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Abstract 

In this paper, we numerically approximate the solutions of the first-order 

fractional differential equation system that models blood ethanol concentration 
using a fractional variational iteration method (FVIM) developed for high-order 
differential equations. Comparative analysis with two different variational 

iteration methods, including one specifically tailored for this problem, shows 
that the FVIM achieves lower approximation errors. 

1. Introduction 

The use of fractional differential equations to model diverse phenomena 

has seen significant growth in recent years across numerous fields 

including finance, biology, mechanics and engineering [3, 4, 8-10, 17, 28, 

36]. In particular, in chemical engineering, one such phenomenon is the 
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concentration of ethanol in human blood. In [30], this process is analyzed 

using the following system of first-order fractional differential equations: 
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where  tv  denotes the concentration of alcohol in the stomach at time      

t (mg/l),  tu  represents the concentration of alcohol in the blood at time    

t (mg/l),   and   are rate constants   0
1 ,min v  is the initial concentration 

of alcohol in the stomach (mg/l) and D  denotes the Caputo fractional 

derivative of order  .1,0  The study in [30] demonstrates that this 

fractional model offers a more accurate estimate of real data compared to 

models that use integer-order derivatives. 

The exact solution of (1) can be obtained using the Laplace transform 

technique. Indeed, from [30], we know that 
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where E  denotes the Mittag-Leffler function defined as 
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However, having numerical methods that provide accurate and efficient 

approximations is highly useful and advantageous. Many numerical 

approximation techniques for fractional differential equations have been 

explored [2, 5, 7, 11-13, 15, 19-22, 26, 31, 33], among which the 

variational iteration method (VIM) stands out as one of the most popular 

and effective [16, 18, 25, 29, 32, 34, 35]. In particular, in [1], a VIM is 

developed exclusively for the problem (1). This method essentially relies 

on constructing each correction term using the Riemann-Liouville 
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operator and a Lagrange multiplier, which is determined through the 

stationary conditions. Moreover, the approximating sequences  nn  and 

 nn  for v and u, respectively, are given by 
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    (2b) 

with the initial terms 

  00 vt   and   .00  t  

On the other hand, in [24], a VIM was proposed to obtain numerical 

approximations for arbitrary linear (and non-linear) systems of fractional 

differential equations. For the problem (1), the approximating sequences 

 nn  and  nn  for v and u, respectively, are given by 

         ,11
0

1  dDtt nn

t

nn 





     (3a) 

           ,11101  dDtt nnn
t

nn 








     (3b) 

with the initial terms 

  00 vt   and   .00  t  

In this work, we reformulate the partially coupled system (1) into a set of 

second-order homogeneous fractional differential equations and then, in 

order to obtain an alternative numerical method to (2) and (3), we use the 

fractional variational iteration method (FVIM) given in [27]. Through 

concrete numerical examples, we demonstrate that the fractional 

variational iteration method provides more accurate approximations. 
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Additionally, we derive alternative explicit expressions for the 

functions n  and n  given in (2a) and (2b), which eliminate cross-term 

usage and unnecessary recurrences, relying solely on n (see Lemma 3.1 

below). Clearly, this leads to a more straightforward and simplified 

implementation of the method. Nevertheless, the formulation we provide 

for the FVIM also offers this advantage and, as previously noted, yields 

improved results. 

The organization of the paper is as follows: In Section 2, we introduce 

definitions, notations and basic properties related to the Riemann-

Liouville integral operator, the Caputo fractional derivative and the 

Laplace transform, which are crucial for the comprehensive development 

of our work. Sections 3 and 4 are dedicated to presenting the 

approximations given by the variational iteration methods in [1] and [24], 

respectively, in a clear and concise manner. In Section 5, we use the 

FVIM developed in [27] to derive new approximating sequences for the 

real solutions of (1). Finally, in Section 6, numerical experiments are 

presented to compare the performance of the three methods considered. 

2. Preliminaries 

In this section, we briefly introduce definitions and well-known 

results that are useful for our purposes. For a more comprehensive and 

detailed discussion, we refer the reader to [6, 14, 23]. 

