15. To obtain a

decomposition of the kernel Mg(G, C), we need another semigroup

constructed from T;.

Since K; is a normal subgroup of G for i € {0, ..., [ + 1}, the inverse
semigroup 7; = S|K; acts on the quotient G; := K;/K;,; by s(k/K;.1)
= s(k)/K;,; for s € T; and a coset k/K;,; € G;. Note that by Theorem 4,
s(K;) < K; forall s € S.

Theorem 5. (1) S; :={s|seT;} is an inverse semigroup of

endomorphisms of the group G;.

(2) For f; =e;|K;, jefl,..., n}, {}7] [, jefl, ..., n;}} is the set of

all primitive idempotents of S;.
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3) ﬂ;h:l kerfj = 0.
@ G; = [(G) @@ [, (G)).
B)If x fj(Gi) and y € f,(G;) such that k # j, then x +y = y + x.

6) C; ={(CNK;)K;,1|CeC} is a cover of G; and S; is a

semigroup of operators for (G;, C;).

(D If feMg(G;, C;) and x =+ +x, € Gj, xj € fj(Gi), then
o) = flog) + -+ [, )-

Proof. (1) Let s e T; and k/K;  =k'/K;, , then —k'+k e K; 4
and by Theorem 4, — s(k')+ s(k) € K;,1, hence s(k)/K;,; = s(k')/ K;,;,
which shows that s is well defined. Clearly S; is a semigroup of

endomorphisms of the group G;. Since 7; is inverse and the map

13
h:T; > S;,s—> s 1is a semigroup epimorphism, S; is an inverse

semigroup by [11], Lemma I1.1.10.

(2) Let 0 # f be an idempotent of S;. Since h : T; —» S;, s > s isan

13
epimorphism, we have by [11], Lemma 1.7.10, that f =e for some

idempotent 0 # e € T;. By Theorem 4, {e;; |K;, ..., e;,, |K;} is the set of
all primitive idempotents of 7}, hence there exists j € {1, ..., n;}, such
that e; |[K; < e, which implies f; < f.

(3) Let x € G;. From Theorem 4 (2), x = e;; (k1 )/ K1+ +ej, (K, ) Ky
for some elements k; € K;, jefl,...,njj. If xe ﬂ;llzl ker fj, then
0 = fi(x) = eje;n(ky)/ Kiyq + - + ejjeiy, (k) Kiq = egje;i(k;)/ Kiq =
ejj(kj)/ Kiq, forall j e {1, ..., n;}, since eje;; = 0 for k # j, from which

we conclude x = 0.
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(4) This follows from (2), (3) and (1) of Theorem 3.
(5) Let u = x+ y—x —y. Since primitive idempotents are pairwise

orthogonal, u e njil ker fj = 0, hence u = 0.

(6) Since UCECCﬂKi = (UCECC)ﬂKi = K;, we have UCEC
(CNK;)K;,; = K;/K;,, hence C; is a cover. Now let (CN K;)/K;,;
e C;, for some C e C, and let B € S;. Then B = @, for some o = o |K;,
a; € S. Since a;(C) < C' forsome C' € C and a,(K;) < K; by Theorem 4,
BUCNK;)Kiy) = a(CNK;) Ky < (C'NK;) Ky € C

(7) This follows from (2), (3) and Theorem 3, (2). Ol

In our next result we collect a few tools for subsequent use.

Theorem 6. Let i € {0, ..., I}, f € Mg(G, C). Then

1) f(K;) c K;.

(2) If X =X+ +xini +k e Ki’ where xij € eU(KU) = eij(Ki) and
ke K, then f(x) = f(x;)+ -+ f(x;y, ) + k' for some k' € K;1.

(8) For all x/K;.; € G, there exist unique elements x;; € e;;(K;) such
that X/Ki+1 = (xil + o+ xini )/Ki+1‘

(4) Let X/Ki+1 = xil/Ki+1 + e+ xmi /Ki+1 S Gi’ where Xij € eij(Ki).
Then x/K;,; € (CNK;)/K;,y for some C € C, if and only if x;;/K;,; €
(CNK;)K;,; forall jefl,...,n;}.

Proof. (1) This holds for i = 0, since Ky =G. Let i 21, x € K; =
ﬂ;_:lo K, N ﬂ;z;l kere;_j;, and let e e U;_:lo {es1|1 <t < ng}. Then

ef(x) = f(ex) = f(0) = 0, thus f(x) € K.
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(2) In the proof of Theorem 4 (2) we have shown for f; = ¢; |K;,
jefl, ..., n;} that ﬂ;%:l ker f; = K;,1. The assertion now follows from
(1), Theorem 4 (1) and Theorem 3 (2).

