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1. Introduction

In 1960, Rota-Baxter operators for commutative algebras was first
considered in [3] by Baxter. Subsequently, various authors have
contributed to the development of the theory of Rota-Baxter operators;
see [9] for further details. In 2021, Guo et al. [10] introduced the notion of
Rota-Baxter operators on groups and Lie groups and gave some basic
examples and properties of these operators. A group G with a Rota-
Baxter operator is called a Rota-Baxter group.

Soon after the intial breakthrough in [8], quite a few studies were
carried out in this direction (see [1, 2, 4, 5, 6, 7, 11, 12]). More specifically,
Bardakov and Gubarev [1] have investigated the relationship between
skew left braces and Rota-Baxter groups, and shown that every Rota-
Baxter group gives rise to a skew left brace and every left brace can be
embedded into a Rota-Baxter group. In 2023, Bardakov and Gubarev [2]
have given different constructions of Rota-Baxter operators on a group. In
particular, they have proved that all Rota-Baxter operators on all
sporadic simple groups are splitting. In the same year, Catino et al. [4]
defined Rota-Baxter operators for Clifford semigroups and extended some
results in [1] to Clifford semigroups. In [5], Das and Rathee investigated
the extensions and automorphisms of Rota-Baxter groups, and in
particular, in [5, Example 6.7], they listed Rota-Baxter operators on the
dihedral group Dg which are extension of some homomorphism on the

unique cyclic subgroup with order 4 of Dg. On the other hand, Gao, Guo,

Liu and Zhu [6] constructed free Rota-Baxter groups and Goncharov [7]
investigated Rota-Baxter operators on cocommutative Hopf algebras,
respectively. More recently, Li and Wang introduced Rota-Baxter systems
and studied the relationship between Rota-Baxter systems and Rota-
Baxter groups in [11]. Now the theory of Rota-Baxter groups has become
a very active topic.

As mentioned earlier, Bardakov and Gubarev proved that all Rota-
Baxter operators on 26 sporadic simple groups are splitting. A natural
question is the following: what is the structure of Rota-Baxter operators
on other groups? This problem seems very difficult in general case. In
this paper, by using some key facts on Rota-Baxter operators on groups
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given in the texts [2] and [10], we have determined and classified all the
Rota-Baxter operators on the dihedral group Dg with the help of Matlab

procedures. In particular, we have proved that there exist 56 Rota-Baxter
operators on Dg including 18 splitting Rota-Baxter operators and 28

Rota-Baxter endomorphisms. Moreover, the Rota-Baxter endomorphisms
on Dg form a semigroup with respect to the composition of mappings.
The results of this paper show that the structure of Rota-Baxter operators

on general groups is very complicated.

The paper is organized as follows. In Section 2, we first recall some
necessary results on Rota-Baxter operators on groups and some basic

properties of the dihedral group Dg. In particular, it is showed that the
size of the image of a Rota-Baxter operator on Dg may be 8, 4, 2 or 1 (see

Lemmas 2.1 and 2.4 (1)). Then we have determined the Rota-Baxter
operators on Dg by considering the sizes of the images of these operators

in Sections 3-5. More specifically, Section 3 explores the Rota-Baxter
operators on Dg whose images have 8 elements and shows that there are

12 candidates of this kind of operators. In Section 4, Rota-Baxter
operators on Dg whose images have 4 elements are considered and 28

candidates of this class of operators are described. Section 5 is devoted to
Rota-Baxter operators on Dg whose images contain at most 2 elements

and 16 candidates of Rota-Baxter operators on Dg are obtained. In the

final section, among other things we prove that the above mentioned
56 candidates are all really Rota-Baxter operators, where there are
28 Rota-Baxter endomorphisms and 18 splitting Rota-Baxter operators.

2. Preliminaries

In this section, we shall recall some necessary results on Rota-Baxter

operators on groups and some basic properties of the dihedral group Dg.
Let (G, -) be a group with the identity e. From [10], a map B : G - G is

called a Rota-Baxter operator of weight of 1 on G if

B(g)B(h) = B(gB(g)hB(g)™), (2.1)
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for all g, h € G. In this case,
ker B = {x € G|B(x) = e} and Im B = {B(x)| x € G},

are called the kernel and image of B, respectively. In the sequel, we shall
call Rota-Baxter operators of weight of 1 Rota-Baxter operators for
simplicity. Now let us recall some properties of Rota-Baxter operators on

groups.
Lemma 2.1 (Lemmas 5 and 6 in [2], also see [10]). Let B be a Rota-
Baxter operator on a group G with identity e. Then B(e) = e. Moreover,

ker B and Im B are subgroups of G.

Lemma 2.2 (Proposition 2.6 in [1]). Let B be a Rota-Baxter operator

on a finite group G. Define a new multiplication og on G as follows:

gop h = gB(ghB(g) ! forall g, h e G.

Then (G, op) is also a group and B is a group homomorphism from
(G, og) to (G,-). As a consequence, we have (G, og)/ker B = (Im B,-) and

Gl

so |ker B| = TmB|°

Lemma 2.3 (Lemma 7 in [2]). Let B be a Rota-Baxter operator on a
finite group G with identity e and g € G. If B(g) = e, then B(h) = B(gh)

for any h € G. In particular, if
G = H (ker B)g;,
iel

is the decomposition of G into the disjoint union of right cosets with

respect to the subgroup ker B, then B(x) = B(y) if x and y lie in the same

coset.
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Now, we shall give some known results and properties of the dihedral

group:
Dg = {a, b|0t4 =b2 =¢ bab’! = a_1> = {e, a, a?, a®, b, ba, ba?, ba3}.