2.1. On the Riemann-Liouville integral operator and the Caputo 

fractional derivative 

The Riemann-Liouville integral operator of w of order 

  ,,1,0 wI   is defined as 
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where    ,0:  denotes the Gamma function given by 

  .1

0
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A well-known fact about this operator is that, for any ,0r  
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On the other hand, the Caputo fractional derivative of w of order 

  ,,1,0 wD  can be defined by 1I  as follows 

,1 wIwD    

where w  denotes the ordinary derivative of w, i.e., 
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Taking into account that Gamma function   satisfies 

   ,1 xxx  

from (5) it follows that, for any ,0r  
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The operators I  and D  are also related in the following ways: 

,wwID    (8) 

and 

     .0wtwtwDI    (9) 
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2.2. On the Laplace transform 

The Laplace transform of ,, Lvv  is given by 

     .0
0

 


 sdvesLv s    (10) 

Among the many properties of this linear operator, we emphasize the 
following: 
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and 

     .01vssLvssvLD     (13) 

Finally, as usual, we use 1L  to denote the inverse Laplace transform. In 

particular, from (11), 1L  is a linear operator which satisfies 
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3. On the VIM developed in [1] 

A variational iteration method for the problem (1) is exclusively 
developed in [1] where the correction terms are built from the Riemann-

Liouville operator (4) and the Lagrange multipliers are obtained from the 

stationary conditions via variational theory. In fact, the proposed 

approximating sequences  nn  of v and  nn  of u (previously 

introduced here in (2a) and (2b)) can be actually written as 

  ,, 00111 vDI nnnn  
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Now, thanks to the linearity of the operator I  and the property (9) it 

follows that 

,10111 








  nnnnn IvIDI    (15) 

and then 

.101111 











  nnnnnnn IvIDI   

(16) 

From these identities, we can derive alternative expressions for n  and 

n  which are highly useful from a computational point of view since they 

depend solely on n, avoiding the cross-use of terms and unnecessary 

recurrences. 

Lemma 3.1. Let n  and ,n  with ,1n  be as in (15) and (16) 

respectively, then 
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Proof. We argue by induction on n. For ,1n  from (15) and (5) we 

have 
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on the other hand, from (16) we have 
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which proves the claim. 

Now suppose that (17) holds for .1n  From (15) and (5), it follows 

that 
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which completes the argument regarding .n  

On the other hand, suppose that (18) holds for .1n  From (16) and 

(5), it follows that 
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This proves the lemma.   

Remark 3.1. The explicit expression for 3  given in [1] is 
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whereas the expression derived from (18) is 
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The differences between both expressions can be explained using the 
Legendre’s duplication formula: 

     ,225.0 21    

in the particular case .5.0   A similar situation arises with the 

expressions for 22 ,   and 3  provided in [1] compared to those derived 

here. 

4. On the VIM developed in [24] 

Unlike the VIM proposed in [1], it is neither simple nor 
straightforward to find expressions for the approximating sequences n  

and n  provided in [24] (given here in (3a)-(3b)) that depend solely on n. 

We present only the first five terms of each sequence, which will suffice 
for our purposes: 
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5. Application of the FVIM [27] 

From the partially coupled system (1), we can derive the following 

second-order fractional differential equation for the function u: 

   
   












,0,00

,0

0

2




vuDu

uuDuD  

where 2
D  denotes the iterated derivative . DD   Clearly, this 

equation can be rewritten as 
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Applying the fractional variational iteration method proposed in [27], we 

obtain the approximating sequence  nnu  given by 
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with the initial data 
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On the other hand, in order to obtain numerical approximations of the 

function v, it may be natural to consider the following single-term 

differential equation: 
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However, we show that the FVIM proposed in [27] can also be applied in 

this case (and more generally to any first-order single-term fractional 

differential equation) with highly favorable results. Since a high-order 

fractional differential equation is necessary to apply such a method, we 

observe that the following second-order fractional differential equation 

can be derived from the system (1): 

   
   












.0,0

,

00

22

vvDvu

tvtvD


   (21) 

Thus, the approximating sequence provided by the FVIM in [27] is given 

by 
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Lemma 5.1. Let nu  and ,nv  with ,1n  be as in (20) and (22) 
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and 
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Proof. We argue by induction on n. For ,1n  from (20), (11) and 

(14) we have 
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and, from (22), (11) and (14) it follows that 
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which proves the claim. 