(3) Suppose x = xj) + o+ + Xy, +k, &' =y + o+ kg, + K, where x;;,
xjj € e;i(K;), k, k' € K;;;, are such that x/K;,; = x'/K;,;. Then for
some k"€ Kji1, k" =—-x"+x =k —xj, - —xjp x5y o+ xy,, +E
Therefore, 0 = e;j(—x' +x) = — e;;(x") + e;;(x) = — x}; + x;;, hence x;; = xj;
forall je{l, ..., n;},

(4) If x=2x; ++x;, +keK; is such that x/K;.; € (CNK;)/K;y
for some C e C, then there exists an element x' € C(1 K; and k' € K;
such that x = x'+ &". Therefore, x;; = ¢;i(x) = ¢;;(x") for j e {l,..., n;}.
Since x' € C K;, also X = eij(x’) e CN K;, hence x;j/Kiq € (C N
K)/K;. O]

For i € {0, ..., I}, let N; = Mg (G;, C;) and N = Mg(G, C). We are

now ready to decompose a quotient of NV into the components N;.

Theorem 7. Let ¢.: N — @!_ Ny, 0(f) = (fo, -+, f;), where f; : G; — G,

fi(x/K; 1) = f(x)/K;,;. Then ¢ is a near-ring epimorphism, hence
N/ker p=@!_,N;.

Proof. Let f e N = Mg(G, C). We show first that each f; is well
defined. If x/K;,; € G;, x € K;, then there exist by Theorem 6 unique
elements x;; € ¢;(K;), j € {l,..., n;}, such that x/K;,; =x;/K;; +
-+ %, /Kiyy and there exists an element k e K;,; with x = x;; + -

+Xip, + k. If x" e K; is such that x/K; ., =«'/K;,;, then, by the
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uniqueness of the elements x;, x' =x; +--+x, +&  for some
k'€ Ki,y. By Theorem 6 (2) f(x)= f(xj)+-+ f(x;,;)+2 and
f(x') = flx) + -+ f(xy,, ) + 2" for some 2, 2" € Ky, thus f(x)/K; .y =
f(x')/K;,;, which shows f; is well defined. By Theorem 6 (1),
f(K;) < K;, hence f; is a map from G; to G;. We proceed to show that
fi e N;,iel0,...,0}. If BeS;, then B=a for some o =o4|K;,a; €S. For
x/ Ky € Gy, fi(Ble/ Kiyg)) = fion (x)/ Ky ) = flog (%)) Ky = o (f(x))/ Ky
= B(f(x)/ K;,1) = Bf;(x/K;,1). Moreover, if (CNK;)K;.; € C;,
then f;(CNK;)/K;;1) = f(CNK;)K;yy < (CNK;)K;q, since
feMg(G,C) and f(K;) < K;. It now follows that f; e N; for all
iefo,..,1}.

Clearly ¢ is a near-ring homomorphism. It remains to show that ¢ is
surjective. For this let (fo, ..., f;) € @'_,N;. For each se{0,..., 1}
define a function fs :G > G by

L g
fs(z Z 8j) = Z hgj,
=1

i=0 j=1

where hg; € eg;(K;), j € {l, ..., ng} is such that fs((zyil 8s) Kgi1) =
z;lil hgj/Kg 1. By Theorem 6 (3), the elements hg are uniquely
determined. Note that fs is well defined on G by Theorem 1. By Theorem

5 (7), Z?il hsilKgq = Z?il fs(g4/Ks1). We show that f, € N for all

sef0,..,1}.
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If CeC and ZE:OZ;ZI 8ij € C, then by Theorem 2, g; € C for all
jef, .., ng. Since f, € N, fs(z]’?il 8y Ksi1) = Z?il heil Ky

= z;lil fs(gsj/Ksi1) € (CN K;)/ Kgyq, thus there exists an element

x=xg ++x5, +heK;NC, keKg,, such that x/Kgyy = Z;Lil
hsj/ Ks.q. By Theorem 6 (3), we have xg = hg; for all je{l,..., ng}.
But since x € C, egj(x) = x5 = hgj € C for all j. It now follows that

f(C) = C forall C e C.

Now let BeS. By Theorem 4, B(K;)c K; and B|K; € T; for
. ! . . .
ief0,...,1l}. Let g = zizoz;l:lgij € G. Since {e;; |K;| je{l,..., n;}}
is the set of primitive idempotents of 7; by Theorem 4, we obtain from
[5], Lemma 7 that for each j € {1, ..., n,} with B(gsj) # 0, there exists an
element k(j) € {1, ..., ny} such that B(gsj) € eji(j)(K;) and that if

Blgg) #0 for j'# j, then k(j)# k(j'). Consequently, we obtain
l i s

for g =% . Z]’Ll g;; from Theorem 5 (7), fs(z?=1 B(gy)/ Keir) =

Z]nil fs(B(gsj)/Kerl) = Z;Ls:l st(gsj /Ks+1) = BZ;LSZI fs(gsj /Ks+1) =

BfS(Z’J’_‘; 84/ Ks1), from which we obtain f,(Bg) = Bfs(g). It now

follows that f, € N forall s € {0, ..., I}.

