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Abstract

We analyze a peakon collision for essentially non-integrable versions of the
Camassa-Holm equation. Using the weak asymptotics methods, we construct a
two-phase asymptotic solution that satisfies both a one-parameter family of

equations and two energy laws. It is shown that the waves with initial

amplitudes A; > Ay > 0, when interacting, are reflected and exchange their
energy: the new amplitudes will be By = Ay instead of A; and By = 4;

instead of As.
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1. Introduction

The “general Degasperis-Procesi-Camassa-Holm” equation i1s a

modern unidirectional approximation of the shallow water system

0 9.9 %u| @ 2 ou’ o o%u
E{u—as ax—2}+a{cou+clu _62(8‘1%) +8d(y—c3u)ax—2 =0,

1
which is a nature generalization of the well-known Camassa-Holm (CH) and
Degasperis-Procesi (DP) equations [1]-[3]. Here x € RY, ¢ > 0; u = u(x, t)
parameterizes the elevation of the free water surface relative to the
equilibrium state u = 0, so the u sign can be arbitrary, cq is a constant
related to the critical shallow-water wave speed, c¢; characterizes the
typical wave amplitude, and e; characterizes the dispersion level. The
constants a > 0 and y > 0 are associated with different characters of

the “linear” dispersion manifestation (compare (1) with KdV and
Benjamin-Bona-Mahony equations [4]). In the Green-Naghdi

approximation the restriction o +y > 0 is required [5]. The Equation (1)
terms with ¢9 >0 and c3 20 can be treated as representations of
“nonlinear” dispersion. In the Camassa-Holm approximation cg + c3 > 0

[1].

The most important feature of (1) i1s that, unlike equations with
standard “linear” dispersion, this model describes wave breaking
phenomena on the water surface. Consequently, classical solutions of the
Equation (1) are generally unstable and collapse in a short time.
However, a global solvability in terms of distributions for two special
cases of the Equation (1) with “nonlinear” dispersion is proved (see [3],

[6]-[9] and references therein).
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These particular cases are: the CH equation ([1], 1993) if ¢y = c3/2,
¢ = 3c3/2(x2, and y = 0; and the DP equation ([2], 1999, see also [3]) if

o =3, ¢; = 2c3/a®, and ¢y =y = 0. It is known that the CH and DP

equations have long-living solutions of the travelling wave type, namely,
solitons and their continuous analogues: the so-called cuspons (with an

unbounded first derivative) and waves with a bounded first derivative,
u = Aexp(-x — At|), 2)

which are called peakon (with A > 0) and antipeakon (with A < 0), see
[1]-[3], [10]-[15]. Moreover, the CH and DP (as well as the KdV) equations

are completely integrable, whereas all others particular cases of the
model (1) are essentially non-integrable (see, e.g., [6]). Note also that
none of them (CH or DP) can’t be transformed to another one (DP or CH)
[3].

We now turn to discuss non-integrable versions of the model (1). Note

that all terms in (1) are well defined for distributions such that (u})? is

an integrable over R%C function [16]. Accordingly, like CH and DP

equations, this model admits, under some conditions, not only classical
soliton solutions [17], but also non-smooth solutions, see [18] and below.
In addition, the solitons of the general version (1), as well as the solitons
of perturbed KdV equations, interact almost elastically (see the

asymptotic analysis [19] and result of numerical experiments [20]).

In this paper we consider a non-integrable version of (1), which
admits the existence of peakons for arbitrary amplitudes [17]. The main
subject of the research is the scenario of peakon-peakon interactions.

Namely, we assume that

Yy=c¢cop=0,a>0,¢e5 =1,¢ >0,k=1,2,3,and03:r(xzcl, 3
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where the parameter r characterizes the correlation between two types

of “nonlinear” dispersion,

r =cgl(ey +cg). 4)
To simplify formulas, we rescaling x' = x / a, t' = rejt/a and transform
the Equation (1) into the divergent form

Lt 2 s @ - D) - 5 () | =0 G)

Obviously, Equation (5) coincides with CH and DP equations for r = 2/3
and r = 1/2, respectively. Moreover, (2) is the exact peakon solution of (5)

for any r.

