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Abstract 

We analyze a peakon collision for essentially non-integrable versions of the 

Camassa-Holm equation. Using the weak asymptotics methods, we construct a 
two-phase asymptotic solution that satisfies both a one-parameter family of 
equations and two energy laws. It is shown that the waves with initial 

amplitudes ,021  AA  when interacting, are reflected and exchange their 

energy: the new amplitudes will be 21 AB   instead of 1A  and 12 AB   

instead of .2A  
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1. Introduction 

The “general Degasperis-Procesi-Camassa-Holm” equation is a 

modern unidirectional approximation of the shallow water system 
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which is a nature generalization of the well-known Camassa-Holm (CH) and 

Degasperis-Procesi (DP) equations [1]-[3]. Here  txuutx ,;0,1    

parameterizes the elevation of the free water surface relative to the 

equilibrium state ,0u  so the u  sign can be arbitrary, 0c  is a constant 

related to the critical shallow-water wave speed, 1c  characterizes the 

typical wave amplitude, and d  characterizes the dispersion level. The 

constants 0  and 0  are associated with different characters of 

the “linear” dispersion manifestation (compare (1) with KdV and 

Benjamin-Bona-Mahony equations [4]). In the Green-Naghdi 

approximation the restriction 0  is required [5]. The Equation (1) 

terms with 02 c  and 03 c  can be treated as representations of 

“nonlinear” dispersion. In the Camassa-Holm approximation 032  cc  

[1]. 

The most important feature of (1) is that, unlike equations with 

standard “linear” dispersion, this model describes wave breaking 

phenomena on the water surface. Consequently, classical solutions of the 

Equation (1) are generally unstable and collapse in a short time. 

However, a global solvability in terms of distributions for two special 

cases of the Equation (1) with “nonlinear” dispersion is proved (see [3], 

[6]-[9] and references therein). 
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These particular cases are: the CH equation ([1], 1993) if ,2/32 cc   

,2/3 2
31  cc  and ;0  and the DP equation ([2], 1999, see also [3]) if 

,/2, 2
3132  cccc  and .00 c  It is known that the CH and DP 

equations have long-living solutions of the travelling wave type, namely, 

solitons and their continuous analogues: the so-called cuspons (with an 

unbounded first derivative) and waves with a bounded first derivative, 

 ,exp AtxAu   (2) 

which are called peakon (with 0A  and antipeakon (with ,0A  see 

[1]-[3], [10]-[15]. Moreover, the CH and DP (as well as the KdV) equations 

are completely integrable, whereas all others particular cases of the 

model (1) are essentially non-integrable (see, e.g., [6]). Note also that 

none of them (CH or DP) can’t be transformed to another one (DP or CH) 

[3]. 

We now turn to discuss non-integrable versions of the model (1). Note 

that all terms in (1) are well defined for distributions such that  2xu  is 

an integrable over 1
x  function [16]. Accordingly, like CH and DP 

equations, this model admits, under some conditions, not only classical 

soliton solutions [17], but also non-smooth solutions, see [18] and below. 

In addition, the solitons of the general version (1), as well as the solitons 

of perturbed KdV equations, interact almost elastically (see the 

asymptotic analysis [19] and result of numerical experiments [20]). 

In this paper we consider a non-integrable version of (1), which 

admits the existence of peakons for arbitrary amplitudes [17]. The main 

subject of the research is the scenario of peakon-peakon interactions. 

Namely, we assume that 

,3,2,1,0,1,0,00  kkcc d  and ,1
2

3 crc    (3) 
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where the parameter r  characterizes the correlation between two types 

of “nonlinear” dispersion, 

 ./ 323 cccr   (4) 

To simplify formulas, we rescaling  /, 1trctxx  and transform 

the Equation (1) into the divergent form 

       .0
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  (5) 

Obviously, Equation (5) coincides with CH and DP equations for 3/2r  

and ,2/1r  respectively. Moreover, (2) is the exact peakon solution of (5) 

for any .r  

We turn now to consider collisions of peakons more in detail. There is 

known the explicit formula for such interaction for CH equation (see, e.g., 

[10]-[14]) 

    ,exp
2

1
txtGu iii

  
  (6) 

          ,exp1exp 1
00211

 ttLttLAAtG  

          ,exp1exp 1
00122

 ttLttLAAtG   (7) 

         ,exploglog 021011 ttLAAttALt   

         .exploglog 201022 AttLAttALt    (8) 