We use e to denote the identity of Dg throughout the remaining part of
the paper.

Lemma 2.4. With the above notation, we have the following well

known facts:

(1) The subgroups of Dg are
Hy = {e, b}, H, = {e, ba}, Hy = {e, ba®}, Hy = {e, ba®}, Ny = {e},
N; = {e, a®}, Ny = {e, a, a®, a®}, N3 = {e, a2, b, a®b},
Ny = {e, a?, ba, ba®}, N5 = Dg,

and the normal subgroups of Dg are Ny, N1, Ny, N3, N4, and Nj.
(2) The center of Dg is {e, a2} and ba = a®b, a®b = ba?, ba® = ab.

(3) The conjugacy classes of Dy are {e}, {a®}, {a, a®}, {b, ba®}, and
{ba, ba®}.

Lemma 2.5. Let B be a Rota-Baxter operator on Dg.

(1) If x,ye Dg and B(x)y = yB(x), then B(x)B(y) = B(xy). In
particular, B(x)B(a?) = B(xa?) forall x € Dy.

@) B(x)* e ({B(a?), e} N{a?, e}) for all x e Dy.

(3) If InBN {a, a®} # 0, then B(a?) = a®.

Proof. (1) Let x, y € Dg. Then by (2.1), we have

B(x)B(y) = B(xB(x)yB(x)™") = B(xyB(x)B(x)™") = B(xy).
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Since a” lies in the center of Dg by Lemma 2.4 (2), it follows that

B(x)a? = a®B(x) and so B(x)B(a?) = B(xa?) for all x e Ds.

(2) Let x e Dg. we have B(x)? = B(x)B(x) = B(xB(x)xB(x) ).
Observe that B(e) = e by Lemma 2.1, it follows that B(e)® = e. Since

B(a)aB(a) ! € {a, a®} by Lemma 2.4 (3), we have
B(a)* € B(ala, ’}) = {B(a®), B(a*)} = (B(a”), B(e)} = {B(a®), e}.

By similar arguments, we can see that B(x)? € {B(a?), e} for all
x € Dg. Moreover, it is easy to check that g2 e {aZ, e} for all g e Dg.
Thus (2) follows.

(3) If ImBN{a, a®} + 0, then B(xy) e {a, a®} for some x, e Dg.
This implies that B(xy)® = (a®)? = a® e {B(a?), e} by item (2) above.

This implies that B(a?) = a. O
3. Rota-Baxter Operators B on Dg with ImB| = 8

In view of Lemma 2.1, the kernel and image of a Rota-Baxter operator
on a group G are always subgroups of G. So by Lemma 2.4 (1) the images
of Rota-Baxter operators on Dg may be H; and N, where 1 = 0,1, 2, 3

and j =0,1, 2, 3, 4, 5. We shall determine all the Rota-Baxter operators
on Dg by considering their images. In this section, we study the Rota-

Baxter operators Bon Dg with ImB| = 8 (i.e.,, ImB = N5 = Dg).
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Proposition 3.1. Let B be a Rota-Baxter operator on Dg with

ImB = Dg. Then B is one of the following permutations on Dg:
B, = (ba, ba®), By = (b, ba?), By = (a, a®),
By = (a, @®)(b, ba?)(ba, ba®), Bs = (a, b)(a?®, ba®)(ba, ba®),
B = (a, b, a®, ba2), B; =(aq, ba?, a®, b),
Bg = (a, ba2)(a3, b)(ba, ba3), By = (a, ba, a®, ba3),
By = (aq, ba)(ag, ba3)(b, ba2), B = (a, ba®, a®, ba),
Byy = (a, ba®)(a®, ba) (b, ba?).

Moreover, Bg' = B; and Bg' = By;.

Proof. Let B be a Rota-Baxter operator on Dg with ImB = Dg.

Then B is bijective, and we have
B(e) = e, B(a?) = a2,

by Lemmas 2.1 and 2.5 (3), respectively. This implies that B(a) € {a, a®,

b, ba, ba2, ba® }. We consider the following cases:

Case 1. B(a) e {a, a®}. In this case, we have B(a)B(b) = B(aB(a)
bB(a)!) = B(ba) by (2.1), Lemma 2.4 (2) and simple calculations. If
B(b) € {a, a®}, then

B(ba) = B(a)B() € {a, a®}{a, a®} = {a?, e}.

This is impossible as B is bijective and B(e) = e, B(a?) = a®. So

B(b) € {b, ba, ba®, ba®}. If B(b) € {ba, ba®}, then

e = B(b)® = B(b)B(b) = B(bBBWB(b) ') = B(a)?,
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a contradiction. This implies that B(b) € {b, ba?}, and so B(b)B(a) = B(ba®)
by (2.1), Lemma 2.4 (2) and simple calculations. From the above

statements, we have
B(a) € {a, a®}, B(b) € {b, ba®}, B(a)B(b) = B(ba), B(b)B(a) = B(ba®).
(3.1)
If B(a) = a, B(b) = b, then we have
B(ba?) = B(b)B(a®) = ba® and B(a®) = B(a)B(a?) = a®
by Lemma 2.5 (1), and B(ba) = ab = ba® and B(ba®) = ba by (3.1),
respectively. In this situation, we have
B(e) = e, B(a) = a, B(a®) = a2, B(a®) = a®,
B(b) = b, B(ba) = ba®, B(ba?) = ba?, B(ba®) = ba.