We turn now to consider collisions of peakons more in detail. There is
known the explicit formula for such interaction for CH equation (see, e.g.,
[10]-[14])

“= Z;Gi(t)e"p(_ e —;(2)]), (6)
Gy(t) = (A; + Ag exp(L(t — ) (1 + exp(L(t — £y)) ",

Ga(t) = (Ag + Ay exp(L(t — ty)) (1 + exp(L(t — £))) ", (7)
@1(t) = log(L) + A1 (t — ty) — log(A; + Ay exp(L(t - ty))),
@o(t) = —log(L) + Ag(t —ty) + log (A exp(L(t —ty)) + Ag). ®)

Here A; > Ay > 0 are the amplitudes of the original non-interacting
peakons, and L = A} — A,. It is easy to see that Gy({) > A4; and
Go(t) > Ay for ¢ — —o, whereas G;(t) > Ay and Gs(t) > A; for
t - . Respectively, ¢;(t) > A;(t —ty) and ¢g(t) > Ay(t —ty) for
t - —oo, whereas ¢;(t) »> Ag(t —ty) and @q(t) > A;(t —ty) for t — oo

A typical example of the trajectories of interacting CH-peakons is shown
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in Figure 1. To complete the description of the solution it is suffices to

note that the minimal distance s, between the trajectories is
S = 2 ].Og(Al + A2 )/L, (9)

which is realized at ¢t = {; when wave (6) has the form

2
ulyyy = %(Al + Ay )Zizl exp(— |x = ¢;(to)|)- (10)
t

10 ea(t)

-10

-10

Figure 1. Trajectories x = ¢;(t) of CH-peakons with initial amplitudes

Ay =1, Ay = 0.1, and with ¢; = 0.

An analysis of the solution that arises after collision of peakons in non-
integrable versions of (5) is the content of this article. Our basic remark is
that the situation with the collision of peakons is analogous to the
interaction of shock waves in gas dynamics: the Rankine-Hugoniot
conditions describe in detail the waves before the collision, however, the
scenarios for further dynamics in the formal approach can be chosen quite



6 G. OMEL'YANOV

arbitrarily. Oleinik [21] and Liu [22] were the first to use smooth
regularization to study admissibility criterions for shock wave for scalar
equations and systems of hyperbolic equations. Later, this approach,
combined with the weak asymptotics method has been successfully used
to study collisions and the formation of shock waves [23, 24], to study the
stability of waves in problems with non-convex non-linearity [25], as well
as in a detailed study of the collision of shock waves for the system of gas
dynamics equations, including the process rarefaction wave formation
[26, 27].

The main result of the article is the conclusion that the scenario of
peakon collision for non-integrable equations i1s similar to that described
above. Moreover, as in the integrable CH and DP cases, the character of
the peakon-peakon interaction is much more regular compared to the

peakon-antipeakon collision, see [10]-[15].

The content of the article is as follows: Sections 2 and 3 give a
detailed construction of the asymptotics of peakons outside the critical

time ¢;. Section 3 contains also the construction and study of the global

solution. In Conclusion we briefly discuss the passage to the limit from

smooth regularization to non-smooth solutions.
2. External Asymptotic Solution I

Let us choose a smooth function A(n) € [0, 1] such that
h(n)+h(m)=1, neR, (11)
and let there is a constant ¢ > 0 such that
h(n) = O(e") - 0 for n > —0, 1 —A(n) = O(e™") - 0 for n — .
(12)

Next, we define a small parameter 0 < ¢ << 1 and set n = x/e. Then
h(x/e) is a regularization of the Heaviside function (H(x)= 0 for

x <0, Hix) =1 for x > 0), thatis h(x/e) - H(x) for ¢ — 0.
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For t < ¢y let us represent a similar to (6) ansatz:

ut, % )= Gilt, ) or +logdhi), B = bl - ot 9e),  (13)
where
of =exp(t (¥ — it €)), [0;] = of —oy, (14)
G;t,e) > A;, o0;, €) > Ajt, for t - —o, A} > Ay > 0, (15)
and we assume that ¢ (¢, €) < 09(¢, €) for all ¢ < ¢.

In order to consider properties of the ansatz, we define the notion of a

“smallness in the weak sense”.

Definition 1. A function f(x, ¢, €) is said to be of the value Og (g")

if the relation

def

(f, ) j j f(x, 4, eW(x, £)dxdt = O(s") (16)

holds for any test function p(x, t) € D(R?).

