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Abstract

In this paper, we numerically approximate the solutions of the first-order
fractional differential equation system that models blood ethanol concentration
using a fractional variational iteration method (FVIM) developed for high-order
differential equations. Comparative analysis with two different variational
iteration methods, including one specifically tailored for this problem, shows

that the FVIM achieves lower approximation errors.
1. Introduction

The use of fractional differential equations to model diverse phenomena
has seen significant growth in recent years across numerous fields
including finance, biology, mechanics and engineering [3, 4, 8-10, 17, 28,

36]. In particular, in chemical engineering, one such phenomenon is the
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concentration of ethanol in human blood. In [30], this process is analyzed

using the following system of first-order fractional differential equations:

D%(t) = - x*u(?),
D%u(t) = k*v(t) — n%ult), (1)
v(0) = vy, u(0) =0,

where v(¢) denotes the concentration of alcohol in the stomach at time
t (mg/l), u(t) represents the concentration of alcohol in the blood at time
t (mg/l), k and 7 are rate constants (min '), v is the initial concentration
of alcohol in the stomach (mg/l) and D% denotes the Caputo fractional
derivative of order o € (0, 1). The study in [30] demonstrates that this
fractional model offers a more accurate estimate of real data compared to

models that use integer-order derivatives.

The exact solution of (1) can be obtained using the Laplace transform
technique. Indeed, from [30], we know that
_ 1)i+ J. .ol o

o(t) = voEq(~ k%% ) and u(t) = UO&QZZ r((( KM™(i+j+l)a

55 i+j+1a+1)

>

where E, denotes the Mittag-Leffler function defined as

Ea(2) = Z; et D)

However, having numerical methods that provide accurate and efficient
approximations is highly useful and advantageous. Many numerical
approximation techniques for fractional differential equations have been
explored [2, 5, 7, 11-13, 15, 19-22, 26, 31, 33], among which the
variational iteration method (VIM) stands out as one of the most popular
and effective [16, 18, 25, 29, 32, 34, 35]. In particular, in [1], a VIM is
developed exclusively for the problem (1). This method essentially relies

on constructing each correction term using the Riemann-Liouville
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operator and a Lagrange multiplier, which is determined through the

stationary conditions. Moreover, the approximating sequences (¢, ), and

(¥y,), for vand u, respectively, are given by

00(0) = bn1(0) = s [ (€= (D01 (0) 1% 1 (), (20)

5n0) = 301~ 1 [ €= (D04 (0)

~ £%,_1(1) + n% 9,1 (7))dT, (2b)
with the initial terms
d)o(t) =g and 3()0(1:) = 0.

On the other hand, in [24], a VIM was proposed to obtain numerical
approximations for arbitrary linear (and non-linear) systems of fractional
differential equations. For the problem (1), the approximating sequences

(¢,), and (x,), for vand u, respectively, are given by
t
on(t) = @u1(0) = [ (D0n 1)+ k%0, 4 (7)) (32)

Xn(®) = 1) = [ (D %a (1) = %01 (1) 4 %1 (1)dr,  (3b)

with the initial terms
0o(t) = vy and x,(t) = 0.

In this work, we reformulate the partially coupled system (1) into a set of
second-order homogeneous fractional differential equations and then, in
order to obtain an alternative numerical method to (2) and (3), we use the
fractional variational iteration method (FVIM) given in [27]. Through
concrete numerical examples, we demonstrate that the fractional

variational iteration method provides more accurate approximations.
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Additionally, we derive alternative explicit expressions for the

functions ¢,, and y, given in (2a) and (2b), which eliminate cross-term

usage and unnecessary recurrences, relying solely on n (see Lemma 3.1
below). Clearly, this leads to a more straightforward and simplified
implementation of the method. Nevertheless, the formulation we provide
for the FVIM also offers this advantage and, as previously noted, yields

improved results.