If f= Zﬁzoﬁ- e N and o(f) = (f, ..., f{), then for s € {0, ..., I} and

x e K, fil(x/Kg1) = f(x)/ Kgoq = fo(x)/ Kgq = f(x/Kz,1). Therefore,
fi=f for all i €{0,...,1}, which proves that ¢ is surjective and the

result follows. O
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In the proof of Theorem 7, we have defined functions f, € N for all
fs € Ng, s €10, ..., I}. For a subnear-ring T of @szNi let T := {Zfzoﬁ

|(fo, =, f)eT} < N. We can now determine the radicals of N,

depending on the radicals of the components N;, i € {0, ..., I}.

Theorem 8. Let J =ker¢, v € {0,1, 2} and let T = @LOJV(Ni).
Then

@ I =0, c J,(N),

@ J,(N)=TadJ.

Proof. (1) If f e ker¢, then (fy, -, f;) =(0,0, ---, 0), hence for
all ie{0,..,1} and «x e K;, f;(x/K;.1)= f(x)/K;,; =0. Therefore,
f(K;)c K;,; for all ie{0,...,1}. Since K;,; =0, we have f*! =0,
thus J*' = 0. By [12], Theorem 5.37, J < Jo(N) < J;(N) = Jo(N).

(2) The proof of this is almost identical to the proof of [3], Theorem 5,
and shall be omitted. O

It remains to determine the structure of N; = Mg (G;,C;),i€10,....1}.

For this we decompose N; further.

The following result can be seen as a consequence of the proof of [5],

Lemma 7.

Theorem 9 ([5], Lemma 7). Let G be a group, S an inverse semigroup
of endomorphisms of G with primitive idempotents ey, ..., e,, and
I, =¢(G) for 1€{l,....,n}. If aeS and o(l;)#0 for some
ie{l,...,n}, then there exists an element j(i)e{l, ..., n}, such that

ol l; : I; — I;;) is a group isomorphism with inverse map

oc_1|Ij(i) : Ij;) — I;. Moreover, if k # i and a(I},) # 0, then j(k) # j@i).
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For ief{0,...0},jell,...,n}, let I; = eij(Kij) = ¢;i(K;), where
the second equation follows from Theorem 1. Define a relation ~; on

{Iil’ ey Iini} by

Iy ~i L, = 3o e T; = S|K; : (oI : I — I, is an isomorphism).

Theorem 10. For all i € {0, ..., I}, ~; is an equivalence relation on

{Iljl-] € {17 ] nl}}

Proof. By our assumptions, id € S, hence Ij; ~; I;; for jell,..., n;}.

If I I;;,, then there exists an isomorphism o|l;; : I;; — I

i1 i1 g By

i i L

: I;; — I.. 1is also an isomorphism,

Theorem 9, the inverse map o *|I, i

ijo

and ol

)

hence I;; ~; I 1 —)Iij2,B|Iij2 - L,

i If I; ~ I

i in ~i Lijy ~i ijg i i

ST iIs an

ij; ~are isomorphisms, then (Boa)|]ijl Ly > 1

ij3

isomorphism, hence I;; ~; I O

gioi e
Recall from Theorem 5 that G; = K;/K; 1, T; = S|K;, S; = {s|s € T}},

C; = {(CNEK)/Kiq|CeCl and N; = Mg (Gj, C;) for iel0, ..., 1.
By Theorem 5 (4), G; = fl(Gi)@"'@fni(Gi)’ where f; = e;|K;. By
Theorem 5 (2), {f]| jef{l, ..., n;}} is the set of all primitive idempotents
of S;. For jefl,..,n;} let Ij:=f;(G;). Since f; =e;|K; and
eii(K;) = eij(Kij) by Theorem 1, we have fij = eij(Kij)/Ki+1 = I;j/K;.;. We
can now extend the equivalence relation ~;, i € {0, ..., [} to a relation =;
on {fij|j e {1, ..., n;}} by defining

Ly = Lj, <& 3a € S;: (oI, : I, - I;j, is an isomorphism).

Like in Theorem 10 one can prove that =; is an equivalence relation.

1
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If there are t; equivalence classes with respect to =;, then we can

renumerate the indices of the T ;j to find numbers

0:lo<ll<l2<"'<lti:ni,

such that {I;; 14,1 < j < I} is the equivalence class of I;;,, k € {I, ..., t;}.