Here 021  AA  are the amplitudes of the original non-interacting 

peakons, and .21 AAL   It is easy to see that   11 AtG   and 

  22 AtG   for ,t  whereas   21 AtG   and   12 AtG   for 

.t  Respectively,    011 ttAt   and    022 ttAt   for 

,t  whereas    021 ttAt   and    012 ttAt   for .t  

A typical example of the trajectories of interacting CH-peakons is shown 
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in Figure 1. To complete the description of the solution it is suffices to 

note that the minimal distance 0s  between the trajectories is 

  ,/log2 210 LAAs    (9) 

which is realized at 0tt   when wave (6) has the form 

    .exp
2
1

0
2

1210
txAAu iitt     (10) 

 

Figure 1. Trajectories  tx i  of CH-peakons with initial amplitudes 

,1.0,1 21  AA  and with .00 t  

An analysis of the solution that arises after collision of peakons in non-

integrable versions of (5) is the content of this article. Our basic remark is 
that the situation with the collision of peakons is analogous to the 

interaction of shock waves in gas dynamics: the Rankine-Hugoniot 

conditions describe in detail the waves before the collision, however, the 
scenarios for further dynamics in the formal approach can be chosen quite 
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arbitrarily. Oleinik [21] and Liu [22] were the first to use smooth 

regularization to study admissibility criterions for shock wave for scalar 
equations and systems of hyperbolic equations. Later, this approach, 

combined with the weak asymptotics method has been successfully used 

to study collisions and the formation of shock waves [23, 24], to study the 
stability of waves in problems with non-convex non-linearity [25], as well 

as in a detailed study of the collision of shock waves for the system of gas 

dynamics equations, including the process rarefaction wave formation 
[26, 27]. 

The main result of the article is the conclusion that the scenario of 

peakon collision for non-integrable equations is similar to that described 

above. Moreover, as in the integrable CH and DP cases, the character of 

the peakon-peakon interaction is much more regular compared to the 

peakon-antipeakon collision, see [10]-[15]. 

The content of the article is as follows: Sections 2 and 3 give a 

detailed construction of the asymptotics of peakons outside the critical 

time .0t  Section 3 contains also the construction and study of the global 

solution. In Conclusion we briefly discuss the passage to the limit from 

smooth regularization to non-smooth solutions. 

2. External Asymptotic Solution I 

Let us choose a smooth function    1,0h  such that 

    ,,1 Rhh   (11) 

and let there is a constant 0c  such that 

    0 ceOh  for     01,  ceOh  for .  

(12) 

Next, we define a small parameter 10   and set ./ x  Then 

 /xh  is a regularization of the Heaviside function   0( xH  for 

  1,0  xHx  for ,0x  that is    xHxh /  for .0  
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For 0tt   let us represent a similar to (6) ansatz: 

          ,/,,,,,
2

1
 

 txhhhtGxtu iiiiiii
 (13) 

where 

      ,,,exp   iiiii tx   (14) 

    ,,,, tAtAtG iiii   for ,0, 21  AAt   (15) 

and we assume that     ,, 21 tt  for all .0tt   

In order to consider properties of the ansatz, we define the notion of a 

“smallness in the weak sense”. 

Definition 1. A function  ,, txf  is said to be of the value   DO  

if the relation 

       







  Odxdttxtxff ,,,,

def    (16) 

holds for any test function    ., 2D tx  

Let us now state the main properties of the ansatz (13). 

Lemma 1. There hold the following relations: 

      ,,,   DD Otxh
dx
dOHh iiii

kk   (17) 

      ,1 2121  DOHHhh   (18) 

where  ax  ,,2,1 k  is the Dirac delta-function,       ,, axax    

   ,txHH ii  is the Heaviside function (see, e.g., [16]), and 

         .,,,/, 12  



ttssdhh   (19) 
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Proof. For any test function  x  we get 

           .1, dxxhdxxhdxxxh iii
i

i

i

  












kkk   (20) 

Next, 

       .
00

 





  Odecdhdxxh c
ii

i
 kk   (21) 

Repeating the same estimate for the last term in (20), we obtain the first 

relation in (17). Furthermore, 

         .
 








Od

d
dh

dxx
dx

dh
ii

i 
kk

 (22) 

Finally, the equality (11) implies 

  ./21121  xhhhhh  (23) 

Next, 

     xxhh  ,/21  

     






   
xdx

dx
d

xhh
x

,/21  

         dxxdxxhhxhh
x




  




//1

2121  

            






  












dxdxhhxdxhh 

21
 

        






  








xdxxdxO 

21

 

           .,21  OxxHxH    (24) 

Combining (23) and (24) we pass to the equality (18).   
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Formulas (17) and (18) allow us to calculate all the terms of Equation 

(5), namely, 

        ,2
2

1
  DOxGuu iiixx   (25) 

          ,cosh24 2121
22  DOHHseGGuu s

x   (26) 

   2121
22

1
22 sinh2444)(   

seGGGuu s
iiixx  

     .cosh28 2121  DOHHseGG s   (27) 

Substitution of (25)-(27) converts the Equation (5) to the following form: 

     2121
22

1

2

1
sinh2 



 





  

seGGG
x

xG
t

s
iiiiii

 

     ,cosh2 2121  DOHHseGG s   (28) 

where 

  ./12 rr  (29) 

Since the functions i  and i  are linearly independent, relation (28) 

entails the first meaningful result. 