The organization of the paper is as follows: In Section 2, we introduce
definitions, notations and basic properties related to the Riemann-
Liouville integral operator, the Caputo fractional derivative and the
Laplace transform, which are crucial for the comprehensive development
of our work. Sections 3 and 4 are dedicated to presenting the
approximations given by the variational iteration methods in [1] and [24],
respectively, in a clear and concise manner. In Section 5, we use the
FVIM developed in [27] to derive new approximating sequences for the
real solutions of (1). Finally, in Section 6, numerical experiments are

presented to compare the performance of the three methods considered.
2. Preliminaries

In this section, we briefly introduce definitions and well-known
results that are useful for our purposes. For a more comprehensive and

detailed discussion, we refer the reader to [6, 14, 23].

2.1. On the Riemann-Liouville integral operator and the Caputo

fractional derivative

The Riemann-Liouville integral operator of w of order

a € (0, 1), I*w, is defined as

u(t) = ﬁ) | ; t - w(r)dr (¢ > 0), )
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where I' : (0, + ©) - R denotes the Gamma function given by
+0o0 1
I(x) = J e d.
0

A well-known fact about this operator is that, for any r > 0,

T'(r+1) jotr

I%" =
I(r+a+1)

139

®)

On the other hand, the Caputo fractional derivative of w of order

o € (0, 1), D*w, can be defined by I'™* as follows
Daw — Il—aw/,

where w' denotes the ordinary derivative of w, i.e.,

o _ 1 t wl('r) >
DLMO—FG_Mjou_ﬂQdT@_O)

Taking into account that Gamma function I' satisfies
al(x) = T(x +1),
from (5) it follows that, for any r > 0,

T(r+1) -

Dar:
S s —

The operators I* and D% are also related in the following ways:
D*I%w = w,
and

I“D%*w(t) = w(t) — w(0).

(6)

()

®)

)
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2.2. On the Laplace transform

The Laplace transform of v, Lv, is given by

Lu(s) = J. e *Tu(t)dt (s > 0). (10)
0
Among the many properties of this linear operator, we emphasize the
following:
I'(r+1
Li'(s) = (sr+1 ) rso, (11)
a 1
LI%v(s) = — Lu(s), (12)
Sa
and
LD%u(s) = s*Lu(s) - s v(0). (13)

Finally, as usual, we use L7 to denote the inverse Laplace transform. In

particular, from (11), L' is a linear operator which satisfies

101 ¢t
t) = ,
§TH1 ) C(r+1)

r>0. (14)

3. On the VIM developed in [1]

A variational iteration method for the problem (1) is exclusively
developed in [1] where the correction terms are built from the Riemann-
Liouville operator (4) and the Lagrange multipliers are obtained from the
stationary conditions via variational theory. In fact, the proposed
approximating sequences (¢,), of v and (p,), of u (previously

introduced here in (2a) and (2b)) can be actually written as

bp = Op_g =~ I (D%pq +K%0p1), do = Vo,

and

Y = VY1 — IQ(Dawn—l - IQOL(I)n—l + nawn—l)’ Yo = 0.
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Now, thanks to the linearity of the operator I* and the property (9) it
follows that

On = 0p1 = L9D%, 1 — K I%y g =vo — KL%, g, (15)
and then
Y = Vpg = 1" D%y g + 6" T%, g =M"1%0, 1 = vg = ¢y =M L%y .
(16)
From these identities, we can derive alternative expressions for ¢, and

v, which are highly useful from a computational point of view since they

depend solely on n, avoiding the cross-use of terms and unnecessary

recurrences.

Lemma 3.1. Let ¢, and v,, with n>1, be as in (15) and (16)

respectively, then

n

(])n(t) = UOZO%’ (17)

1=

and

. sl e . . .
& (- 1)”1(2]':0 R(z—l—])anm jtm

1=1

Proof. We argue by induction on n. For n =1, from (15) and (5) we

have

tQ.
(I)]_(t) =0Ug — RQIQUO = Uo(]. — Ralal) = Uo(l - Ra 1—‘((1—-{—1)]

. . .
_ D (")
=), TGot+1)

1=
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on the other hand, from (16) we have

t(l

P1(t) = vp — 1) = n*I*0 = vy — ¢1(t) = vor* To+1)’

which proves the claim.

