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Abstract 

We want to analyze the energy-momentum tensor obtained for spinors in 
general relativity in the linear gravity approximation.  

For this study, we take as a reference the theory of spinors in general relativity, 
the formalism of the spin connection, covariant derivatives refer to that theory.  

We consider linear gravity with ,vvuv hg µµ +η=  here we assume vhµ  as a 

first step of perturbation from flat spacetime, recursively we apply the same 
approximation till to vnhµ  contributions.  

In this process, we examine the energy momentum for a Dirac particle and 
calculate the tensor connected to each step of perturbation from flat to .vnhµ   

The energy-momentum tensor has recursive behaviour: in particular, at each 
step towards a little more curved space-time, a new contribution must be added 
to the energy-momentum tensor calculated in the former step.  
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In this approximation the tensor vT µ  linearly depends on the metric, this may 
then appear to be a clue that leads to a form of quantization of the energy if we 
assume the metric is quantized.  

The analysis continues in more detail, we see in particular that there are 
intakes related to the spin connection so that the full energy momentum 
approximation is  

( ) ( ).4
ˆˆ

2
ˆ abc

bc
v
a

abcv
bca

av
a

av
a

vvn ShhShhinThThnTT µµµµµµ +−+−≅   

Starting from additional contributions to the energy momentum tensor we try to 
attribute a new physical meaning to the cosmological constant. In the second 
part of the paper, we consider the tensor as a source of the wave equation and 
study different solutions according to distinctive terms of the tensor. 

1. Introduction 

1.1. Spinors and quantum gravity 

Quantum gravity is an attempt to include general relativity and 
quantum mechanics principles.  

Here we consider spinors as the encounter point of these two 
descriptions. Spinors enter the scene of general relativity thanks to the 
equivalence principle. We need a flat inertial reference frame where we 
can describe spinors as a representation of the Lorentz group: conforming 
to the equivalence principle we can set up a system of inertial coordinates 
so that the effects of the gravitational field are canceled out, we can find 
shelter from gravitation and set up spinors in locally flat spacetime.  

Spinors are the quintessence of quantum mechanics.  

Let's consider that for each point of curved spacetime we can 
introduce a flat reference system, we reset the memory of the process for 
a moment and then we return to realize that if we have arrived in the 
new reference frame, we owe it to a small jump vhµ  from the previous 

flat space time. During this path what’s happened to the energy 
momentum tensor related to fermions? We see that this one is getting the 
same contributions at each step.  
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This result considers the spinor energy momentum tensor, as we can 
derive from the Dirac theory, in the general relativity background. 
Torsion is admitted in this theory even if the affine connection is 
symmetric [1], [2].  

We find out that there is a relation between the changing in the 
metric tensor and the energy momentum tensor for the spinor field, the 
next question is how this combination is realized.  

This mechanism involves gravitational waves.  

Gravitational waves in linearized gravity are developed from the 
Einstein field equation, the perturbation vhµ  propagates as a wave 

according to the equation:  

.16
2

v
v T

c
Gh µ

µ
π−=   (1) 

In the following analysis, we consider the terms of the energy-
momentum tensor as sources of gravitational waves, we get non-
homogeneous differential equations. At first order we get a differential 
equation typical for a standing wave if we choose appropriate boundary 
conditions.  

A standing string has normal modes of vibration so that the energy is 
quantized, here the vibration does not concern a string but concerns the 
metric and the normal modes are referred to different perturbations of 
the flat spacetime.  

If we consider the spin connection contributions to the energy 
momentum tensor, we obtain two other types of non-homogeneous 
equations that have a derivative term of the metric and these equations 
are related to forced and damped oscillations, in the next paragraphs we 
show in detail how these types of oscillations can generate opposite 
currents and the creation of whirlpools.  

In the end, the curved space-time turns out to be obtained from the 
sum of many approximations of the size ,vhµ  the source for the metric 
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perturbation is the energy momentum tensor associated with the metric 
tensor.  