Now, suppose that (23) holds for .1n  Then, thanks to (11), 
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From (20), the newly derived identity and (14), it follows that 
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which completes the argument regarding .nu  
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Finally, suppose that (24) holds for .1n  From (22), (11) and (14), it 

follows that 
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and the proof is complete.   
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6. Numerical Experiments 

With the aim to compare our results with some of those obtained in 

[1] we will consider 

,4,08442.0,02873.0 0  v      and      .7,0t  

For these values, from [27, Theorem 4.1], we know that nu  converges to 

the solution u of (19) for any 88632.0  due that the condition 
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is satisfied. On the other hand, nv  converges to the solution v of (21) for 

any   since the requirement in [27, Theorem 4.1] is always verified. 

Some of the   values within the interval [0.88632, 1) are 0.97 and 

0.89; for these values, the approximation errors are tabulated in Tables 1 

and 2, respectively. It can be observed that the results obtained by the 

FVIM are more accurate than those yielded by VIM [1] and VIM [24] in 

all cases, and that, according to [27, Theorem 4.1], the error improves as 

the number of iterations increases and as  approaches 1. 

Table 1. Approximation errors for the FVIM, VIM [1] and VIM [24] for 

97.0  

97.0  
n 

 nuu   nu    nu   nvv   nv   nv  

2 2.0990e-02 7.1449e-02 9.5971e-02 6.6364e-07 6.6284e-03 1.4004e-02 

3 3.8142e-03 1.2195e-02 1.8357e-02 6.3351e-10 3.7802e-04 1.0353e-03 

4 5.7492e-04 1.6267e-03 2.4934e-03 3.8058e-13 1.7316e-05 4.7095e-05 

5 7.4152e-05 1.7963e-04 2.4163e-04 null 6.6364e-07 7.2062e-07 

6 8.3667e-06 1.6987e-05 – – null 2.1882e-08 – – 

7 8.3964e-07 1.4072e-06 – – null 6.3351e-10 – – 



ON VARIATIONAL ITERATION METHODS FOR THE … 153 

Table 2. Approximation errors for the FVIM, VIM [1] and VIM [24] for 

89.0  

89.0  
n 

 nuu   nu    nu   nvv   nv   nv  

2 4.5438e-02 1.17671e-01  2.75256e-01 3.3643e-06 1.2729e-02 7.3797e-02 

3 1.0826e-02 2.5248e-02 8.1245e-02 6.5858e-09 9.8529e-04 1.0465e-02 

4 2.1697e-03 4.2964e-03 1.4022e-02 6.5858e-09 6.2456e-05 4.8578e-04 

5 3.7654e-04 6.1335e-04 7.6709e-04 7.9936e-15 3.3643e-06 1.0588e-04 

6 5.7760e-05 7.5888e-05 – – null 1.5797e-07 – – 

7 7.9533e-06 8.3130e-06 – – null 6.5858e-09 – – 

In Tables 3 and 4, we compile the error approximations obtained for 
72.0  and ,62.0  both values considered in [1] but outside the 

interval [0.88632, 1). In these cases, we observe that the FVIM remains 
the most efficient method for approximating v, while the VIM [1] 
performs slightly better than the FVIM for approximating u. The lower 
precision of the VIM [24] in all these cases is the main reason we have 
only considered the first five terms provided by this method. 
Nevertheless, it should be noted that the computational cost of obtaining 
each iteration with this method is higher than that of the other methods. 