Now suppose that (17) holds for n > 1. From (15) and (5), it follows
that

¢n+l(t) =V — |<‘“Ot‘[mq)n(t)

( 1)1 ol .
vo — K1Y [UOZ F(Loc+1) J

1)l o aai
A UOZ F(Loc+1) !

i+1 i+ a(i+1)
v + UOZ (-1) (o + 1)t
F(l(l +1) T(@+1Da+1)

(- 1)L+1 0.(L+1)t a(i+1) n+l t)o.z

(-1
Yo 1+Z(; '@ +1)a+1) UOZ LOL+1

1=

which completes the argument regarding ¢,,.

On the other hand, suppose that (18) holds for n > 1. From (16) and
(5), 1t follows that

Prs1(t) = vo = Gpsa (6) = T %, (1)

. i-1 . . . .
1 H—l( v (i-1-j)o ]a)tw
e "Z“( V60" g, Z( M2
070 T(io +1) 0 = (o +1)
. i—1 - . .
ntl i+1 al n_ (= 1)”1 zl. 'Q(L_I_J)anja
=0 ( ) ( ) —v TIO.KO. j=0 Iutoti
0 (o + 1) 0 (o + 1)

1= 1=



ON VARIATIONAL ITERATION METHODS FOR THE ...

n+l

~ (_ 1)i+1(ﬂt)ui
- UO; TGo+1)

:UO

t(x

+1 (_ 1)i+1 (Iit)ui
C(ia +1)

. (- 1)i+1(zi,_1 H(z'—1—]')un]a)tou'
v TIO.KO.Z J=0
0 Tio +1)

i=1

y I + 1)ta(i+1)
L@+ 1o +1)

. i—9
nﬂ(—1yﬂ(§j, .
+v naRaZ j=0

0 T(ia +1)

1=2

(i—2—j)onnjonjtai

n+l (- 1)i+1ﬂa(i—1)toti

(o +1)
= l)oliOL

tO.

(o + 1)

i=
, )
_ 1)+l l
w1 (- 1) (jg:j:OK

(o +1)

(=2 (j 1) )tai
+

=2

n+l ( 1)l+1

= l)oliOL

tO.

To+1)

a(i-1 (i-2- ])0L (j+1a
— F(L(X-i-l)[ +Z H

To+1)

n+l i+l o0 (21 . .
(-1t [Z H(z—l—])onnjotJ:l

— o +1) =

1)l+1 ol

_Uoﬁzf

This proves the lemma.

(o + 1)

ZRL 1-j)a

i1
{ (._ ) nj(xj‘
=0

Remark 3.1. The explicit expression for y3 given in [1] is

tO.

£ 4% Wt

V3 (t) = vor®

Mo +1)

0.5+ a)C(1 + a)

+

4—(1(&2(1

+ (MR)® + 024 Wrl(1 + 2083

143

(0.5 + o)1 + o)I(1 + 3at)

whereas the expression derived from (18) is

tOt

(Kot + noc )t20t

(= + (nk)” +

20 )tSO._

V3(t) = vor”

| (o +1) -

(20 +1)

(30 +1)




144 G. MONZON

The differences between both expressions can be explained using the
Legendre’s duplication formula:

T(R)r(0.5 + B) = 2" 2P/n(2p),

in the particular case f = 0.5+ a. A similar situation arises with the
expressions for o, 9 and ¢3 provided in [1] compared to those derived

here.
4. On the VIM developed in [24]

Unlike the VIM proposed in [1], it is neither simple nor
straightforward to find expressions for the approximating sequences ¢,

and y, provided in [24] (given here in (3a)-(3b)) that depend solely on n.