The curved space-time is generated by the normal modes of vibration 

of the metric having their source in the energy momentum tensor ,vT µ  
this is a possible way to realize the coupling between the metric field and 
the spinor field; the peculiar behaviour of the spinor field is achieved  
through the interaction with the gravitational field creating opposite 
contributions to the metric tensor.  

Curvature measurements are obtained from detection of energy 
perturbations; we get an example of curvature energy spectra for 
hyperbolic paraboloid (see Figure 1) [3].  

 

Figure 1. Curvature energy spectra. 

2. Materials and Methods 

2.1. Energy momentum tensor for the Dirac field in curved space 
time and in weak gravity  

We start with the Lagrangian for the spinor field in the flat 
Minkowski space time.  
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.2 2f
i iL mµ µ

µ µψγ ψ ψ ψψ= ∂ − ∂ −      (2) 

For the calculation of the energy momentum tensor, we follow the 
Noether's theorem:  

l
( ) ( )

.
v f f

v v v f
L L

T L
µ µ

µ µ
ψ ψ δ

ψ ψ

∂ ∂
= ∂ + ∂ −
∂ ∂ ∂ ∂

  (3) 

We get the energy momentum tensor in the explicit symmetric form:  

l [ ]1 .4
v v v v vT i i i i

µ µ µ µ µψ γ ψ ψ γ ψ ψ γ ψ ψ γ ψ= ∂ − ∂ + ∂ − ∂            (4) 

Let’s consider the energy-momentum tensor in curved spacetime with 
the covariant derivative.  

; ,v
v v v v vD v Dψ ψ ψ ψ ψ ψ ψ≡ = ∂ + Γ = ∂ − Γ                        (5) 

ˆ ; .4
ab

v b v a v a v a av
i e e e e e

λ
µµ µ µ λ

µ αΓ = ∇ ∇ = ∂ + Γ                      (6) 

Christoffel symbols are so defined  

( ).2
1

βγλλβγλγβ
αλα

βγ ∂−∂+∂=












βγ

α
=Γ gggg                       (7) 

According to the Noether theorem now we obtain:  

[ ].4
1 ψγψ−ψγψ+ψγψ−ψγψ= µµµµµµ vvvv iDDiiDDiT              (8) 

The tensor has the same form but covariant derivatives instead of the 
ordinary ones  

[ ].4
1ˆ ψγψ∂−ψ∂γψ+ψγψ∂−ψ∂γψ= µµµµµ vvvvv iiiiT                (9) 

Now we consider the tensor in weak gravity approximation,  

,vvuv hg µµ +η=   (10) 
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.ˆ
2
1ˆ a

ah γ−γ=γ µµµ   (11) 

We make explicit calculation with (11) and we get 
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1 ψΓγψ− µav
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,ˆ
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bcv

bc
v hihi σ≅Γσ≅Γ µµ   (16) 

[ { } ]ψσγψ+−−= µµµµµ bcav
bca
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vv ihhiThThTT ˆ,ˆ
44

ˆ
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1ˆ
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1ˆ  

[ { } ],ˆ,ˆ
44 ψσγψ+ µ bca

bc
v
a

ihhi   (17)  

[ { } ]ψσγψ−= bcaabc iS ˆ,ˆ
4  spin angular momentum tensor,  (18) 

.44
ˆ
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1ˆ
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If we ignore the spin contribution, we can write the energy momentum 
tensor approximated as 

.ˆ
2
1ˆ

2
1ˆ µµµµ −−≅ av

a
av

a
vv ThThTT   (20) 

So if we start with a flat space-time and then we introduce a little 
deformation in the metric the energy momentum tensor is changing of a 

factor vN µ−  each time.  

( ),ˆˆ
2
1 µµµ += av

a
av

a
v ThThN   (21) 

vN µ  is symmetric for vµ  

.ˆ vvv NTT µµµ −≅   (22) 

We approximate the metric, each time putting ourselves in a new 
reference frame, starting from the flat we proceed with discrete path of 
the size vhµ  to a little more curved space time (Figure 2).  