Let us now state the main properties of the ansatz (13).
Lemma 1. There hold the following relations:

d

hi = H; +Og(e). o-hi =8 - it ) + Op(e), )
h1h2 = (]. — }\.(G))Hl + }\.(G)Hz + O@'(E), (18)

where k=1,2,...,8(x —a) is the Dirac delta-function, (5(x —a), v(x))=¥(a),
H; = H(x — ¢;(t, €)) is the Heaviside function (see, e.g., [16]), and

Mo) = J._OOOO K(M)h(c —n)dn, o =sle, s =0yt &) — ¢1(t, €). (19)
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Proof. For any test function y(x) we get
(hk, p(x)) = j w(x)dx + J’ R p(x)dx - J’ (1-h)px)de.  (20)
[} —®© P

Next,

“(pi hEp(x)dx| = ¢ IO RF(m)p(e; + en)dn| < cajo eNdn = O(e). (21)

Repeating the same estimate for the last term in (20), we obtain the first

relation in (17). Furthermore,

o gpk
dh”(n) 11(n) p(e; +en)dn = p(9;) + O(e). (22)

© dh¥ ~
.[_oo dx pla)dx = o d

Finally, the equality (11) implies
hihy = by = hih((9g — x)/e). (23)
Next,

(71 h((9g — x)/e), ¥(x))

(o w2 [ o |

L[ Whih((os - ) - b (Gon ~ Vo) wle)dd

—00

_ J’ i {h’(n)h(cs - n)jjp; p(x')dx' — h'(n)h(c - 1) J' j'z w(x’)dx’} dn

+ O(g) = Mo) {J‘(: p(x")dx' - J‘w w(x')dx'}

P2

Mo){H(x - @1) = H(x = 92)}, ¥(x)) + O(e). (24)

Combining (23) and (24) we pass to the equality (18). U
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Formulas (17) and (18) allow us to calculate all the terms of Equation

(5), namely,
2
Uyy = U — 2 - G;8(x — ¢;) + Ogy(g), (25)
(e )2 = 42 + 4G, Gyle® — 20(c)cosh(s))(Hy - Hy) + Og(e),  (26)
2 .
@)y = 4 -4y " GF; - 4G, Gyle® — 22 sinh(s))(5; + )

+ 8G,Gy (es - 2A cosh(s))(Hl — Hy) + Og(e). 27

Substitution of (25)-(27) converts the Equation (5) to the following form:
0 2 0 2 9 .
D Gt - o)+ &{zizl GZ5; + G1Gyle® — 2 sinh(s))(5; + 85)

- GGy (es - ZXCOSh(s))(Hl - H2)} = Og(e), (28)
where
»x =21 -r)lr. (29)
Since the functions §; and J; are linearly independent, relation (28)
entails the first meaningful result.

Lemma 2. Let ¢ < ty. Then function (13) satisfies Equation (5) with

accuracy Og(e) if and only if the following system of equations is

satisfied:
dG
d_tl = %2G1Gy (es - 27»(0)cosh(s)),
dd% — %Gle(es - 2k(c)cosh(s)), (30)

d .
% =G, + Gy (es - ZK(G)smh(s)),

B2 _ Gy + Gy e* ~ 27(o0)sinh(s)) (31
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Obviously, Equations (30) imply the conservation law
%(G1+G2):0 = Gy + Gy = A + Ay (32)
Thus, there is a function g = g(¢, ) such that
G =4 -8 Gy =A4,+g. (33)

Therefore, from (30)-(33), we get

% = - x (4 - g)(4y + g) (es - Zx(c)cosh(s)>, (34)
ds s . )
= (Ay - 4 +29)[1 - ¢ + 21(0)sinh(s)). (35)

Let us analyze the functions s and g. The equalities (34) and (35) imply
the following relation:

S
L in {4y~ )(4 + g)} = e & 2HO)CORE) (36)
s 1 -e° + 2)(c) sinh(s)
We choose now constants ¢y > 0 and p € (0, 1) and assume
s > coel ™M 37

Then o > cpe™ and A(c) = 1 + O(exp(—c'c)). This allows us to convert the

equality (36) to the following form:

—S

%m {4y &) (A + @)} = - ‘ — - _%%ma _e). (39)

Integration of (38) and assumption (15) entail the equality
(A - 8)(Ag +8) = A1 A(1-e°)". (39)

Solving the quadratic equation (39) and again taking into account (15),
we get

g = %{Al ~Ay ~VD), D=(A + Ay - 44 A (1-e ). (40)

The most important consequence of this formula is the following:
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Lemma 3. The irajectories ¢,(t, €) and ¢q(¢, €) do not intersect for

t < to.
Indeed, the hypothesis s — 0 entails D — —oo.