That is to say, B = (ba, ba? ). Similarly, we can obtain the following facts:
If B(a) = a, B(b) = ba?, then B = (b, ba?), if B(a) = a®, B(b) = b, then
B=(a,a®), if B(a)=a®, B(b)=ba?, then B = (a, a®)(b, ba®)(ba, ba®).

Case 2. B(a) e {b, ba®}. In this case, by (2.1) and Lemma 2.4(2) we

have B(a)B(b) = B(ab) = B(ba®). In view of Lemma 2.5 (1) and the fact

B(a?) = a®, we obtain that
B(a®) = B(a)B(a?) = B(a)a® e {ba?, b}.

This implies that B(b) ¢ {ba?, b} as B is bijective. If B(b) € {ba, ba®},

then we can see that B(b)B(a) = B(ba®) by (2.1) again. This shows that
B(a)B(b) = B(b)B(a). However, it is easy to check that xy # yx for all

x e {b,ba®} and ye{ba, ba®}. A contradiction. Observe that
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B(e) = e, B(a®) = a? and the fact that B is bijective, it follows that
B() € {a, a®}. This yields that B(b)B(a) = B(ba) by (2.1). From the
above discussions, we have
B(a) € {b, ba®}, B(b) € {a, a®}, B(a)B(b) = B(ba®), B(b)B(a) = B(ba).
(3.2)
If B(a)=b and B(b) = a, then by (3.2), we have B(ba) = ab = ba® and
B(ba®) = ba. In view of Lemma 2.5 (1), we obtain that B(ba?) = B(b)
B(a?) = aa® = a® and B(a®) = B(a)B(a?) = ba®. In this situation,
B = (a, b)(a?, ba?)(ba, ba®). Similarly, we can obtain the following facts:
If B(a) = b, B(b) = a®, then B = (a, b, a®, ba?), if B(a)=ba?, B(b)=a,
then B =(a,ba?,a®,b), if B(a)=ba?, B(b)=a?, then B=(a,ba?)(a,b)
(ba, ba®).
Case 3. B(a) e {ba, ba®}. By similar arguments used in Case 2, we
can show that
B(a) € {ba, ba®}, B(b) € {ba?, b}, B(a)B(b) = B(ba), B(b)B(a) = B(ba?).
In this situation, we have
B = (a, ba)(a?, ba®) (b, ba?), B = (a, ba, a®, ba®),
B = (a, ba®)(a®, ba) (b, ba?),
or B = (a, ba®, a®, ba). O

4. Rota-Baxter Operators B on Dg with ImB| = 4

In this section, we study the Rota-Baxter operators B on Dg with

[Im B| = 4. In this case, Im B may be Ny, N3 or N, by Lemma 2.4 (1).
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4.1. Rota-Baxter operators B on Dg with ImB = {e, a, az, a3}
Let B be a Rota-Baxter operator on Dg with ImB = Ny = (a) =
{e, a, %, a®}. Then B(a), B(b) € {e, a, a®, a®}, and so
Ble) = ¢, B(a') = B(a)’, B(ba') = B(b)B(a)', B(a®) = a%,  (4.1)

for all positive integer i by Lemmas 2.1 and 2.5 (1), (3). In view of Lemma
2.2, we have |kerB| = % = 2. Since B(a?) = a® # e, we have a® ¢ ker B.
By Lemma 2.4 (1) and the fact that the kernel of B is a subgroup of Dg

(see Lemma 2.1), we have the following cases:

Case 1: ker B = {e, b}. The right cosets of G with respect to the

subgroup {e, b} are
{e, b}, {a, ba}, {a®, ba®}, {a®, ba®}.
In view of Lemma 2.3 and (4.1), we have
B(e) = B(b) = e, B(a) = B(ba), B(ba?) = B(a?) = a?,
B(ba?) = B(a®) = B(a)?,
which implies that B(a) ¢ {e, a®} as ImB = (a) = {e, a, a®, a®}. If

B(a) = a, then B is

e a a2 a3 e a a2 a3

Boa— [e a a2 & b ba bd® bagj
13 — :
If B(a) = a®, then B is

B _|le @ a® o® b ba ba® ba?
14 = .
e a a a e a a a
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Case 2: ker B = {e, ba}. By similar arguments in Case 2, B is one of

the followings:

e a o o° b ba ba®> ba®
Bys = ’
e a a a a e a a

B._|¢ @ a®> a® b ba ba® ba®
16 — :
e a a a a e a a

Case 3: ker B = {e, ba?}. In this case, B is one of the followings:

e a o o b ba ba® ba®
B,7 = ’
e a a a a a e a

B._|¢ @ a®> a® b ba ba® ba®
18 = .
e a a a a a e a

Case 4: ker B = {e, ba®}. In this case, B is one of the followings:

B _(e a a®> a® b ba ba® baSJ
19 — ’