The result at the first step is the following equation:  

.ˆ
2
1ˆ

2
1ˆ µµµµ −−≅′ av

a
av

a
vv ThThTT   (23) 

Second step  

µµµµµµµ −−≅′−′−′≅′′ av
a
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a
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a
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2
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Third step  

.ˆ
2
3ˆ

2
3ˆ µµµµ −−≅′′′ av

a
av

a
vv ThThTT   (25) 

And so on for n-times,  

,ˆ
2

ˆ
2

ˆ µµµµ −−≅ av
a

av
a

vvn ThnThnTT   (26) 

here n is not a world index, it only indicates the n-steps of the path.  
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At each step we sum up the effect of the metric approximation with 

the factor µµµ −−=− av
a

av
a

v ThThN ˆ
2
1ˆ

2
1  inherited from the previous 

energy-momentum tensor.  

We have completely ignored second order contributions.  

 

Figure 2. Iteration sequence to approximate the energy-momentum 
tensor through discrete paths of size vhµ  up to slightly more curved 

space-time.  

Now if we include the spinor angular momentum, we have to consider 
the tensor  
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 (28) 

First step with spinor:  
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We don’t consider second order contribution like µ
b

v
ahh  but include 

v
bcahhµ  

[ { } ]ψσγψ+−−≅′′ µµµµµ bcav
bca
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b

av
a

vv ihhiThThTT ˆ,ˆ
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2
1 ……  

[ { } ],ˆ,ˆ
44 ψσγψ+ µ bca
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v
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ihhi   (34a) 

34b. [ { } ]ψσγψ+−−≅′′ µµµµµ bcav
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b

av
b

vv ihhiThThTT ˆ,ˆ
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[ { } ]ψσγψ+ µ bca
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v
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ihhi ˆ,ˆ
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At the moment we don’t consider these kinds of contribution  

( [ { } ] ),ˆ,ˆ
44

ˆ
2
1

2
1 ψσγψ+−− µµ bckv

bc
a
k

bv
ba

ihhiThh   (35) 

because they are second order or more, so we write:  

( ) ( ).42ˆˆˆ abc
bc

v
a

abcv
bca

av
a

av
a

vv ShhShhiThThTT µµµµµµ +−+−≅′′  (34c) 

We can see from Equation (28) that the spinor contribution 

[ { } ]ψσλψµ bcav
bca

ihhi ˆ,ˆ
44  is different from zero only if the derivative 

,0≠v
bch  that to say the coupling between the gravitational field µ

ah and 

torsion is effective only if the deformation of the metric is not constant.  

.0≠∂= v
cb

v
bc

v
bc hhh   (35) 

 



SPINOR FRAMEWORK IN LINEARIZED GRAVITY: … 33

3. Results 

3.1. Energy-momentum tensor depending on discrete steps in the 
metric  

The main results we get is this equation describing the energy 
momentum tensor related to the changing in the metric and to torsion 

( ) ( ) .4
ˆˆ

2
ˆ abc

bc
v
a

v
bca

av
a

av
a

vvn ShhhhinThThnTT µµµµµµ +++−≅   (36) 

We write the equation in a more compact way  

.4
ˆ uvvvvn BinnNTT +≅ µµµ   (37) 

The first term vT µˆ  is about Dirac particle in flat spacetime  

( ).ˆˆ
2
1 µµµ += av

a
av

a
v ThThN   (38) 

This term represents the coupling between the deformed 
gravitational space and the Dirac particle, it’s symmetric.  

The contribution to the energy momentum tensor is negative 
increasing at each step, as if spinors could lose energy in the coupling 
with the gravitational field.  

( ),abc
bc

v
a

abcv
bca

uv ShhShhB µµ +=   (39) 

uvB  is symmetric for the world indices, but it contains the spinor 
angular momentum antisymmetric for the flat indices of the local 
reference frame. 

Here we have the coupling between the gravitational field and the 

spinor angular momentum through the derivative .v
bch   

It’s apparently negative. Let’s check .4
abcSi   

Here we have to deal with   
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{ }bcaabcM σγ= ˆ,ˆ   (40) 

and specify non vanishing terms.  