Now let us analyze the behaviour of g(s) near the critical point

so = s(tg). Setting ds/dt| tety = 0, we obtain from the Equation (35)
def
8o = 8ltg) = (A — Ag)/2. (41)
Combining (40) with (41) yields
/
Sp = —log{l - (4A1A2 (A; + Ay )_2)1 %} > const > 0, (42)

which justifies the assumption (37). Next we find from (34) and (35)

80 def ag’ = Z (A + Ay e >0,
dt 4
t=ty
2
s0 dgfd—; =2g6(1-¢%0) > 0.
di t=tgy

Collecting the above, we deduce from (30) and (31):
Gy = (A + A)2 - gi(t —tg) + Ot — £y,
Gy = (A + Ay)2 + gh(t —to) + Ot — 1o ),

A+ A _
o= of + A (0 gg)

- 80— )t -t) + O~ 1),

A+ A _
oz = 0§ + A2 1 oy gy

’

+ 80 (1= e 0) (- 1g) + Ot - 1), (43)
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where ¢3 — ¢! = s,. In particular,
Gy |t:t0 = G2|t:t0 = (A1 + Ag)2. (44)

It remains to consider the implementation of the conservation law

d o0
i J._oou dx =0, (45)

which is a direct consequence of integrating Equation (5); as well as the

balance law

d (® (9 9 3r-2 ~ 3
Il s rar = 222 o, (46)

which is obtained by multiplying (5) by © and integrating. Namely,

Lemma 4. Let t < ty. Then the weak asymptotics (13) satisfies the
equalities (45) and (46) with the precision O(g).

Proof. Direct integrating of (13) and accounting (32) imply

© 2
I udx = Z G;(2+ O(g)) = (A; + Ay)(2 + O(g)) = const. 47
- i=1

Next, for ¢ < t; we calculate

o 2
J uPdx = Y GE+26,Gy(1+ s)e + O(c). (48)
- i=1

Therefore, (26) and (48) entail

‘[_a; {u2 + (g )2}dx = 2‘[:) {u2 - 2G,G9e™*(Hy - Hz)}dx +0(e)

= 2{(A1 +Ay)? +2G,Gy(e™® - 1)}+ O(c).  (49)
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Moreover, applying (26) again we obtain

I_OO (u,dx = - 4G1G29_SJ.OO u,(Hy — Hg)dx + O(g)

= - 4G1G2(G2 — Gl)(l —e® )e_s + 0(8) (50)
Finally, calculating the derivatives in accordance with Equations (30) and

(35) we conclude

a
dt

3r—2

4r GIGZ(GZ - Gl)(e_s —1)9_8 = 0. (51)

(G1Gy(e* ~ 1))+

Obviously, the last equality implies the fulfilment of the law (46) with
precision O(g). O
By combining all the obtained results, we get the statement

Lemma 5. Let t < ty. Then the function (13) is a weak asymptotic
mod Og(g) solution of the Equation (5). Moreover, with exponential
accuracy  Mo) =1, G; = G;(t), 0; = ¢;(¢). For small t-ty, the

representations (43) hold.
3. External Solution II: Matching

Obviously, the function (13) can be extended to the time ¢,

g, %, €) = £ (A1 + 43)>" " {07 + o1}y (52)

However, (13) is not suitable for ¢ > ¢, as the property G;| g0 A; for

positive time ¢ — ¢, contradicts the condition s > 0. For this reason, we

should consider positive time separately. Let us set the ansatz similar to
(13),

ety (%, €)= 3 Gilt, €) {57 + 61,

hi = h((x = 9;(t, €))e), &F = exp(* (v - §;(t, ¢))). (53)
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In view of Lemma 3 we assume
5i(t’ 8) —> Bi for t > o0, 0 < B1 < B27 (54)

and we assume that ¢;(¢, €) < ¢o(t, &) for all ¢ > ¢y;. Substituting (53)
into the Equation (5), we pass to a similar (30), (31) system for the

functions éi and @;, i =1, 2. Accordingly, we conclude that
%(&14-52):0, = 51231_§7 522324-5. (55)