Now let G;, = @iﬁzlk_lﬂfij for k e {1, ..., t;}. Since entries coming from

different I, ;jj commute by Theorem 5 (5), it follows that Gj;; is a group for all
kedl, ...t} Also, G; =Gy ® -+ @Gy, since G; = I;; ® - ® I, Now
we can decompose N; = Mg, (G;, C;) as follows: For k € {1, ..., t;}, let
S;. = S;IGj, and C;;, = {CN Gy, |C € C;}. Then

Theorem 11. (1) C;, is a cover of Gy, and S;. is an inverse

semigroup of operators for (G, C;;.) forall k € {1, ..., t;}.

@ v: Mg (G, C;) > @ Mg, (Giy. Cit.), 2(f) = (AIGi1, ..., f1Gy,)

is a near-ring isomorphism.
Proof. (1) For kefl, .., ¢}, UCECiC NGy = (UCEcic)n Gy =

G; N Gy = Gy, hence C;, is a cover of Gyj,.

If aeSy; and x=ux; 1+ +x, € ei'k:lkfﬁljif = Gy, then

ofx) = alxg_ 1)+ +alxg ). If alx;) # 0 for some [y < j <, then

by Theorem 9 there exists an element se{l,...,n;} such that

oc|fij : fij — I, is an isomorphism, hence [, ; < s < ,. Consequently
a(x) € Gy, which shows that S;;, is a semigroup of endomorphisms of

the group G;,. That S;. is a semigroup of operators for (G;;, C;;;) now
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follows from the fact that S; is a semigroup of operators for (G;, C;). By
[11], Lemma II.1.10, S;; is an inverse semigroup, since S; is inverse and

the restriction map A : S; — S;; = S;1G;;, is a semigroup epimorphism.

2) Let fe Mg(G;, C;) and x =x; ;4 +-+x;, Gy for some
kefl, .., t;}. By Theorem 5 (7), f(x)= f(x;_ )+ +f(xy) e Gy,
thus f(G;.) < Gji.. Also, if C € C;;,, say C = C; N G;;, for some C; € C;,
we have f(Cy) c C; since f e Mg (G;, C;), hence fIGy, € Mg, (G, Ciy)
for all kefl,..,t}. Now it is clear that y is a near-ring
homomorphism. If f € ker », then f| G;. =0 for all k € {1, ..., ¢;}. For

x € G;, there exist elements «x; e Gy, jell, ..., ¢}, such that
x =% + -+ 2. By Theorem 5 (7), f(x) = f(x;)+ -+ f(x;; ) = 0, which

shows that f = 0. It now follows that ¥ is a monomorphism.

To prove that v is surjective, let (f;, ..., %, ) € ®§€i=1MSik Gk, Cipp)-

Define f : G; — G; by

t l
f(z (xlk,1+1 +eet xlk )) = Z fk(xlk,1+1 +oet xlk )
k=1 k=1

Since G; =Gj; @+ ® Gy, f is well defined and since f;, € Mg, (G, Cy;),
we have again by Theorem 5 (7) that ZL filxg, o1+, ) =

¢
D fe(xy a) + o+ fi(g). Also, fIGy = fy for ke fl,.. g} If

X = ZZ:l (xlk_1+1 +otxp, )e C, for some C e C;, then by Theorem 6
), x_ 41,5 %, € CNGy, for all kell,..., ¢}, thus fi(x; .+
oty )= filag )+t + fi(ag, ) e CNGy.  From  this we can

conclude that f(C) c C, for all C e C;.
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Now let BesS;, and «x-= Z:zl (x3, 41+ +x;,)€G;. Then

f(Bx) = f(zzizl (Bxz, 1+ +Pxz ). But since Sy =S;|Gy is a

semigroup of operators for (G;;, C;;.) for all k = {1, ..., ¢;}, we have from

Theorem 9 and Theorem 5 (7) that f(Bx):Zzzl fr(Bxg,_ 1+ +Bxy,)

= 22:1 fioBxg, 1)+ + fr(Bxy, ) = 22:1 Bfi (g, y+1) + -+ By, ) = Bf(x).
It now follows that f e Mg (G;, C;) and that ¥(f) = (fi, ..., f;;). The

proof is now complete. O

Following an idea of Kabza ([5], Lemmas 16-19 and Theorem 20), we
can now show that every kernel Mg, (Gj, Cjp), k=1L ...t} in

Theorem 11 1is isomorphic to a kernel with operators from an

automorphism group. The JJ, -radicals, v € {0, 1, 2} of such kernels has

been determined in [3], Theorem 15. Using the decomposition in Theorem

11, we can determine the radicals of Mg, (G;, C;) to obtain the radicals of

N from Theorem 8.
In fact, lf Hik = jilk,1+1 and Aik = {a|fﬂk71+1|oc S Sik’ (X(jilk:71+1)
c jilk:71+1}, fori € {0, ..., I}, k e {1, ..., t;}, then we have

Theorem 12. (1) A;, is a group with 0 of automorphisms of the group
H;..

