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Abstract 

This paper is devoted to a generalization of an integral-type inequality 

established by Wei-Shih Du in 2023. The generalization is motivated by the 

inclusion of two adaptable mathematical quantities: a parameter and a 

probability density function. An application to the Laplace transform is 

discussed. 

1. Introduction 

Inequality theory is the basis for many theoretical and practical 

advances in various scientific disciplines. It aims to provide simple tools 

for evaluating the behaviour of complex mathematical quantities through 

the use of bounds. The most classical inequalities can be found in [1, 3, 9, 

10]. By generalizing these classical inequalities, we can facilitate the 
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development of more sophisticated analytical techniques. This is still a 

hot topic and important developments have been made in this direction. 

We can refer to the papers in the recent special issue entitled “Current 

Research on Mathematical Inequalities” in [2]. 

In this paper, we focus on a simple inequality that emerged from an 

international competition called “IMC 2022”, which will take place in 

Blagoevgrad, Bulgaria, from 1 to 7 August 2022. More information can be 

found in [7]. This inequality is formulated in the theorem below. 

Theorem 1.1. Let     ,01,0:f  be an integrable function such 

that, for any  ,1,0x      .11  xfxf  Then we have 

  .1
1

0
 dxxf  

Some generalizations of this theorem can be found in [6, 4]. In 

particular, the theorem below is proved in [4, Theorem 2.5]. 

Theorem 1.2. Let   2, ba  such that ba   and   baf ,:  be 

an integrable function. Suppose that there exists an integrable function 

  bag ,:  such that 

    ,dxxfdxxg
b

a

b

a    

and 

 
    ,inf

,
cxgxf

bax



 

where c denotes a strictly positive constant. Then we have 

    .cabdxxf
b

a
  

The proof is derived from the arithmetic mean-geometric mean inequality 

and a judicious use of the assumptions made. 
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In this paper, we propose a generalization of Theorem 1.2. It is 

obtained by using a generalized version of the Hölder inequality, giving 

alternative techniques to those used in the proof in [4, Theorem 2.5]. The 

generalization is characterized by the addition of an adjustable parameter 

and a special function. This special function belongs to the class of a 

probability density functions, i.e., functions  xh  which are almost surely 

continuous on ,  positive, and such that   ,1



dxxh  see [8]. An 

advantage of this generalization is the relaxation of the integration 

domain  ,, ba  depending on the support of the chosen probability density 

function. A new inequality involving a famous transform is then 

established using this general result. 

Section 2 presents our generalized inequality, together with 

applications and discussion. A conclusion is given in Section 3. 

2. Generalization 

The theorem below presents the proposed generalization. 

Theorem 2.1. Let ,1p  :f  be a function, and 

  ,0: h  be a probability density function such that    xhxf  is 

integrable. Suppose that there exists a function  :g  such that 

     xhxg p 11   is integrable, 

          ,11 dxxhxfdxxhxg p 







  

and 

    ,inf cxgxf
x




 

where c denotes a strictly positive constant. Then we have 

    .1 pcdxxhxf 



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Proof. Since      0,1 



xhdxxh  for any ,x  and, by 

assumption,     ,inf cxgxfx   we have 

        .111 dxxhxgxfdxxhcc ppp 







   (1) 

Now, let us consider the real number 1q  such that ,111  qp  

so  .1 ppq  It follows from the generalized version of the Hölder 

inequality applied with the parameters p  (and q ) and the probability 

measure    dxxhxv   that  

              .
11

1
q

pq
p

p dxxhxgdxxhxfdxxhxgxf 















 












  

(2) 

Using  11  ppq  and the assumption      dxxhxg p 11 

  

    ,dxxhxf



  we get 

       
q

pq
p

dxxhxgdxxhxf
11
















 







 

       
qp

dxxhxfdxxhxf
11

















 








 

        .
11

dxxhxfdxxhxf
qp


















   (3) 

By combining Equations (1), (2) and (3), we obtain 

    .1 pcdxxhxf 



 

The desired inequality is proved.   
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The proof of Theorem 1.2 is thus based on an integral-type inequality, 

i.e., the generalized version of the Hölder inequality, as opposed to that of 

[4, Theorem 2.5], which is based on the arithmetic mean-geometric mean 

inequality. 

Taking 2p  and, for   2, ba  such that ,ba   the probability 

density function of the uniform distribution over  ba,  for  ,xh  i.e., 

   abxh  1  for  bax ,  and   0xh  for any  ,, bax   Theorem 

2.1 becomes Theorem 1.2. In particular, all the examples developed in [6] 

are covered. 

General but crude examples of functions  xf  satisfying the 

assumptions of Theorem 2.1 include functions of the form 

       11  pxgxgcxf  or          ,,max 11  pxgxgcxf  where 

 xg  denotes a positive function satisfying the required convergence 

assumptions. 

Theorem 2.1 is thus a valuable generalization of Theorem 1.2, thanks 

to the presence of p  and the probability density function  ,xh  both of 

which are adaptable to different applications. In particular, thanks to this 

probability density function, different domains of integration can be 

considered in the integral terms, depending on the support of this 

function. 

Among the possible applications of this result, let us present one 

involving the Laplace transform. We recall that the Laplace transform of 

a function   ,0:k  at   is defined by  

     ,
0

dxex x


 kk  

provided that it converges in the integral sense;   xex k  must be 

integrable over  .,0   See [5]. The Laplace transform is a powerful tool 

in differential equations, signal processing, and control theory, among 
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other areas. In this Laplace transform setting, based on Theorem 2.1, the 

idea is to show how the use of an appropriate probability density function 

 xh  can lead to new research perspectives. 

Proposition 2.2. Let ,1p  0  and   ,0:f  be a 

function such that   xexf   is integrable. Suppose that there exists a 

function   ,0:g  such that     xp exg 11  is integrable, 

       ,11  fg p   

and 

 
    ,inf

,0
cxgxf

x



 

where c denotes a strictly positive constant. Then we have 

   .
1




pcf  

Proof. This is a direct application of Theorem 2.1 by considering the 

probability density function of the exponential distribution with 

parameter   for  ,xh  i.e.,   xexh   for any ,0x  and   0xh  for 

any 0x  (see [8]). Based on this setting, it is sufficient to note that  

        ,
0

 


  fdxexfdxxhxf x   

and the same for the other functions involved. This yields the desired 

result.   

This inequality involving the Laplace transform with intermediate 

parameters and functions is new in literature to the best of our 

knowledge. 
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3. Conclusion 

In this paper, we have generalized an integral-type inequality 

established by Wei-Shih Du in 2023, which itself extends an older 

integral-type inequality that has attracted some attention. The 

generalization is motivated by the inclusion of a parameter and a 

probability density function, which can be adapted as needed. By 

introducing these variables, we extend the scope and exibility of the Du 

original inequality, allowing it to be applied in a wider range of 

mathematical contexts. In particular, an application to the Laplace 

transform is discussed. Given the importance of this transform in many 

scientific disciplines, we hope that our new results will have future 

applications in nonlinear analysis, mathematical physics and related 

fields. 
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