We present only the first five terms of each sequence, which will suffice
for our purposes:

01(t) = vo(1 - k"),

2a o

t) = vl 1 - 2:% + 242 R 42
(PZ() UO( K + 2 +1—~(3_a) s

3H2a 9 H3oc 3 3% 9-
t) =vg|1-3x% + to— t° + e
93(t) UO[ " 2 6 G- o)

2R pBa _ K% 329
r4—o) 4 - 2a) ’
w3 5 gA* 6k o 8k2% o
t)=vg|1-4r% +3x2%% - £ 3 & ¢ t27 o
04(t) ”0( Rt eR 3 "t T d—o)

__ 4% 390 35 Ao, 32 20 K% 430 ,
(4 -2a) rG-o) r'(5-2a) r'(5-3a)
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3a 4o 5a
05(t) = vo[l CBRO 4 BR242 J R 3 B% 4 K5

3 24 120

10k* 9 g 20K 2* 3—a 10k* . 3_9¢ 1563% 4-q

g2 2R gdte R 2
T TB-a) T(d—o) T(4—20) "Th-a)
. 156%% 494 . 5k fA-30 _ 41 (5
r(5—2a) r(5—3a) r(6—o)
_6r™ (520 _ k> p-da __ K 5eda
(6 - 2a) (6 - 3a) (6 - 4a) ’
Lo
and, calling o; = Z m(‘_])“n’o‘ for i =1,..., 4, we have
j=0

11 () = vor*t,

1 _
= afgp _OL,2 2-a
%2(t) = vok (t o ! F(S—a)t ,
3o c 3 _
) =vr® 8- 2L2 2243 9 42-a
xs(t) = vor ( 2 "8 TB-0
201 3« 1 3-20
"Ta-o’ ‘Ta_20" )
20 o 6 - 8o _
1) =vor®| 4t —30yt2 + 23 B4t 242« 13
x(€) = vor ( ot T3 24" "TB-a) ' T@-w
n 4 t3—2a_ 362 t4_a _ 361 t4_2a _ 1 t4_3°‘
(4 -2a) r6-a) (G- 20) I'5-30) ’
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— oor®{ 5t —5oyp2 99248 29844, Oa 5 10 94
15(t) = vk (5t 5oit” + 3 ! 51 L T10¢ r(3—a)t
+ 200, t3—(x + 10 t3—2a _ 150, t4—a _ 150, t4—2(x
r4-o) 4 -2a) r6G-o) r'G-2a)
B 5 4-3a 403 5-a 6oy 5-2a
6-30" "T6-0)' 'T6-20)"

461 530 1 5-4a
— —_—1 .
" (6 - 3a) " (6 -4a)

5. Application of the FVIM [27]

From the partially coupled system (1), we can derive the following

second-order fractional differential equation for the function u:

D*¢u+ (r* +n*)D%% + (km)*u =0,
uw(0)=0, D%u(0)=vgr%,

where D®¢ denotes the iterated derivative D® o D*. Clearly, this

equation can be rewritten as

D%y = pD%u + qu, (19)
u(0) =0, D%u(0) = vgr*,

where
p=-(k*+n%)and ¢ = - (sn)”.

Applying the fractional variational iteration method proposed in [27], we

obtain the approximating sequence (,,), given by

_vor” a1 (5% 40" )s® + (sn)* )Luy g
un(t)—mt -L 52(1 (nZl), (20)
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with the initial data

UoﬁOL o

up(t) = mt

On the other hand, in order to obtain numerical approximations of the
function v, it may be natural to consider the following single-term
differential equation:

{D“v(t) = — k%(t),
u(0) = vy.

However, we show that the FVIM proposed in [27] can also be applied in
this case (and more generally to any first-order single-term fractional
differential equation) with highly favorable results. Since a high-order
fractional differential equation is necessary to apply such a method, we
observe that the following second-order fractional differential equation

can be derived from the system (1):

{D2°‘U(t) — k2%(7), -
u(0) =vg, D%(0) = — k%vy.