(2) There exists a cover D;. of the group H;., such that A;, is a
group of operators for (H;;,, D;;,) and

Mg, Gy, Cip) = My, (Hyp., D).

Proof. (1) If 0#PBe Ay, then 0#B(Iy 1)< Iy - By
Theorem 9, f: jilk:71+1 - jilk71+1 is an isomorphism, hence A;. is a

group of automorphisms with 0.
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(@) In [5], Lemmas 16-19 and Theorem 20, Kabza has shown that
v: Mg, (Gy) > My, (Hy), v(8) = g|Hy, is a near-ring isomorphism

between the centralizers. Therefore, it suffices to show that there exists a

suitable cover D;. of H;;, such that p is also an isomorphism from
MSik (Gik’ Cik) to MAik: (Hik’ le) Infact, let Dik = {(X(C m IU)|C (S Cik’
Ly +1<j<l,aeSy, ol;:I; > Hy is an isomorphism}. Note
that there does exist an isomorphism o|I;; : I;; - Hy, = Ljj, |41, since
jij =; Hik fOI‘ all lk,1 +1< _] < lk'

By our assumptions id € S which implies that the identity map on

G;;, is an element of S;;. If we restrict to H;,, we obtain UDeD D
ik

o UCEcikc NHy = (UCECikC) N H;;, = H;;, thus D, is a cover of Hjj..

If 0 * B (S Aik and (lljij . jl] —> Hik’ lk—l +1< ] < lk’ 1s an
isomorphism, then for all C e C;;., po(C N fij) € Dy, hence A, is a

group of operators for (H;;,, D;;.)-

I l
For f e My, (Hy, Dy;) and x = jk=lk,1+1xj e Gy = ®jk=lk—1+1lij’
. - l .
define f(x) = ij:lk,,ﬁl fj(xj), where fj == f and for j >, +2, fj(xj)

= af(y), where o: fﬂk_lﬂ - fij is an isomorphism such that
a(y) = xj. It has been shown in ([5], Lemmas 16-19 and Theorem 20)
that f e Mg, (G;) and 30(]?): f and that the definition of f; is
independent of the special choice of a. Therefore, it remains to show

f e Mg, Gy, Cy).
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For this, let C € C;;, and x = i‘k=lk,1+1 x; € C. By Theorem 6 (4),
all xj € C for je{l_y+1,..., 0} If a(y)=x; for some y e Tﬂkilﬂ,

then y = oc_l(xj) cal(CN fij), where o7l : L —» jijk—l‘*'l is the

inverse isomorphism of a. By construction, oc_l(C N fij) € D;;. and since
f € MAik (Hik’ Dik)’ f(y)e a_l(C ﬂ jij)’ therefore fj(x]) = ocf(y) eC ﬂ TU

It follows that f(x) = zi'k—zk .1 fi(x;) € C, hence f(C)  C, which shows
k-1

that f € MSik: (Gik’ Clk)
Finally, we have to show that for g € Mg, (G, Cy;), ¥(g) = gl Hyy,

S MAik (Hik’ le) ByKabz& we have w(g)e MAik (Hlk) If OL(C ﬂ jl]) € Dik

for some isomorphism oc|fij : fij - Hy = _ijk.,1+1 and x € CN I;;, then

g|H;;.(ax) = g(ox) = ag(x). Since g € Mg, (Gy,, Cy1,), 8(CNI;) = CN I,
from which we have g|H;;(a(C Tij)) c a(CN fij). It now follows that

glHy, € My, (Hy;, Djj,), which completes the proof. O

We are now able to determine the radicals of Mg(G, C). Since each
Ay, is a group of operators with 0 for (Hj, Dyy.), J, (M4, (Hy, D))
(and therefore by Theorem 12, J, (Mg, (G, Cii,)), v € {0,1, 2}) has
been determined in [3], Theorem 15. Note that J;(My, (Hy, Dj;)) =
Jo(M 4, (Hj,, Dyy,)) by ([12], Proposition 5.3), since the near-ring
My, (Hy;, Djj) has anidentity. If N; = Mg (G;, C;),1 € {0, ..., I} is the
near-ring defined in Theorem 5, then N; = @ZleSik (Gii» Ciz) by

Theorem 11 and by [12], Theorem 5.20,
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t; t;
Ju(k@l Mg, (G, Ciy)) = k@lJy(Msik (Giks Cir))-

This allows us to compute J,(N;) for i€ {0, ..., 1}, from which we

finally obtain J,(Mg(G, C)) from Theorem 8, for all » € {0, 1, 2}.