Bo = [e a a® o b ba ba® ba3J
20 = .
e a° a a a° a a e
4.2. Rota-Baxter operators B on Dg with ImB = {e, a2, b, a®b}

Let B be a Rota-Baxter operator on Dg with ImB = N3 = (a?, b) =
{e, a’, b, a2b}. Then B(x) € {e, aZ, b, a2b}, and so
B(e) = e, B(xa®) = B(x)B(a?), B(xb) = B(x)B(b) (4.2)
by Lemmas 2.1 and 2.5 (1) for all x € Dg. This implies that
B(a?) = B(a)B(a?), B(ba) = B(a®b) = B(a®)B(b) = B(a)B(a?)B(b),

(4.3)
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B(ba?) = B(a®b) = B(a®)B(b), B(ba®) = B(ab) = B(a)B(b).  (4.4)
In view of Lemma 2.2, |ker B| = % = 2. By Lemma 2.4 (1), we have the
following cases:

Case 1: kerB = {e, a?}. The right cosets of G with respect to
(e, a?} are:

{e, a®}, {a, a®}, {b, ba®}, {ba®, ba}.
In view of Lemma 2.3 and (4.3)-(4.4), we have
B(e) = B(a?) = e, B(a) = B(a®), B(b) = B(ba®),
B(ba®) = B(ba) = B(a)B(b).

Since ImB = {e, a2, b, a’b} and ker B = {e, a®}, we have B(a), B(b)

e {a?, b, a®b} and B(a) # B(b). Thus B is one of the followings:

B :[e a a? a® b ba ba? baSJ
21 e a? e a? b ba?® b ba?)

B.. | a a? &b b ba ba® ba’
22 e a? e a2  ba? b ba’ b )

B _(e a o & b ba ba? baBJ
23 e b e b a2  ba? a? ba?)
B, —|¢ @ a? o b ba ba’? ba®

# e b e b ba? a® ba® a2 )

Bo- —|© a a’ a’ b ba ba® ba®
25 ba? e ba? a2 b a’ b )

B _(e a a®> a® b ba ba® baSJ
26 .
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Case 2: ker B = {e, b}. The right cosets of G with respect to {e, b}

are:
le, b}, {a, ba}, {a®, ba®}, {a®, ba®}.
In view of Lemma 2.3 and (4.3)-(4.4), we have B(b) = B(e) = e and
B(a)B(a?) = B(a®) = B(ba®) = B(a)B(b) = B(a).
This gives B(a?) = e and so a? e ker B. A contradiction.

Case 3: ker B = {e, ba}. The right cosets of G with respect to {e, ba}

are:

{e, ba}, {a, ba?}, {a?, ba®}, {a®, b). 4.5)
By Lemma 2.3, we have B(a?) = B(ba®). As kerB = {e, ba}, we have
B(a?) # e. Assume that B(a?) = B(ba®) e {b, ba®}. Since ba®(bba®b1)
= baa®b = ba®b = a® and

ba®(baba®(ba®) ) = ba’ba’ba’ba® = baab = a2,
we have
B(a?) = B(ba®B(ba® ba®B(ba®)™) = B(ba®)B(ba®) = e,

and so a® e ker B. A contradiction. Thus B(a?)= B(ba®) = a® as

ImB = {e, a®, b, ba®}. Since [Im B| = 4, we have B(a), B(b) ¢ {e, a®}

by Lemma 2.3 and (4.5), and so B(a), B(b) € {b, ba®} and B(a) + B(b).
In view of (4.3)-(4.4), B is one of the followings:

B.. —|¢ @ a? a’ b ba ba®? ba?
27 e b a? ba? ba? e b a2 )

B :[e a a® a® b ba ba? bagj
28 ba’® a? b b e ba? a? )
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Case 4: ker B = {e, ba’}. The right cosets of G with respect to
{e, ba®} are:
{e, ba?}, {a, ba®}, {a?, b}, {a®, ba}.

In view of (4.3)-(4.4) and Lemma 2.3, we have B(a)B(b) = B(ba®) = B(a),
and so B(b) = e. This gives that b € ker B. A contradiction.

Case 5: ker B = {e, ba®}. Exchange the roles of ¢® and a in Case 4,

we can obtain that B is one of the followings:

B.._|¢ @ a? a® b ba ba® ba®
29 e b a®> ba® b a®> ba? e )

[e a a? a® b ba ba? baSJ
e ba’? a? b ba? a? b e

4.3. Rota-Baxter operators B on Dg with ImB = {e, a?, ba, ba3}
Denote ¢ = a® and d = ba. Observe that
Dg = {(c, d) = {e, c, 2,3, d, de, de?, de®},

it follows that {e, 2, d, ch} = {e, a2, ba, ba3}. Replacing @ and b by ¢
and d in Subsection 4.2, respectively, we have the following candidate

Rota-Baxter operators on Dg whose images are {e, a2, ba, ba?’}:

B.. —|¢ @ a®> a® b ba ba® ba®
3 - 9’

! e a® e a® ba ba’® ba  ba®

e a a® a? b ba ba® ba®
Bgy = 2 2 3 3 ’

e a e a ba ba ba ba

B e a a®> a° b ba ba® ba®
33 — ’

e ba e ba a> ba® a? ba®
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Ba, —|¢ @ a® a® b ba ba® ba?®
i ba® o ba® Q? )