Thus, the approximating sequence provided by the FVIM in [27] is given
by

v, () = vp| 1 L B P 1l =1 (22)
n (o +1) g2 T ’
with the initial data

vo(t) = vo(l _l"(li—lfl)}

Lemma 5.1. Let u, and v,, with n>1, be as in (20) and (22)

respectively, then

]j (_ l)j(KOL n noc )j—i(Kn)iat(i+j+1)a @3)

o S
tn (£) = vor (l TG +j+ Do +1)

7=0i=0
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and

2n+1 | O )z

Un(t) Vo Z ZOL +1) (24)

Proof. We argue by induction on n. For n =1, from (20), (11) and
(14) we have

up(t) = FEJOOLR:LI) t* -1 ((k* +n* )sasgra(mn)u )Luo(s)}

B o
K +n*)s* + (kn)* )L Yot t®
. (5% +0)s™ + (sn)*) [F(OM)
~ T(o+1) $20
o Uoﬁ
e . (% 4"+ (e PO s
- T(a+1) $20

= Uoﬂa(r(; i (K* + n“)L_ILZiH} - (ml)aL_ngiH D

ey T ) e (2 +1) (n)aF(3a+1)J

1 j /. i j—i i, (i+j+1)a
R I EDY (R® +n®* )Y () .
D e
and, from (22), (11) and (14) it follows that

vy () = uo[1 - %} +rZop L% L, (s)}

oo e ol )
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_ k% 207-1 Yo (1 k"

= vo|1- o + )J L |: 2a ( B Sa+1J:|

_ k*t* 2o 7-1 1 ar-1 1
=0 1—m+ﬁ L 820-+1 — kL 83(1—_'_1

20

Kt 20, t t
T+ " (F(Zoc 1) T(3a +1)D

[=)

(=)

U

=)

O.tO. )l
Tlo+1) "’

Mc,o

i=0
which proves the claim.
Now, suppose that (23) holds for n > 1. Then, thanks to (11),

lj Lo aj—i K io (i+j+1)a
= e St

j=0i=0

j o, ) o ) (+j+l)a
- o Zm 1Y (ke + n“)]_l(Hn)mL{r((i = . o 1)}

= vor® , Z]“(JJ (- 1)j(na n not)j—i(m])ia ' .1

s(z+]+1)a+1

From (20), the newly derived identity and (14), it follows that

un+1(t) =

v0r® o L_{((w 0% )s* + (sm)* )Lun(sq

F(OL + 1) 820.

= vok* Lo —Uoﬂ“L‘l{ nJ [ j( 7 (5% + n® )=+ (k)

(o + 1) “ & Sti+2)a+l

n

J s j K Jj—i K (i+1)a
* Z(J 1) ( -’z_+?+3))a+1( n) ]

j=01i=0

149
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< it o (i+j+2)
= VoK { i[J( 1Y (k% + n® ) 7 ()i (4742

T@E+Jj+2)a+1)

] 0i=

n i(]) (- l)j(m“ +n® )j—i(Rn)(i+1)at(i+j+3)a]
i

TG +Jj+3)a+1)

+1) ~ (z +j+1)a+ 1)
ntl J i q _ 1Y (® @V (g (4741t
' j=1 ;(f —J( H F((J; 2 j)+ 1502 1§ ]
S((i-1) (j-1
e 2T)6D))
[(o +1) = ( 1)](|-a +n )] L(m])za z+]+1)a

T@E+j+1)a+1)

N G 0 A G Vi ()1 At jj
I +1)a +1) (2 +1)o +1)

) n+l(j-1 (-1) (m +n )_] L(Rn)LO.t (i+j+1)o
= VoK +1) 2 :1[LJ TG +j+1a+1)

i

G D (R 0 A o Vo () st A jj
I +1)a +1) (2 +1)a +1)

. 40 n+l J j (_1)j(ﬂa+ a)j_i(m )iott(i+j+1)a
= Upk {F(a +1) + Z ' (J F((i2j+1)cxn+ 1)