Table 3. Approximation errors for the FVIM, VIM [1] and VIM [24] for 

72.0  

72.0  
n 

 nuu   nu    nu   nvv   nv   nv  

2 2.177e-01 3.159e-01 1.4866 9.0844e-05 4.6935e-02 6.1106e-01 

3 9.1415e-02 1.08192e-01   8.55439e-01 7.7956e-07 6.7892e-03 1.9295e-01 

4 3.3241e-02 3.0269e-02   2.29284e-01 4.7707e-09 8.3796e-04 1.8086e-02 

5 1.0729e-02 7.2970e-03 3.9745e-02 2.2218e-11 9.0844e-05 1.5215e-02 

6 3.1276e-03 1.5621e-03 – – 8.2601e-14 8.8251e-06 – – 

7 8.3422e-04 3.0253e-04 – – 4.4409e-16 7.7955e-07 – – 

 



G. MONZÓN 154 

Table 4. Approximation errors for the FVIM, VIM [1] and VIM [24] for 

62.0  

62.0  
n 

 nuu   nu    nu   nvv   nv   nv  

2 5.1944e-01 5.3679e-01 3.3947 5.6313e-04 9.5226e-02 1.5580 

3 3.0242e-01 2.3864e-01 2.6857 1.1120e-05 1.9538e-02 6.9515e-01 

4 1.5517e-01 8.8148e-02 9.3978e-01 1.6453e-07 3.5049e-03 8.6431e-02 

5 7.1717e-02 2.8468e-02 2.3613e-01 1.9274e-09 5.6313e-04 1.0027e-01 

6 3.0307e-02 8.2782e-03 – – 1.8556e-11 8.2406e-05 – – 

7 1.1851e-02 2.2015e-03 – – 1.5143e-13 1.1119e-05 – – 

7. Conclusions 

Some systems of first-order differential equations, such as the one 
used to model ethanol concentration in blood and stomach (cf. (1)), can be 

rewritten as a set of higher-order differential equations (cf. (19), (21)). 

Consequently, any method designed to handle these higher-order 
equations can be used to obtain numerical approximations for the original 

system. In this work, we explore this approach for the system (1) and the 

fractional variational iteration method proposed in [27]. We find that the 
FVIM is effective for obtaining numerical approximations of (1), 

particularly demonstrating notable performance in addressing the single-

term differential equation involved (see the first line in (1)). 

We compare the results obtained using the FVIM with those derived 

from the variational iteration methods VIM [1] and VIM [24]. In this 
comparison, the FVIM consistently yields lower approximation errors. 

Although the FVIM is originally defined by a recurrence relation, we 
provide explicit expressions for the approximating terms that depend 

solely on the iteration order, which simplifies and streamlines its 

implementation. Furthermore, we enhance the implementation of VIM [1] 
by providing explicit expressions for the approximating terms that avoid 

the use of cross-terms. 



ON VARIATIONAL ITERATION METHODS FOR THE … 155 

References 

 [1] M. Adel, M. M. Khader, H. Ahmad and T. A. Assiri, Approximate analytical 
solutions for the blood ethanol concentration system and predator-prey equations by 
using variational iteration method, AIMS Mathematics 8(8) (2023), 19083-19096. 

DOI: https://doi.org/10.3934/math.2023974  

 [2] A. A. M. Arafa and A. M. SH. Hagaga, A new analytic solution of fractional coupled 

Ramani equation, Chinese Journal of Physics 60 (2019), 388-406. 

DOI: https://doi.org/10.1016/j.cjph.2019.05.011  

 [3] A. A. M. Arafa, M. Khalil and A. Sayed, A Non-Integer Variable Order 
Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection 
with Time Delay, Hindawi, Complexity (2019), 13 pp. 

DOI: https://doi.org/10.1155/2019/4291017 

 [4] D. Bravo, M. Barrios and G. Reyero, Analysis of a fractional-order predator-prey 
model with harvest incorporating an Allee effect, Journal of Fractional Calculus and 

Applications 14(2) (2023), 14 pp. 

DOI: https://doi.org/10.21608/jfca.2023.204624.1010 

 [5] M. Bohner, O. Tunç and C. Tunç, Qualitative analysis of caputo fractional integro-
differential equations with constant delays, Computational and Applied 
Mathematics 40(6) (2021); Article 214. 

DOI: https://doi.org/10.1007/s40314-021-01595-3 

 [6] M. A. Cohen, Numerical Methods for Laplace Transform Inversion, Numerical 

Methods and Algorithms, Springer, Boston, 2007. 