We consider Dirac matrices so defined:  

,
0

0
ˆ;

0

0
ˆ0















σ−
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

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
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i

i
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I

I
  (41) 

[ ] .
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ˆ,ˆ

2
ˆ















σ

σ
ε=γγ=σ

k

k

ijk
jiij i   (42) 

The only non-vanishing terms of { }bcaabcM σγ= ˆ,ˆ  are  















σ−

σ
ε=

k

k

bck
bcM

0

0
20   (43) 

index 0 time like; bck flat spacelike  

,
0

0
200















σ−

σ
ε−=−=

k

k

bck
bccb MM   (44) 

.
0

0
2 











−
ε=

I

I
M bck

kbc  (45) 

So if we make explicit ( ) ,44
abc

bc
v
a

v
bca

uv ShhhhinBin µµ +−=−   (46)  

we get three kinds of contributions:  

( ) ( ) bc
bc

vv
bc

abc
bc

v
a

v
bca ShhhhinShhhhin 0

0044
µµµµ +−=+−  

( ) [ ]ψψ++= µµ bc
bc

vv
bc Mihhhhin 0

00 44  

( ) ψ














−

σ
ψε+−= µµ

k

k

bckbc
vv

bc hhhhnn
00

0
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( ) ( ) ca
c

v
a

v
ca

abc
bc

v
a

v
bca ShhhhinShhhhin 0

0044
µµµµ +−=+−  

( ) [ ]ψψ++= µµ ca
c

v
a

v
ca Mihhhhin 0

00 44  

( ) ,
0

0
8 00 ψ















σ−

σ
ψε++= µµ

k

k

ackc
v
a

v
ca hhhhn  (46.II) 

here index a is flat spacelike.  

( ) ( ) kbc
bc

v
k

v
bck

abc
bc

v
a

v
bca ShhhhinShhhhin µµµµ +−=+− 44  

( ) [ ]ψψ++= µµ kbc
bc

v
k

v
bck Mihhhhin 44

 

( ) .
0

0
8 ψ











−
ψε+−= µµ

I

I
hhhhn

bckbc
v
k

v
bck   (46.III) 

The energy momentum tensor has a recursive form and for each 
successive approximation we can detect a negative factor associated with 
the energy momentum tensor for the Dirac field in flat spacetime, this 
contribution is multiplied by n at each step.  

In addition, we get positive and negative contributions from spinor 
angular momentum, we mean this could be associated to expansion and 
compression or growing and damping deformation of the metric.  

Spinor as source of gravitational waves loses energy in creating 
curvature and torsion of the metric.  

3.2. Cosmological constant reinterpreted  

We suggest that the terms calculated explicitly in the energy 
momentum tensor could be a declaration about the cosmological constant 
and dark energy: spinor and torsion enter in the mechanism of 
expansion.  

We consider the field equation with the cosmological constant  

.ˆ8
2

vvv T
c

GgG µµµ π−=Λ+   (47) 
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Now if we start with the field equation without cosmological constant and 
develop the energy momentum tensor we get  

,ˆ8
2

vv T
c

GG µµ π−=   (48) 

( ),4
ˆ8

2
uvvvv BiNT

c
GG +−π−= µµµ   (49) 

( ) ,ˆ8
4

8
22

vuvvv T
c

GBiN
c

GG µµµ π−=+−π+   (50) 

( ),4
8

2
uvvv BiN

c
Gg +−π=Λ µµ   (51) 

( ) [ ( ) ( ) ].4
ˆˆ

2
18

2
abc

bc
v
a

v
bca

av
a

av
a

vv ShhhhiThTh
c

Gh µµµµµµ +++−π=+ηΛ  

(52)  

The cosmological constant is positive and create acceleration in the 
expansion of the universe, the value is associated to vacuum energy or to 
dark energy. There is a problem with the interpretation of the 
cosmological constant as vacuum energy: the value of the constant 
calculated from quantum field theory is too big and would produce 
acceleration too high compared with measurements [4].  