+1 j
o Z (= 1) (s + Y~ ) 4T+
0 i L@+Jj+1a+1) ’

j=0 i=

which completes the argument regarding u,,.
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Finally, suppose that (24) holds for n > 1. From (22), (11) and (14), it

follows that

o oL
Kt

Un+1 (t) = Uo(l -

WJ 4 r2opl ina Lo, (s)}

i 2n+1 ;
g0 9ur1l 1 ( e )l
=vg|1 - — ot — L
O T T " s Y0 Ly Tl + 1)
i 2n+1 ;
g0 S o
— 1 _ ﬂ— OﬂL - _ L lL
Vo T+ 1) TR 2o 0 Z(; (=x%) Iio +1)
L i=
B 2n+1 ]
— Kata 20071 o\l 1
= Vg 1—m +Rr“L SKUO'Z(;(—K ) siOH—l
L i= i
2n+1 A
B k&t i (i+2)a -1 1
= Vg 1—m +UO;(—1)H L W_
2n+1 ;
1t R e
O T(a+1) - ([ +2)a +1)
| O 2n+1 (- k% )(i+2)
T T o) 4 < T+ 2)o+1)
1=
1 asoni  2An+l)+1 A0 2(n+1)+1 Ao\
_ | ST ERTT) {Gll k200 I > Cr%)
0 & T(io +1) T(io + 1) 0 & Tl +1)°

and the proof is complete.
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6. Numerical Experiments

With the aim to compare our results with some of those obtained in

[1] we will consider

k =0.02873, n=0.08442, vy, =4, and ¢e]0, 7]

For these values, from [27, Theorem 4.1], we know that u, converges to

the solution u of (19) for any o > 0.88632 due that the condition

(* +n*)7*
T +1)

(Hﬂ )0. 7211

r2a+1) '

is satisfied. On the other hand, v,, converges to the solution v of (21) for

any o since the requirement in [27, Theorem 4.1] is always verified.

Some of the a values within the interval [0.88632, 1) are 0.97 and
0.89; for these values, the approximation errors are tabulated in Tables 1
and 2, respectively. It can be observed that the results obtained by the
FVIM are more accurate than those yielded by VIM [1] and VIM [24] in
all cases, and that, according to [27, Theorem 4.1], the error improves as

the number of iterations increases and as o approaches 1.

Table 1. Approximation errors for the FVIM, VIM [1] and VIM [24] for
a = 0.97

a =097
n

e —unle | Te=vnle | le=tnl | lo-vale | lo=¢nll, | lo-onl,
2 | 2.0990e-02 | 7.1449¢-02 | 9.5971e-02 | 6.6364e-07 | 6.6284e-03 | 1.4004e-02
3 | 3.8142¢-03 | 1.2195¢-02 | 1.8357¢-02 | 6.3351e-10 | 3.7802-04 | 1.0353¢-03
4 | 5.7492¢:04 | 1.6267e-03 | 2.4934e-03 | 3.8058¢-13 | 1.7316e-05 | 4.7095¢-05
5 | 7.4152-05 | 1.7963e-04 | 2.4163¢-04 null 6.6364¢-07 | 7.2062¢-07
6 | 83667c-06 | 1.6987e-05 - null 2.1882¢-08 -
7 | 8.3964e-07 | 1.4072e-06 - null 6.3351e-10 -
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Table 2. Approximation errors for the FVIM, VIM [1] and VIM [24] for

o = 0.89
a=0.89

n

e =wnlly | le=vnl | le=tnly | lo=valy, | lo=dnl, | lo-enl,
2 | 4.5438¢-02 | 1.17671e-01 | 2.75256e-01| 3.3643¢-06 | 1.2729e-02 | 7.3797e-02
3 | 1.0826e-02 | 2.5248¢-02 | 8.1245¢-02 | 6.5858¢-09 | 9.8529¢-04 | 1.0465¢-02
4 | 2.1697¢-03 | 4.2964¢-03 | 1.4022-02 | 6.5858¢-09 | 6.2456¢-05 | 4.8578¢-04
5 | 3.7654e-04 | 6.1335¢-04 | 7.6709e-04 | 7.9936e-15 | 3.3643¢-06 | 1.0588¢-04
6 | 5.7760e-05 | 7.5888¢-05 - null 1.5797e-07 -
7 | 7.9533¢-06 | 8.3130e-06 - null 6.5858¢-09 -