DOI: https://doi.org/10.1007/978-0-387-68855-8 

 [7] K. Diethelm, J. Ford, N. Ford and M. Weilbeer, Pitfalls in fast numerical solvers for 

fractional differential equations, Journal of Computational and Applied 
Mathematics 186(2) (2006), 482-503. 

DOI: https://doi.org/10.1016/j.cam.2005.03.023 

 [8] A. M. A. El-Sayed, A. A. M. Arafa, M. Khalil and A. Hassan, A mathematical model 
with memory for propagation of computer virus under human intervention, 

Progress in Fractional Differentiation and Applications 2(2) (2016), 105-113. 

DOI: https://doi.org/10.18576/pfda/020203 

 [9] S. El-Wakil, E. Abulwafa, E. El-Shewy and A. Mahmoud, Ion-acoustic waves in 
unmagnetized collisionless weakly relativistic plasma of warm-ion and isothermal-
electron using time-fractional KdV equation, Advances in Space Research 49(12) 

(2012), 1721-1727. 

DOI: https://doi.org/10.1016/j.asr.2012.02.018 

 



G. MONZÓN 156 

 [10] V. Ertürk, Z. Odibat and S. Momani, An approximate solution of a fractional order 

differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection 

of CD4 T-cells, Computers & Mathematics with Applications 62(3) (2011),         

996-1002. 

DOI: https://doi.org/10.1016/j.camwa.2011.03.091 

 [11] S. Esmaeili, M. Shamsi and Y. Luchko, Numerical solution of fractional differential 
equations with a collocation method based on Müntz polynomials, Computers & 

Mathematics with Applications 62(3) (2011), 918-929. 

DOI: https://doi.org/10.1016/j.camwa.2011.04.023 

 [12] N. Ford and J. Connolly, Comparison of numerical methods for fractional 
differential equations, Communications on Pure and Applied Analysis 5(2) (2006), 
289-307. 

DOI: https://doi.org/10.3934/cpaa.2006.5.289 

 [13] F. Ghoreishi and S. Yazdani, An extension of the spectral Tau method for numerical 
solution of multi-order fractional differential equations with convergence analysis, 

Computers & Mathematics with Applications 61(1) (2011), 30-43. 

DOI: https://doi.org/10.1016/j.camwa.2010.10.027 

 [14] R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential 
Equations of Fractional Order, Fractals and Fractional Calculus, Carpinteri and 
Mainardi, New York, 1997. 

 [15] H. Jafari, S. Das and H. Tajadodi, Solving a multi-order fractional differential 
equation using homotopy analysis method, Journal of King Saud University - 
Science 23(2) (2011), 151-155. 

DOI: https://doi.org/10.1016/j.jksus.2010.06.023 

 [16] H. Jafari, H. Tajadodi and D. Baleanu, A modified variational iteration method for 

solving fractional Riccatti differential equation by Adomian polynomials, Fractional 
Calculus and Applied Analysis 16(1) (2013), 109-122. 

DOI: https://doi.org/10.2478/s13540-013-0008-9 

 [17] M. Johansyah, A. Supriatna, E. Rusyaman and J. Saputra, Application of fractional 
differential equation in economic growth model: A systematic review approach, 

AIMS Mathematics 6(9) (2021), 10266-10280. 

DOI: https://doi.org/10.3934/math.2021594 

 [18] Y. Khan, N. Faraz, A. Yildirim and Q. Wu, Fractional variational iteration method 
for fractional initial-boundary value problems arising in the application of nonlinear 
science, Computers & Mathematics with Applications 62(5) (2011), 2273-2278. 

DOI: https://doi.org/10.1016/j.camwa.2011.07.014 

 

 



ON VARIATIONAL ITERATION METHODS FOR THE … 157 

 [19] V. Krishnasamy, S. Mashayekhi and M. Razzaghi, Numerical solutions of fractional 

differential equations by using fractional Taylor basis, IEEE/CAA Journal of 
Automatica Sinica 4(1) (2017), 98-106. 