®
S
Q
®
S
Q

Ba- —|© a a? a’ b ba ba® ba®
3 e ba® e ba® a® ba a? ba )
Bae | © a a? a® b ba ba’ ba®
26 e ba® e ba® ba a? ba a )
B.. —|¢ @ 2 a’ b ba ba® bad

37 e ba 2 ba® e ba ad? ba® )
Bao = € a a®? da® b ba ba?  ba®
38 e ba® a2 ba e ba® a? ba )

Bu —|¢ @ a® b ba ba® ba®
39 e ba a®> ba® & bd® e ba )

B40 = 2

e a a? o b ba ba? baSJ
e ba® a ba a ba e ba®

5. Rota-Baxter Operators B on Dg with ImB| < 2

In this section, we study the Rota-Baxter operators B on Dg with
ImB| < 2. In this case, InB may be Ny, Ny or Hy, Hy, Hy, Hy by
Lemma 2.4 (1).

Let B be a Rota-Baxter operator on Dg with ImB = N; = (a?) =
{e, a®}. In view of Lemma 2.2, we have |ker B| = % = 4. By Lemma 2.4(1),

we have the following cases:

Case 1: kerB = {e, a, a?, a3}. In this case, since ImB = {e, a2}, it

follows that B 1is

B _[e a a®> a® b ba ba? bagj
41 = .
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Case 2: ker B = {e, a2, b, ba®}. In this case, B is

B _(e a a?> a® b ba ba® ba3J
42 = .

Case 3: ker B = {e, a2, ba, ba®}. In this case, B is

B _(e a o> @ b ba bd® baSJ
43 — :

Let B be a Rota-Baxter operator on Dg with ImB = (bai> = {e, ba'} = H;,
i =0,1, 2, 3. Then by similar arguments as above, we obtain that B 1is

one of the followings:

B, _le @ a? a® b ba ba® ba®
4 e e e e b b b b )
B._|¢ @ a? a® b ba ba® ba®
45 e b e b e b e b )
B. _le @ a®> a® b ba ba® ba?
46 — ’
e b e b b e b e
e a a2 d° b ba ba® ba®
Byg = )
e e e e ba ba ba ba

B.-|¢ @ a®> a® b ba ba® ba?’]
48 )

e ba e ba e ba e ba

B ¢ a a? o b ba ba®? ba®
49 e ba e ba ba e ba e )
B.. _|e @ a? &b b ba ba®  bad
50 e e e e ba® ba® ba® ba?)



CLASSIFICATION OF ROTA-BAXTER OPERATORS ON Dg 169

B.. —|© a a? a’ b ba ba?  ba®
o1 e ba® e ba’> e ba® e ba?)
Boo —|© a a? a® b ba ba®? ba?
o2 e ba’ e ba® ba’ e ba? e )
B..—|¢ @ a? o b ba ba’  ba’®
>3 e e e ba®  ba® ba®  ba®)
e a a’ a® b ba ba?  ba®
Bsy = 3 3 3 ’
e ba e ba ba e ba
B.. | a a? a® b ba ba® ba®
o e ba’ e ba®  ba® e ba® e

Finally, let B be a Rota-Baxter operator on Dg with ImB = {e} = N,,.
Then B is

B _(e a a®> a® b ba ba? baSJ
56 — :
e e e e e e e

6. The Classification of Rota-Baxter Operators on Dg

By the statements in the previous sections, Dg has no more than
56 Rota-Baxter operators, namely B;,i =1, 2, ..., 56. In this section,

among other things we shall show that these 56 candidates are all really

Rota-Baxter operators.

Let G be a group and denote the set of all maps from G to G by
7(G). For each B € T(G), define B € T(G) as follows: B(g)=g 'B(g™")

for all g € G. Then E = B. In fact, for g € G, we have

B(g)=g'B(g')=g'gB(g) = B(g).
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Now, define a binary relation p on 7(G) as follows: for all B, C e 7(G),
BpC ifandonlyif C=B or C=B.

Obviously, p is an equivalence on 7(G). Furthermore, we have the
following lemma by direct calculations. Observe that on Dg, Bj :E if

and only if
Bj(a) = a’B;(a?), Bj(aS) = aBj(a) and Bj(x) = xB;(x),
for all x e Dg\{a, a®}.

Lemma 6.1. The 56 candidate Rota-Baxter operators B;-Bsg can be

divided into the following 28 p-classes:
{By1, Bz}, {Ba, Bys}, {Bs, Bsg}, {By, Bar}, {Bs, Bss}, {Bg, Bss},
{B7, Byg}, {Bs, Bss}, {Bg, Bys}, {Bio, Bas}, {Bi1, Bs1}, {Bia, Bas}
{B13, Ba1}, {Bia, Bua}, {Bis, Bag}, {Bie, Bur}, {Bi7, Bz}, {Bis, Bso},
{Bi9, Ba1}, {B2o, Bs3}, {Baa, Bag}, {Bag, Bas}, {Bar, Bas ), {Bas, Bas}
{B2g> Bsa}, {B3o, Baz}, {Bs7, Bug ), {Bao> Bsal-
Define another binary relation ¢ on 7(G) as follows: for all
B, C € T(G),
Bo C if and only if there exists an automorphism ¢ on G such that

oC = Bo. (6.1)