In Tables 3 and 4, we compile the error approximations obtained for
o =0.72 and o = 0.62, both values considered in [1] but outside the
interval [0.88632, 1). In these cases, we observe that the FVIM remains
the most efficient method for approximating v, while the VIM [1]
performs slightly better than the FVIM for approximating u. The lower
precision of the VIM [24] in all these cases is the main reason we have
only considered the first five terms provided by this method.
Nevertheless, it should be noted that the computational cost of obtaining
each iteration with this method is higher than that of the other methods.

Table 3. Approximation errors for the FVIM, VIM [1] and VIM [24] for
o= 0.72

a=0.72
n
e =wnlly | =l | Te=tnl | lo=valy | lo=dnl, | lo-enl,

2 | 2177e-01 | 3.159e-01 1.4866 | 9.0844¢-05 | 4.6935¢-02 | 6.1106¢-01
3 | 9.1415¢-02 | 1.08192¢-01 | 8.55439¢-01 | 7.7956¢-07 | 6.7892¢-03 | 1.9295¢-01
4 | 3.3241e-02 | 3.0269¢-02 | 2.29284¢-01 | 4.7707¢-09 | 8.3796e-04 | 1.8086e-02
5 | 1.0729¢-02 | 7.2970e-03 | 3.9745¢-02 | 2.2218e-11 | 9.0844e-05 | 1.5215¢-02
6 | 3.1276¢-03 | 1.5621¢-03 - 8.2601¢-14 | 8.8251¢-06 -

7 | 8.8422¢-04 | 3.0253¢-04 - 4.4409e-16 | 7.7955¢-07 -
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Table 4. Approximation errors for the FVIM, VIM [1] and VIM [24] for

a = 0.62
=062

n

e =wnlly | le=vnl | le=tnly | lo=valy, | lo=dnl, | lo-enl,
2 | 5.1944e-01 | 5.3679-01 3.3947 | 5.6313¢-04 | 9.5226¢-02 1.5580
3 | 3.0242e-01 | 2.3864e-01 2.6857 | 1.1120e-05 | 1.9538¢-02 | 6.9515e-01
4 | 1.5517¢-01 | 8.8148¢-02 | 9.3978¢-01 | 1.6453¢-07 | 8.5049¢-03 | 8.6431e-02
5 | 7.1717e-02 | 2.8468¢-02 | 2.3613¢-01 | 1.9274e-09 | 5.6313¢-04 | 1.0027e-01
6 | 3.0307¢-02 | 8.2782¢-03 - 1.8556e-11 | 8.2406e-05 -
7 | 1.1851e-02 | 2.2015¢-03 - 1.5143¢-13 | 1.1119¢-05 -

7. Conclusions

Some systems of first-order differential equations, such as the one
used to model ethanol concentration in blood and stomach (cf. (1)), can be
rewritten as a set of higher-order differential equations (cf. (19), (21)).
Consequently, any method designed to handle these higher-order
equations can be used to obtain numerical approximations for the original
system. In this work, we explore this approach for the system (1) and the
fractional variational iteration method proposed in [27]. We find that the
FVIM 1is effective for obtaining numerical approximations of (1),
particularly demonstrating notable performance in addressing the single-

term differential equation involved (see the first line in (1)).

We compare the results obtained using the FVIM with those derived
from the variational iteration methods VIM [1] and VIM [24]. In this
comparison, the FVIM consistently yields lower approximation errors.

Although the FVIM is originally defined by a recurrence relation, we
provide explicit expressions for the approximating terms that depend
solely on the iteration order, which simplifies and streamlines its
implementation. Furthermore, we enhance the implementation of VIM [1]
by providing explicit expressions for the approximating terms that avoid
the use of cross-terms.
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