Lemma 2. Let .0tt   Then function (13) satisfies Equation (5) with 

accuracy  DO  if and only if the following system of equations is 

satisfied: 

    ,cosh221
1 seGG

dt
dG s    

    ,cosh221
2 seGG

dt
dG s     (30) 

    ,sinh221
1 seGG

dt
d s 


   

    ,sinh212
2 seGG

dt
d s 


  (31) 
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Obviously, Equations (30) imply the conservation law 

  .0 212121 AAGGGG
dt
d   (32) 

Thus, there is a function   ,tgg  such that 

., 2211 gAGgAG   (33) 

Therefore, from (30)-(33), we get 

        ,cosh221 segAgA
dt
dg s    (34) 

      .sinh21212 segAA
dt
ds s    (35) 

Let us analyze the functions s and g. The equalities (34) and (35) imply 

the following relation: 

        
   

.
sinh21

cosh2
ln 21

se

se
gAgA

ds
d

s

s



   (36) 

We choose now constants 00 c  and  1,0  and assume 

.1
0

 cs  (37) 

Then  0c  and     .exp1  cO  This allows us to convert the 

equality (36) to the following form: 

      .1ln
1

ln 21
s

s

s
e

ds
d

e

e
gAgA

ds
d 







   (38) 

Integration of (38) and assumption (15) entail the equality 

      .12121
 seAAgAgA  (39) 

Solving the quadratic equation (39) and again taking into account (15), 

we get 

      .14,
2
1

21
2

2121
 seAAAADDAAg  (40) 

The most important consequence of this formula is the following: 
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Lemma 3. The trajectories   ,1 t  and   ,2 t  do not intersect for 

.0tt   

Indeed, the hypothesis 0s  entails .D  

Now let us analyze the behaviour of  sg  near the critical point 

 .00 tss   Setting ,0/
0
ttdtds  we obtain from the Equation (35) 

    .2/210
def

0 AAtgg    (41) 

Combining (40) with (41) yields 

   ,0const41log
/12

21210 






   

AAAAs   (42) 

which justifies the assumption (37). Next we find from (34) and (35) 

  ,0
4

0

0

2
21

def
0  



s

tt

eAA
dt
dgg   

   .012 0

0

02

2def
0  



s

tt

eg
dt

sds  

Collecting the above, we deduce from (30) and (31): 

      ,2/ 2
000211 ttOttgAAG   

      ,2/ 2
000212 ttOttgAAG    

     0
210

11
01

2
tte

AA s 


   

      ,1
2

3
0

2
0

0 0 ttOtte
g s 


   

     0
210

22
01

2
tte

AA s 


   

      ,1
2

3
0

2
0

0 0 ttOtte
g s 


    (43) 
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where .0
0
1

0
2 s  In particular, 

  .2/2121 00
AAGG tttt    (44) 

It remains to consider the implementation of the conservation law 

,0



dxu

dt
d  (45) 

which is a direct consequence of integrating Equation (5); as well as the 

balance law 

   ,)(23 322 dxu
r

r
dxuu

dt
d

xx 








   (46) 

which is obtained by multiplying (5) by u and integrating. Namely, 

Lemma 4. Let .0tt   Then the weak asymptotics (13) satisfies the 

equalities (45) and (46) with the precision  .O  

Proof. Direct integrating of (13) and accounting (32) imply 

        const.22 21

2

1

 





OAAOGdxu i

i

 (47) 

Next, for 0tt   we calculate 

   .12 21
2

2

1

2  





  OesGGGdxu s
i

i

 (48) 

Therefore, (26) and (48) entail 

        






  OdxHHeGGudxuu s
x 2121

222 22  

      .122 21
2

21   OeGGAA s   (49) 
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Moreover, applying (26) again we obtain 

      








OdxHHueGGdxu x

s
x 2121

3 4  

      .14 1221   OeeGGGG ss   (50) 

Finally, calculating the derivatives in accordance with Equations (30) and 

(35) we conclude 

       .01
4

231 122121   sss eeGGGG
r

reGG
dt
d   (51) 

Obviously, the last equality implies the fulfilment of the law (46) with 

precision  .O    

By combining all the obtained results, we get the statement 

Lemma 5. Let .0tt   Then the function (13) is a weak asymptotic 

 DOmod  solution of the Equation (5). Moreover, with exponential 

accuracy      .,,1 ttGG iiii   For small 0tt   the 

representations (43) hold. 