We now return to the case where (G, C) is a finite covered group with
operators from an inverse semigroup S such that e(C) < C for every

idempotent ee S and CeC. We want to characterize when

N = Mg(G, C) is 2-semisimple. It turns out that this problem is related
to the 2-semisimplicity of the near-rings My, (H;i, D;j,), as defined
prior to Theorem 12. Since each A;. is a group of operators for the
covered group (H;j, D;;,), we can apply [4], Theorem II.2. Also, it turns

out that the equivalence relation ~; as defined in Theorem 10 is useful.

Theorem 13 ([10], Lemma 1.3). Let S be an inverse semigroup of

endomorphisms of a group G. Then for o € S.
(1) Im(a) = Im(aa ™).
(2) ker(ota) = ker(a).

Here aa ™! and o 'a are the idempotents associated with o.

Let i € {0,..., I}, je{l,...,n;} and r <i. Since K; c K,, we have
ejj(K,) # 0, hence by the minimality of the idempotents e,;, there exists
an element ¢e{l,..,n., such that e, <e;. For r<i and
jell, .., let Xy =1t ell,...,n. ey <ej}.

Theorem 14. Let i € {0, ..., I} and let j, k € {1, ..., n;} be such that
all;j : I;j - I, is an isomorphism for some o e S. Then for all
re {0, ..., I}, r <1, there exists a permutation n: X,; — X, such that

allyg : Iy > Ipys) is an isomorphism for all s € X,;.
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Proof. Let r € {0, ..., 1}, r <i. If r =i, then the assertion follows

from our assumption that o|I;; : I;; - I;;, is an isomorphism, since
X;j = {j}. Now let r <i. Since (oceij)(oceij)flllik =e; | I;, = idlI;;,, we
have (ae;;)(ae; yloe, #0 and (ae;j) (aej; )l oe, <ey. By the
minimality of the e;,, (ate;;)(oe;; Y Loe, =e;, hence e < (aeji ) (o )L
Therefore, e,, < e;, < (oceij)(oceij)fl for all ¢ e X,,, from which we
obtain (ae;; ) (ae;; Y, = ey I,y = id|I,;. By Theorem 13 (applied to

G =K, and S = T, = S|K,), it follows that I,, < Im((ce;;)(ae;)""| K, )
= Im(oe;| K, ). Therefore, we obtain for each ¢e X,; an element
s €{l, ..., n.}, such that (ae;)(I,s) = (aejje,s)(K,) = I,;. In particular,
ejjers # 0 and since ejie,s < e,;, we have e¢;ie,s = e, by the minimality of
the idempotents e,;, hence e,; < e;;, which shows that s € X,;. Since
aIys) = aeps(K,) = aejies (K,)= Iy, 0/l : I,g - I, is an isomorphism
by Theorem 9 and we obtain an injective map 7: X, — X,; such that

oc|I,T(t) t L) > Ly is an isomorphism for ¢ € X,,. Applying the above

arguments to the inverse isomorphism oc_1|Iik : I;;, — I, it follows that

i
T 18 bijective. O

In Theorem 12, we have defined for i € {0, ..., I} and k € {1, ..., ¢;}
covered groups (H;., D;.) and groups with O of operators A;. for
(H;;:, D;p), where t; is the number of equivalence classes with respect to
=;. For simplicity of notation, we make for all of the following the
abbreviations Hg, = H}, Do, = D) and Ay, = A, ke {l, ..., ty}. We
can now reduce the semisimplicity of Mg(G, C) to the semisimplicity of

the near-rings My (Hj, Dj), which has been determined in [4],
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Theorem II.2. For this we use sets I(w), S(w), E(w), s(w), e(w), which

have been defined in [4]. We refer here to the definition given there. Also,

for i e {0, ceey l}, ] € {1, ey ni}, let Elj = {t € {1, ceey nl}| Iit ~i IU}

Theorem 15. For a covered group (G, C) and an inverse semigroup of
operators S for (G, C) such that id € S and e(C) < C for all C € C, the

following are equivalent:

(1) Mg(G, C) is 2-semisimple.

2) (a) ﬂ?flker(eol-)z {0}, where {eqq, ..., egn, | is the set of primitive
idempotents of S (as defined on page 161).

(b) Vk e {1, ..., to} : My, (Hy, Dy) is 2-semisimple.

3 (@ (), ker(eo;) = {0}.

() Vkefl, ..., to} Vw € Hj : (Sw)Nsw))* = Ew) N e(w) (where S,
E, s, e are taken with respect to Hy,, A, and Dy,).