DOI: https://doi.org/10.1109/JAS.2017.7510337 

 [20] C. Li and Y. Wang, Numerical algorithm based on Adomian decomposition for 
fractional differential equations, Computers & Mathematics with Applications 

57(10) (2009), 1672-1681. 

DOI: https://doi.org/10.1016/j.camwa.2009.03.079 

 [21] C. Li and F. Zeng, Finite difference methods for fractional differential equations, 

International Journal of Bifurcation and Chaos 22(4) (2012), 1230014. 

DOI: https://doi.org/10.1142/S0218127412300145 

 [22] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential 
equations with the Caputo derivatives, Acta Mathematica Vietnamica 24(2) (1999), 
207-233. 

 [23] S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional 
Differential Equations, John Wiley and Sons, USA, 1993. 

 [24] S. Momani and Z. Odibat, Numerical approach to differential equations of fractional 
order, Journal of Computational and Applied Mathematics 207(1) (2007), 96-110. 

DOI: https://doi.org/10.1016/j.cam.2006.07.015 

 [25] S. Momani and Z. Odibat, The variational iteration method: An efficient scheme for 
handling fractional partial differential equations in fluid mechanics, Computers & 
Mathematics with Applications 58(11-12) (2009), 2199-2208. 

DOI: https://doi.org/10.1016/j.camwa.2009.03.009 

 [26] G. Monzón, On numerical approximation of second-order fractional differential 

equations in the frame of the Caputo fractional derivative, Journal of Fractional 
Calculus and Applications 14(1) (2023), 200-213. 

 [27] G. Monzón, Fractional variational iteration method for higher-order fractional 

differential equations, Journal of Fractional Calculus and Applications 15(1) (2024), 
15 pp. 

DOI: https://doi.org/10.21608/jfca.2023.229366.1027 

 [28] K. Oldham, Fractional differential equations in electrochemistry, Advances in 
Engineering Software 41(1) (2010), 9-12.  

DOI: https://doi.org/10.1016/j.advengsoft.2008.12.012 

 [29] A. Prakash, M. Goyal and S. Gupta, Fractional variational iteration method for 

solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Engineering 
8(1) (2019), 164-171. 

DOI: https://doi.org/10.1515/nleng-2018-0001 

 



G. MONZÓN 158 

 [30] S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc and D. Baleanu, Fractional modeling of 

blood ethanol concentration system with real data application, Chaos 29(1) (2019); 
Article 013143. 

DOI: https://doi.org/10.1063/1.5082907 

 [31] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-
order differential equations, Computers & Mathematics with Applications 59(3) 

(2010), 1326-1336. 

DOI: https://doi.org/10.1016/j.camwa.2009.07.006 

 [32] B. Si-yuan, Fractional variational iteration method for fractional Cauchy problems, 

Mathematical Problems in Engineering 4 (2014), 1-5. 

DOI: https://doi.org/10.1155/2014/925016  

 [33] O. Tunç and C. Tunç, Solution estimates to Caputo proportional fractional 
derivative delay integro-differential equations, Revista de la Real Academia de 
Ciencias Exactas, Físicas y Naturales: Serie A. Matemáticas 117 (2023), 12. 

DOI: https://doi.org/10.1007/s13398-022-01345-y 

 [34] G.-C. Wu, A fractional variational iteration method for solving fractional nonlinear 

differential equations, Computers & Mathematics with Applications 61(8) (2011), 
2186-2190. 

DOI: https://doi.org/10.1016/j.camwa.2010.09.010 

 [35] G.-C. Wu and D. Baleanu, Variational iteration method for fractional calculus - A 
universal approach by Laplace transform, Advances in Difference Equations (2013); 
Article 18. 

DOI: https://doi.org/10.1186/1687-1847-2013-18 

 [36] Z. U. A. Zafar, S. Zaib, M. T. Hussain, C. Tunç and S. Javeed, Analysis and 

numerical simulation of tuberculosis model using different fractional derivatives, 
Chaos, Solitons & Fractals 160 (2022), 12 pp; Article 112202. 

DOI: https://doi.org/10.1016/j.chaos.2022.112202 

 