3. External Solution II: Matching 

Obviously, the function (13) can be extended to the time ,0t  

        .
2
1,,

0

2

1210 ttiiii
hAAxtu 




   (52) 

However, (13) is not suitable for ,0tt   as the property igi AG 0  for 

positive time 0tt   contradicts the condition .0s  For this reason, we 

should consider positive time separately. Let us set the ansatz similar to 

(13), 

       ,~~,
~

,,
2

12 iiiiiext htGxtu  
  

       .,~exp~,/,~  txtxhh iiii
   (53) 
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In view of Lemma 3 we assume 

  ii BtG ,
~

 for ,0, 21 BBt   (54) 

and we assume that     ,~,~
21 tt  for all .0tt   Substituting (53) 

into the Equation (5), we pass to a similar (30), (31) system for the 

functions iG
~

 and .2,1,~  ii  Accordingly, we conclude that 

  .~~
,~~

,0
~~

221121 gBGgBGGG
dt
d   (55) 

In turn, instead of (34), (35) we derive 

       .1~2
~

,~~~ ~
12

~
21

ss egBB
dt
sdegBgB

dt
gd     (56) 

Our assumptions (54) and Equations (56) yield 

    0,
~

,0,
~

 t
dt
sdt

dt
gd  for   ,2/~~, 21

def
00 0

BBggtt tt     (57) 

    ,14
2
1~ ~

21
2

2121
 seBBBBBBg   (58) 

   .0const41log~~ /12
2121

def
0 0








  




BBBBss tt   (59) 

Thus, 

      .2/
~~

210201 BBtGtG   (60) 

The last step of the construction is the union of the local solutions ,
iextu  

       ,,, 0
121





 DO
tt

huuutxu extextext  (61) 

where .
01 ttext uu   It is easy to establish that function (61) is an 

asymptotic solution of Equation (5) if and only if this equation is satisfied 

in the main term with respect to   on the intervals 0tt   and ;0tt   

and if the equality 
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     ,021
 DOttUU extext  where xxuuU 

def
 (62) 

holds. The first condition is fulfilled due to the construction of the local 

solutions. To analyze (62) we apply the formula (25) and pass to the 

equality 

     ,,~~
,

00

2

1

2

1

 





 OtGtG ttii
i

ttii
i

  (63) 

where  tx,   is a test function. 

We now turn the attention to the energy laws (45) and (46). It is easy 

to see that the conservation law (45) implies the matching condition 

.
~~

21212121 GGBBAAGG   (64) 

Furthermore, taking into account Lemma 4, we conclude that the balance 

law (46) is satisfied with an accuracy  O  on the intervals 0tt   and 

.0tt   Thus, it remains to analyze the relation 

         ,0
021

  tRttextext OttuEuE D  (65) 

where 

      .22 dxuuuE x 



 (66) 

Energy  
1extuE  has been calculated in formula (49). This and similar 

formula for  
2extuE  allow us to transform the relation (65) in the 

following manner: 

      ,~1
~~

1 00
~

2121 00
ssOeGGeGG tt

s
tt

s  



   (67) 
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where  t   is a test function. Summarizing (42), (59), (64), and (67), 

we deduce 

.2121 BBAA   (68) 

Furthermore, upon combining (44), (60), (64), and (63), we obtain 

    .,~,
00

2

1

2

1
tti

i
tti

i

tt 





    (69) 

In turn, Lemma 3, (64), (68), and (69) imply 

    .2,1,~,, 001221  ittABAB ii  (70) 

Thus, we get the final result 

Theorem 1. Let 021  AA  and .21   tt  Then, for all 

 ,1,0r  the function (61), (70) satisfies the Equation (5) and energy 

laws (45) and (46) in the weak asymptotic sense. 

4. Conclusion 

Smooth regularization (with a small parameter   made it possible to 

describe the collision of peakons for a family of non-integrable (with two 

exceptions) CH-type equations (5). It has been shown that smoothed 

peakons, contrary to solitons, interact at a distance: their trajectories do 

not intersect. 

The minimum distance (42) depends on the amplitudes and the 

parameter  ,r   but remains separated from zero. This property 

allows passing to the limit 0  and obtaining the exact two-phase 

solution for the family of Equation (5). It should be noted that formula 

(42) in the special cases of the CH equation  1  and of the DP 

equation  2  gives the same distances 0s  as those found using the 

inverse scattering problem, namely, (9) for 1  and 

    22
21210 /log LAAAAs   for .2  
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Finally, it remains to note that due to the symmetry uutt  ,  in 

Equation (5), the results obtained allow us to describe the interaction of 

two antipeakons. 
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