In this frame, the cosmological constant is associated to spinor 
coupling to the gravitational field and to torsion interaction.  

Torsion is implicated in the expansion of the universe and could 
replace the role of dark energy to explain repulsive force contrasting 
gravity [5].  

The cosmological constant could assume different value for each step 
of expansion  

( ).4
8

2
uvvv BinnN

c
Gg +−π=Λ µµ   (53) 
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Here we have attractive decelerating term (minus sign) and a mixed term 
of torsion with positive (repulsive) and negative contribution, creating 
different acceleration of the expansion.  

3.3. Gravitational waves sources  

We consider different contributions as wave source and look forward 
to the solutions as a superpositions of the two effects.  

 

[ ( ) ( ) ],4
ˆˆ

2
1ˆ16

2
abc

bc
v
a

v
bca

av
a

av
a

vv ShhhhiThThT
c

Gh µµµµµµ +++−π−=  

(54) 

,2
2
2

∇−=
∂
∂µ
t

vh   (55) 

[ ( ) ].ˆˆ
2
116

2
µµµ +−π−= av

a
av

a
v ThTh

c
Gh   (56) 

This is a non-homogeneous wave equation like the elastic string wave 
equation- describing tension in a fixed string due to an external force: 

vhµ  could be interpreted as the tension in the string and the non-

homogeneous term ( )µµ +− av
a

av
a ThTh ˆˆ

2
1  is assumed to be the force 

acting on the string forcing vibrations.  

[ ( ) ].4
16

2
abcv

bc
v
a

v
bca

v Shhhhi
c

Gh +π−= µµ   (57) 

Here we have three terms.  

( ) ψ













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σ
ψε+−= µµ

k

k
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v
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v hhhhCh

0

0
8
1

00   (58) 

,16
2 C

c
G =π−  

cbk are flat spacelike indices 
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( ) ;
0

0
8
1

00 ψ














σ−

σ
ψε++= µµµ

k

k

ackc
v
a

v
ca

v hhhhCh   (59) 

0 is flat time like index  

( ) .
0

10
8 ψ











−
ψε+−= µµµ

I
hhhhnCh bckbc

v
k

v
bck

v   (60) 

We notice that the nonhomogeneous terms contain first order partial 
derivatives, like for heat equation covered by vacuum wave equation. 
These first order terms are associated to damping or growth phenomena, 
depending on the plus or minus sign; there are opposite currents creating 
whirlpool, torsion from spinor becomes torsion of the metric.  

So, the picture we can figure out from (56) is about background 
stationary waves due to spinor fields related to discrete expansion. In 
addition to this, Equation (57) describes the torsion effects arising when 
spinors are present in curved spacetime. Stationary wave plus whirlpool 
are the effects of the deformation of the metric due to the presence of 
spinors.  

4. Summary and conclusion 

In this investigation, we have assumed the approximation of linear 
gravity with progressive steps till to vnhµ  so that .vvuv nhg µµ +η=  For 

each perturbation of the size vhµ  the energy momentum tensor is so 

written  

[ ( ) ( ) ].4
ˆˆ

2
1ˆ abc

bc
v
a

v
bca

av
a

av
a

vvn ShhhhiThThnTT µµµµµµ +++−+≅  (61) 

This is a model of discrete expansion driven through gravitational waves 
originating from spinors.  

But how this mechanism starts? We could suppose vacuum fluctuation 
for the first deformation ,vhµ  spinors coupled to gravitational field 
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assume new energy contributions and the presence of spinors deforms the 
metric. 

How are the discrete levels of the metric connected? Gravitational wave 
originates from spinors having their source in the energy momentum 
tensor, the tensor changes modifying the gravitational field with the 
perturbation of the size .vhµ  

In this model, we are not fixing the size of ,vhµ  could it be at Planck 

scale? Let’s calculate what happens with ,3c
hG

pl =  if we consider the 

size of the space deformation of vhµ  of the order of ,pl  we are describing 

the universe at the Planck time ,10 43stp
−≅  according with the 

cosmological picture of the early beginnings of the Universe.  