Proof. (1) = (2): We use the notation on page 162. Suppose
K = ﬂ::ol ker(ep;) # 0. Then there exists an integer [ > 1 such that
Kj,, #0 and Kjy =0. We have e;(Kjp)#0. Note that if
jEEll :{je{l,...,nl| Il] ~1 Ill} and OL|IZJ' :Ilj —)Ilk 1s an
isomorphism for some ke {l,...,n;}, then also ke Ey. For

l i .
g= Zizoz;tlgij €G, let Y, ={jeEy|VkeX; ;8 #0}
Define a function f : G - G by

I n
f(zzgij)3: Z 8ij-

i=0 j=-1 jeY,
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Note that if Y, = @, then Zjng gy = 0. Since Ky, # 0, fis not the

zero function. We show that f € Mg(G, C). By Theorem 2, f(C) < C for
all C e C.

l i ! i
Let g=3 >l gjeG If peS, then Bg=73" > Pg;

= Zi:o Z;li1 g, hence f(Bg) = ZkeYﬁg g~ We need to prove that
f(Bg) = Bf(g). Suppose k € Ypg is such that gy, # 0. Then there exists
an element j e {1, ..., n;} such that g = p(g;i). By Theorem 9, this
means that |l : I; - I, 1s an isomorphism, hence je Ej. By
Theorem 14, there exists a permutation n:X; ;; - X;_y; such that
Bllj—1s : I1-1s = Ij1x(s) 1s an isomorphism for all se X;;;, 1n
particular |X; ;| =|X;_j;|. Suppose j ¢ Y,. Then there exists an
element ¢ e X;;; such that g;j;, =0, hence f(g;_y;)=0. Since
|X;-1j] = | X211 |, we then cannot have that k € Y,, which contradicts
our assumption. Therefore, we conclude that j e Y, and g = B(g;).
Now let j e Y, be arbitrary. Then either B(g;) =0 or B(g;)# 0. If
B(gsi) # 0, then by Theorem 9, | : I;; — I, is an isomorphism for
some k e {l,..., n;}, and since j e E;;. also k € Ej;. By Theorem 14,
there exists a permutation n:X;;; > X; 5  such that
Bl 15 : 115 = Ij_1n(s) 1s an isomorphism for all s e X; ;. Since
jeYq, g5 #0 forall s € X; 4, hence f(g;_4;) # 0 forall se X;,;,

which means that g;_;, # 0 for all ¢ e X; ;. Therefore, ke Yg,

e l i =
and B(g;) = gy It now follows that f(Bg) = f(z:i=0 z;‘:l g;j) =
zkeYBg g = Zjeyg Blgy) = B(Zjeyg g;j) = Bf(2). We have now shown that

f e Mg(G, C). By our construction, f(K;) < K; forall 0 <i<1-1 and
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f(K;) = {0}. Therefore 0 # f € ker ¢, as defined in Theorem 7. By
Theorem 8, ker ¢ = J9(IN), which contradicts our assumption that

Mg(G, C) is 2-semisimple. Therefore, we can conclude that

(", ker(eg;) = {0}, which shows (2)(a).

By Theorems 7, 11, and 12, N5®§11MAi(Hi’Di)’ hence

0=Jy(d2, My, (H;, D;)) = @EO:lJz(MAi (H;, D;)) by ([12], Theorem
5.20). Consequently, JJo(M 4 (H;, D;))) =0 for all i € {1, ..., ¢y}, which

implies (2)(b).

(2) = (1) : By Theorems 7, 11, and 12, N = @2, M 4. (H;, D;), and
Jo(@2, My (H;, D;)) = @2, J2(My (H;, D;)) = {0}.

(2) & (3) : Follows from Theorem I1.2 in [4]. O

Example 1. Let G := Z3, B := {b;, by, b3, by, bs} the canonical basis
of G. Define linear maps e;, ey, e3, a on G as follows: e;(b;) = by, e;(bg) =
. =e(b5) = 0, ea(by) = by, ez(by) = by, ey(b3) = b3, ea(by) = ea(b5) = 0,
eg(by) = by, e3(by) = e3(b3) = 0, eg(by) = by, e3(bs) = bs, afby) = by, alby) =
by, a(by) = bs, alby) = by, a(bs) = by. Let C = {C; = (by, by + by, by + bs),
Cy = (b1, by +b3, by), C3 = (by, by + b3, bs), Cy = (by, by, by +b5), C5 =
(b1, b2, by), Cg = (b1, by, bs), C7 = (by, b3, by), Cg = (by, b3, b5), Cg = (by,
b3, by +bs)}. Then C isacoverof Gand S := {ej, ey, €3, a, aeg, ega, id, 0}
is an inverse semigroup with idempotents e;, eq, e3, id, 0, e; < ey, ; < e3,
a? = id, aes = ega, ego = aeg. Further, one checks that e(C) < C for
every idempotent e € S, C € C and that S is a semigroup of operators for