Then o is also an equivalence on 7(G). The following lemma lists the

automorphisms of Dg, which is well-known and can be proved easily.
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Lemma 6.2. The automorphisms of Dg are listed as follows:

by = e a a> a® b ba ba® ba®
! e a a®> a®> b ba ba® ba®)
by = e a o b ba ba?  ba®
2 e a a2 a® ba ba® ba?® b )

o e a a® b b ba ba® ba®
’ e a a®> a® ba® bad b ba )

0 _|e a a® o b ba ba® ba®
4 e a a2 a® bad? b ba ba?)

e a a®? a® b ba ba’> ba®

b5 = e a® a? a b ba® ba® ba )
b6 = e a a? & b ba ba®? ba®
6 e a® a? a ba b ba®  ba?)

(e a o o b ba ba® basj
¢7 = 3 2 ’

e a a a ba’ ba b ba®
bg = e a a® o b ba ba? ba?’]
8 e a® a? a ba®  ba® ba b

By Lemma 6.2 and routine calculations, we have the following result.
Observe that

¢_1B¢:[ 0 ap % d® by (ba)p  (ba®)  (ba® ) J
e(Bo) a(By) a*(By) a’(By) b(By) (baXBy) (ba®)By) (ba®)By)

for any bijective transformation ¢ on Dg and B e 7(Dg).
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Lemma 6.3. The 56 candidate Rota-Baxter operators By-Bsg on Dg

can be divided into the following 18 o-classes:
{B1, By}, {B3}, {B4}, {Bs, Bg, Bio, B2}, {Bg, By, By, Bi1},
{B13, Bi5, Bi7, Big}, {Bu4, Bis, Big. Bao}, {Ba1, Bag, By, Baa},
{B2s, Bys, Bsy, Bsgl, {Bay, Bag, Bas, Bss !, {Bay, B3g, Bsg, Bsgl,
{Bag, Bag, By7, Byo}, {Ba1}, {Byg, Bas}, {Bass Baz, Bso, Bssl,

{By5, Bag, Bs1, Bss}s {Bags Buss Bsas Bsafs {Bsg)-

Remark 6.4. We can obtain Lemma 6.3 by using Matlab. To this aim,

we need the matrix representation of Dg. In fact, if we let

o O = O
o = O O
= o O O
= o O O
o = O O
o O = O
oS O O -

then the subgroup of GL(4, R) generated by a and b is isomorphic to Dg.

By using this representation and corresponding procedures (see A.1 in
Appendix), We can check whether any two candidate Rota-Baxter

operators are c-equivalent. For example, if we check

B_le ¢ a’? d® b ba ba® ba®
e a’ e a2 b ba?® b ba?)

e a a’ a° b ba ba® ba®
e a’ e a® ba® b ba® b )

we only need to enter
[e,a,a°2,a"3,b,b*a,b*xa"2,b*xa"3;e,a 2,e,a°2,b,b*xa 2, b, b*a 2]
[e,a,a°2,a"3,b,b*a,b*xa"2,b*a"3;e,a 2, e,a"2,b*a"2,b,b*a"2,b]

after the cursor in Matlab. When you have entered this line, the sentence

“B is equivalent to R” is displayed.
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Denote the least equivalence of 7(G) containing p and ¢ by §. That
is, 8§ = pVo in the lattice of the equivalences in 7(G). In view of

Lemmas 6.1 and 6.3, we have the following result:

Lemma 6.5. The 56 candidate Rota-Baxter operators on Dg can be

divided into the following 9 5-classes:

{By, By, Byg, Byz}, {Bs, Bsg}, {By, By},
{Bs, Bg, Bio, Bia, Bag, Bys, By, Bsg},
{Bs, By, By, Bi1, Bys, Byg, Bs1, Bss )
{B13, Bi5, Bi7, Big, By1, Bog, B3y, Bsp},
{B14, Big, Big, Bao, Buss By7, Bso, Bssl,
{B24, Bg: Ba7, Bso, Bsg, Bss, Bsg, Bag},
{Bas, Bg, By, Byo, Byg, Bag, Bsz, Bsa}s

In order to achieve our purpose, we also need to state some known

results.

Lemma 6.6 (Lemma 8 in [2], also see [10]). Let B be a Rota-Baxter
operator on a group G. Then the operator on G defined by the rule that

B(g)=g 'B(g™?) forall geG,
is also a Rota-Baxter operator on G.

Lemma 6.7 (Lemma 9 in [2]). Let B be a Rota-Baxter operator on a
group G and ¢ be an automorphism of G. Then (p_lB(p is also a

Rota-Baxter operator on G.

Let G be a group. According to [2], if H and L are two subgroups of
G such that G = HL and H (L = {e}, then we call (H, L) an exact

pair of G. In this case, we can define Bg j in 7(G) as follows:

By :G—>G, hl— I"!. Moreover, we say an element B in 7(G)

splitting if B = By 1, for some exact pair (H, L) of G.
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Lemma 6.8 (Example 15 in [2], also see [10]). Let (H, L) be an exact
pair of a group G. Then Bpg 1 is a Rota-Baxter operator on G. In this

case, ker B = H and ImB = L.

In view of Lemmas 2.4 (1) and 6.8, we have the following lemma by
direct calculations.