In turn, instead of (34), (35) we derive

&5
dt

a8 _ »#(By - 8)(By + 5)6_5,

t = (By - B, +28)(1-¢%).  (56)

Our assumptions (54) and Equations (56) yield

dg ds ~ def ~

E(t, 8) > 0, %(t, 8) >0 for t > to, 8o = g|t=t0 = (Bl - B2)/2, (57)

~ 1 N

g=5 |~ By —\(By + By)® — 4B By(1 - o s)%}, (58)
[

5, 8limyy = —log{l - (43132(31 + By )‘2)1 } > const > 0. (59)

Gi(to) = Galtg) = (By + By)/2. (60)
The last step of the construction is the union of the local solutions e, ,

t —
€

04 0g(c), (61)

ux, t, &) = Uexty + (uext2 ~ Uexty )h(

where wgy = u|t§t0. It is easy to establish that function (61) is an

asymptotic solution of Equation (5) if and only if this equation is satisfied

in the main term with respect to ¢ on the intervals ¢ < ¢ty and ¢ > {p;

and if the equality
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def
(Uextl = Ueat, )S(t —ty) = Og(e), where U = u — u,, (62)

holds. The first condition is fulfilled due to the construction of the local
solutions. To analyze (62) we apply the formula (25) and pass to the
equality

2 2
D Givlor Dy, = D, Giv @i Dy, = OC), (63)
i=1 i=1

where p = ¥(x, £) is a test function.

We now turn the attention to the energy laws (45) and (46). It is easy

to see that the conservation law (45) implies the matching condition
G1+G2:A1+A2:BI+B2:51+62. (64)

Furthermore, taking into account Lemma 4, we conclude that the balance

law (46) is satisfied with an accuracy O(g) on the intervals ¢ < ¢, and

t > tg. Thus, it remains to analyze the relation
(E(uextl ) - E(uext2 ))|t:t0 6(’: - tO) = O”D'(Rt)(s)’ (65)
where

E() = j :{uZ T (uy )2 )dx. (66)

Energy E(uy, ) has been calculated in formula (49). This and similar

formula for E(u,,, ) allow us to transform the relation (65) in the

exty

following manner:

GiGo(1— e )l — G1Gy(1-e® Wiy, = Oe) = so = 5o, (67)
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where p = p(¢) is a test function. Summarizing (42), (59), (64), and (67),

we deduce
A1A2 = Ble. (68)

Furthermore, upon combining (44), (60), (64), and (63), we obtain

2 2
w((PLH t)lt:to = Z 70(61'7 t)|t=t0‘ (69)
i=1 i=1

In turn, Lemma 3, (64), (68), and (69) imply

By = Ay, By = A, ¢i(tg) = 9;(tg), i=1,2. (70)
Thus, we get the final result

Theorem 1. Let A; > Ay > 0 and ¢ . Then, for all

|t—)—oo < 02 |t—)—oo
r € (0,1), the function (61), (70) satisfies the Equation (5) and energy

laws (45) and (46) in the weak asymptotic sense.
4. Conclusion

Smooth regularization (with a small parameter ¢) made it possible to

describe the collision of peakons for a family of non-integrable (with two
exceptions) CH-type equations (5). It has been shown that smoothed
peakons, contrary to solitons, interact at a distance: their trajectories do

not intersect.
The minimum distance (42) depends on the amplitudes and the
parameter s = x(r), but remains separated from zero. This property

allows passing to the limit ¢ — 0 and obtaining the exact two-phase
solution for the family of Equation (5). It should be noted that formula
(42) in the special cases of the CH equation (3 =1) and of the DP

equation (» = 2) gives the same distances s, as those found using the

inverse scattering problem, namely, (9) for »» =1 and

so = log{(A; + Ay) (JA; + Ay /I?} for » = 2.



COLLISION OF TWO PEAKONS IN A GENERAL ... 17

Finally, it remains to note that due to the symmetry ¢t - —, u - —u in

Equation (5), the results obtained allow us to describe the interaction of

two antipeakons.
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