@G, C).
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Let N := Mg(G, C). We want to determine the decomposition of N in
Theorem 7 and the radicals </, (N), v € {0, 1, 2} of N in Theorem 8. We have
Ky =G, K| = kerey, Ky = kere; N ker ey () ker e3 = 0. By Theorems 7,
8, NIJ =@} oMg,(G;,C;), where G;=K;/K;,;,S; ={5|seS|K; =T;},

where §(k/KH_1) = S(k)/Ki+1 for k e Ki and Ci = {(C n Ki)/Ki+1|C € C}
Gy = (b1), S = {id, 0}, Cy = {(by)}. Therefore, Mg, (Gy, Co) = Zj.
Gl = Kl = ker(el), Sl = {52, 53, E, @2, 526, ﬁ, 6}, Cl = {C ﬂ ker e1|C
€ C}, e5 and ey are the idempotents which are minimal with respect to
the property that e(K;) = e(ker ¢;) # 0. Following the notation on page 171,
if 711 = §Z(G1) = <b2, b3> and j12 = 53(G1) = <b4, b5>, then o : jll d 212
is a group isomorphism. Since G; = I;; ® I 5, there is only one equivalence
class with respect to the equivalence relation =;. By Theorem 12,
Mg (Gy, C1) = My, (Hyy, Dyy), where Hyy = Iy, Ayp = {o|Hyjlo € Sy,
(X,(Hll) C Hll} and Dll = {a(Cﬂf1])|C € C].’ a e Sl’ aljlj . f]_] g H].]. 1s
an isomorphism, j e {1, 2}}. It is easy to check that Hi; =(by,b3),
Ay ={id, 0}, and Dy; = {(by + b3), (by), (b3)}. If, for a group F, My(F)
denotes the near-ring {f : F — F |f is a function, f(0) = 0} with respect
to function addition and composition, then Mg (Gy, C1) = M 4, (Hi1, D11)
={f: Hyy > Hyy [f(0) =0, f(by) € (bg), f(b3) € (b3), f(ba + b3) € by + b3)}
= M0(<b2>) X M0(<b3>) X M0(<b2 + b3>) = Zz X ZZ X Zz. Since the field Zz
is semisimple, we have that o, (Mg, (Go, Co)) =, (Mg (G, C1)) =0

for v € {0, 1, 2}, from which we conclude that in Theorem 8, T =0, hence

J,(N)=dJ for v € {0, 1, 2}. It remains to compute oJ.
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By Theorem 8, J = {f|Vi e {0,...,1}: f(K;) < K; .1} ={f1f(G) c kere;,
f(kere;) ¢ Ky = {0}}. Since e; is the only primitive idempotent and
K, = kere; # 0, we know from Theorem 15 that J # 0. e, and e3 are
the idempotents e minimal with respect to the property that e(K;) # 0. Let
eg1 = e, e;1 = eg, €19 = e3. Then Kjy = kere; Nkere;; = (by, b5),
Ko = ker ey Nkere;; M kereg =0. By Theorem 1, every g € G has a
unique representation g = go; + g11 + &12, Where gg; € eg1(G) = (b;),
811 €(by, b3), 812 €(by, bs). If f e, thensince f(G) < kerey, f(kere;)=0,
we have

0 if go1 =0,
f(go1 + g11 + &12) = P11 + Mg for some hyy € (by, bg),

hig € (by, bs), if go1 # 0,
f(b1) = fleo1by) = e01f(b1) € €p1(G) = (by), thus f(b;) € {0, b;}. But since
f(G)ckere, it follows that f(b;)=0. Further, go, =b;,f(eqg)=/f(b; +&11)
= e9(f(g)) = eg(hy1 + A1) = hyy and similarly, f(esg) = hyg. Therefore, for
each fed, we get a function h:(by, bs) —> (by,b5) such that
h(x) == f(b; +x). Since f(b;) = 0, we have A(0) = 0 and since f(C) c C
for all C e C, one can check that h(b) € {0, b} for all b e (by, bs). Also,

h(agy1) = f(by +agi1) = of (b + g11) = ahy;. Combining our calculations,
we get for f e o, f(go1 + 811+ 812) = & "h(ag11) + hlg1z).
Conversely, if A : (by, bs) — (by, b;) is an arbitrary function such

that 2(0) = 0 and A(b) € {0, b} for b € (by, bs), then f, such that

fr(go1 + 811 + 8 )'—{0’ i &or =0,
PAEOL TSI T BT o h(ogyy ) + Algrs), if go1 #0,
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is an element of J. In fact, it is easy to check that for g € G, i € {1, 2, 3},

fn(e;g) = e;(f(g)) and fy(ag)=0a(f;(g)). Since e;, ey, €3, o generate all
of S, it follows that f,(cg) = o(f;,(g)) for all o € S. Also, f;,(C) < C for
all C € C.

Combining our results we obtain J,(N)=d ={f, |h:(by, b5) - (by, b5),
h(0) = 0, h(b) € {0, b}, for b e (by, bs) is a function}, for v € {0, 1, 2}.
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