Lemma 6.9. The exact pairs of Dg can be listed as follows:
(No, Dg), (Ho, Ng), (Hy, N3), (Hz, N3), (H, Ng), (Hy, N3),
(Hg, N3), (Hg, Ny), (Hg, Ny);
(Ng, Hy), (Ny, Hy), (Ng, Hy), (N3, Hy), (Ng, Hp), (Ny, Hy),
(Ng, H3), (N3, H3), (Dg, No).
The corresponding splitting Rota-Baxter operators are:
Bs, By, Bigs Bis, Bags Bag, Bag, By, Byo;
Byy, Byg, By, Bys, Bso, Bsg, Bsg, Bsy, Bsg.

Proposition 6.10. The transformations B;-Bgg mentioned above are

all Rota-Baxter operators on Dg.

Proof. By Lemmas 6.5-6.9, to check the 56 candidate Rota-Baxter
operators, we only need to check the following 6 candidates:

By, By, Bs, Bg, By3, Bay. (6.2)

We can check these 6 candidates one by one certainly. But to avoid
lengthy calculations, we can realize this verification process by using
Matlab. By using the representation given in Remark 6.4 and
corresponding procedures (see A.2 in Appendix), we can obtain that each
item in (6.2) is a Rota-Baxter operator on Dg, and so all 56 candidates

are really Rota-Baxter operators on Dg. For example, if we check that

2 3 2 3

b ba ba ba
B=ba,ba3=eaa a ,
1= ) (e a a2 d® b ba® ba? ba
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is a Rota-Baxter operator, we only need to enter the second line
[e; a; a2, a8, b; b*a"3; b*a2; b+*al,

of B; after the cursor in Matlab. When you have entered this line, the

sentence “The mapping is a Rota-Baxter operator” is displayed.

Remark 6.11. In [2, Theorem 53], it has been shown that all
Rota-Baxter operators on 26 sporadic simple groups are necessarily
splitting. However, by Lemma 6.9 and Proposition 6.10, there exist non-

splitting Rota-Baxter operators in Dg.

Now, we consider another equivalence on the set of Rota-Baxter

operators in Dg. To this aim, we need the notion of skew left braces from
[8].
Definition 6.12. A skew left brace is a triple (G,-,°) such that (G,-)

and (G, o) are groups and
ao(b-c)=(aob)-at-(aocc),

holds for all a, b, ¢ € G, where a”! denotes the inverse of @ in the group
(G’ )

Bardakov and Gubarev [1] have obtained the relationship between
skew left braces and Rota-Baxter groups. In particular, they have proved
that Rota-Baxter groups give rise to skew left braces.

Lemma 6.13 (Proposition 3.1 in [1]). Let (G,-) be a group and B be a

Rota-Baxter operator on G. For all x,y e G, define xop y = xB(x)

yB(x)\. Then (G, op) forms a skew left brace. In this case, (G,-,op) is
called the skew left brace induced by the group (G,-) and the Rota-Baxter

operator B.
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Let R and B be two Rota-Baxter operators on a group (G,-). If we
define R ~ B if the skew left brace (G,-,op) is isomorphic to the skew
left brace (G,-,op), then ~ forms an equivalence relation on the set of
Rota-Baxter operators in (G,-). For this equivalence, we have the

following result.

Lemma 6.14 (Corollary 3.12 in [12]). Let R and B be two Rota-Baxter
operators on a group (G,-). Then R ~ B if and only if there exists an

automorphism on (G,-) such that, for all g € G, o(R(g)) " B(¢(g)) lies in
the center of (G,-).

By (6.1) and Lemma 6.14, one can obtain the following corollary:

Corollary 6.15. Let R and B be two Rota-Baxter operators on a group
(G,"). If Ro B, then R ~ B. In particular, if the center of G is trivial,

then Ro B if and only if R ~ B.

Since the center of Dg is {e, a?}, by using Lemmas 6.2, 6.3, 6.14 and

Corollary 6.15, we can obtain the following result by routine calculations:

Lemma 6.16. The 56 Rota-Baxter operators B;-Bsg on Dg can be

divided into the following 7 ~-classes:
{B1, By, B3, By},
{Bs, Bg, Big, Big, Bs, By, By, B},
{B13, Bis, Byi7, Big, By, Big, Big, Bao},
{Ba1, Bag, B3y, Bsg, Byy, By, Bso, Bssl,
{Ba3, Bas, By, Bsg, Buys. Bag, Bs1, Bss),
{Bg4, Bog, B3g, B3s, Ba7, B3g, Bag, Bsg, Bag, Bag, By, Byo, By, Bug, Bsg, Bsa |

{B41, Bag, Bag, Bsg}.
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Remark 6.17. We can also obtain Lemma 6.16 by using Matlab. In
fact, by using the representation given in Remark 6.4 and Matlab
procedures (see A.3 in Appendix), we can check whether any two

Rota-Baxter operators are ~-equivalent. For example, if we check

(e a a2 a® b ba ba® bd?
e a a> d® b ba® ba? ba)

R:(e a o> & b ba ba® ba®
e a® a2 a b ba ba’? ba®)

we only need to enter
[e,a, a2, a3, b b*a,b*xa 2, b*a"3;
e,a,a2,a°3,bbxa3,b*xa2 bx*al,
[e,a, a"2,a°3,b,bxa, b*xa 2, b*a"3;

e,a3,a 2, a,bb*a,b*xa 2, b*a"3]

after the cursor in Matlab. When you have entered this line, the sentence

“B and R satisfy the relation ~.” is displayed.