What is the fuel to expand to different levels? The fuel is the energy 
tensor of the previous level, this is the source for the wave deforming the 
metric curvature.  

If we consider the discrete steps used for this model of expansion, we 
can distinguish the contribution of two kinds of waves (56) and (57).  

We get two different phenomenology according to the solutions of the 

differential equations: the former source contribution µµ + av
a

av
a ThTh ˆˆ  

allows gravitational waves creating a new size of the metric as 
expansion.  

This torsional source ( ) ,4
abc

bc
v
a

v
bca Shhhhi µµ +  contributes to other 

metric changesets related to vortices creation through growing and 
damping metric perturbation.  

The spiral shape of galaxies could be a good example of the effects of this 
mechanism on a huge scale.  

We propose a different interpretation of the cosmological constant, 
expansion is due to the additional term of the energy-momentum tensor. 
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Appendix A 

Contribution from I) in details: 

A1. ( ) ψ










σ−

σ
ψε+− µµ

k
k

bckbc
vv

bc hhhhn
0

0
8 00  

( ) ( )














σ−

σ
ψ−−ψ















σ−

σ
ψ−−= µµ

2

2

133103

3

21120
0

0
80

0
8

vvvv hhhnhhhn

 

( ) ψ














σ−

σ
ψ−− µ

1

1

32230
0

0
8

vv hhhn  

+symmetric part.  

If v
cb

v
bc hh =  this contribution is zero.   

Contribution from II) in details:  

A2. ( ) ψ














σ−

σ
ψε++ µµ

k

k

ackc
v
a

v
ca hhhhn

0

0
8 00  

( ) ( )














σ−

σ
ψ−+ψ















σ−

σ
ψ−+= µµµµµ

2

2

03101303

3

012021
0

0
80

0
8

vvvv hhhhhnhhhhn

 

( ) ψ














σ−

σ
ψ−+ µµ

1

1

023032
0

0
8

vv hhhhn  

+symmetric part.  

If v
ch 0  terms are zero, the related contribution A2 vanishes.  

If the metric v
ch  does not change with respect to time in the tetrads 

frame, this term is zero.  
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Contribution from III) in details:  

A3.  ( ) ψ










−
ψε+− µµ

0

0
8 I

I
hhhhn

bck
v

bck
v

bck   

( ) ( ) ψ










−
ψ−−ψ











−
ψ−−= µµ

0

0
80

0
8 1331221123 I

I
hhhn

I

I
hhhn vvvv  

( ) ψ










−
ψ−− µ

0

0
8 32231 l

l
hhhn vv  

+symmetric part. 

If v
cb

v
bc hh =  this contribution is zero.  

APPENDIX B 

Gravitational wave with source ,ˆ16
2

vv T
c

Gh µµ π−=  the solution is so 

written [6]:  

( ) ( ) ,,
ˆ4, 3

2 xdtxr
T

c
Gtxh ret

v
v ′′π−=

µ
µ ∫

GG   (B0) 

., c
rttxxr ret −=′−=

GG  

We resume the kinds of differential equations considering as variables 
only x  and ,t  we get  

B1. ,hThh xxtt =−  non-homogeneous wave equation for an elastic 

string, the forcing term is the coupling between the stress energy tensor 
and the metric.  

The solutions depend on boundary conditions we can get stationary 
waves or linear advection solutions.  

We consider ( ) ( ) ,0,,0 == tLhth  with ,3c
hG

plL ==  to get 
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standing waves.  

B2a. .Thhh xxxtt ±=−  

B2b. .Thhh txxtt ±=−  

In detail, if we consider the full equation for example 2b) Thhh txxtt =−  

the first order derivative gives rise to damping vibration while if we 
consider the other kind of 2b) Thhh txxtt −=−  with minus sign we get a 

growing vibration. These two terms are opposite currents. 

The same if we consider 2a) ,Thhh xxxtt ±=−  here the first order 

derivative is respect to space index, again the same opposite currents. 