In the following statements, we shall list the skew left braces induced

by Dg and its Rota-Baxter operators
By, B, Byg, Bys, Bys: Bag, Bse.

respectively. By Lemmas 6.13 and 6.16, up to isomorphism, these skew

left braces are the only skew left braces which can be induced by Dg and

its Rota-Baxter operators.

Case 1. The skew left brace (D8,~, °B1) induced by Dg and B;, where

Xop ¥ = By (x)yBy (x) ",
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for all x, y € Dg:

°B, e a a?  a® b ba ba® ba®
e e a a® a® b ba ba’? ba®
a a a® a® e ba ba®> ba® b
a? a? a® e a ba®?  ba® b ba
a® a® e a a®  ba® b ba ba®
b b ba® ba’® ba e a® a? a
ba | ba b ba® ba? a e a® a®
ba? | ba®  ba b ba®  a? a e a®
ba® | ba® ba®  ba b a® a® a e

In this case, (Dg, op, ) = (Dg, ).

Case 2. The skew left brace (Dg, op ) induced by Dg and B,

where

xopy ¥ = xBs(x)yBs(x) ",

for all x, y € Dg:

°Bs e a a?  d® b ba ba® ba®
e e a a® a® ba ba®> ba®
a a e a® a®> ba® ba®  ba b
a? a? a® e a ba?  ba? b ba
a® a® a? a e ba b ba®  ba?
b b ba ba® ba® o a® e a
ba | ba b ba® ba? a e a® a?
ba? | ba® ba? b ba e a a® a®
ba® | ba® ba®?  ba b a® a® a e

In this case, (Dg, op, ) = (Dg,").
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Case 3. The skew left brace (Dg, -,op,) induced by Dg and B3,

where

-1
xop, ¥ =xBz(x)yBz(x)",

for all x, y € Dg:

°Bis e a a a b ba ba® ba®
e e a a? a® b ba ba? ba®
a a a? a® e ba ba? ba® b
a? a? a® e a ba® ba® b ba
a® a® e a a®  ba® b ba ba®
b b ba ba’ ba® e a a? a®
ba ba ba? ba® b a a? a® e
ba? | ba® ba® b ba o’ a® e a
ba® | ba’® b ba ba? a° e a a?

In this case, (Dg, op, ) = Zg x Zy.

Case 4. The skew left brace (Dg, -,op,, ) induced by Dg and By,

where

-1
x OB44 y = xB44(x)yB44(x) ’

for all x, y € Dg:

°Byy e a o> d® b ba ba® ba®
e e a a® a® ba ba’? ba®
a a a® a® e ba® b ba ba®
a? a? a® e a ba®?  ba? b ba
a? a® e a a? ba ba® ba® b
b b ba® ba®?  ba e a® a? a
ba ba b ba® ba? P a® a e
ba® | ba® ba b ba®  a? a e a®
ba® | ba® ba® ba b a e a® a?

In this case, (Dg, op,, ) = Zg x Zy.
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Case 5. The skew left brace (Dg, -op,, ) induced by Dg and Bys,

where

for all x, y € Dg:

-1
X op, ¥ = xBys(x)yBys(x)

’

Bys e a o> d® ba ba® ba®
e e a a? a® b ba ba® ba®
a a e a® a®> ba® ba’?  ba b
a® a® a® e a ba?  ba? b ba
a® a® a® a e ba b ba®  ba?
b b ba ba® ba® e a a? a®
ba ba b ba® ba? a? a? a e
ba? | ba® ba® b ba o’ a® e a
ba® | ba® ba® ba b a e a® a®

In this case, (Dg, op, ) = (Dg, ).

Case 6. The skew left brace

where

for all x, y € Dg:

(Dg, -,oB,, ) induced by Dg and Byg,

-1
x OB46 y = xB46(x)yB46(x) s

°Byg e a a® d® ba ba® ba®
e e a a? a® b ba ba’ ba®
a a e a® a® ba® ba®?  ba b
a® a? a® e a ba® ba® b ba
a® a® a? a e ba b ba®  ba?
b b ba® ba’?  ba e a® a? a
ba ba ba’ ba® b a® e a a?
ba? | ba®  ba b ba® a2 a e a®
ba® | ba® b ba ba’ a a? a® e

In this case, (Dg, o, ) = Zg x Zy x Lg.
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Case 7. The skew left brace (Dg, -,op, ) induced by Dg and Bsg,

where
-1
X op ¥ = xBy3(x)yBsg(x) ",

for all x, y € Dg:

°Brg e a a2 d® b ba ba® ba®

e e a a? a® b ba ba®> ba®

a a a? a® e ba® b ba ba®
a? a? a® e a ba?  ba® b ba
a® a® e a a? ba ba® ba® b
b b ba ba® ba® e a a? a®
ba ba ba? ba® b a® e a a®
ba? | ba®? ba® b ba o’ a® e a
ba® | ba® b ba ba® a a? a® e

In this case, (Dg, op.,) = (Dg,").

In the end of this paper, we determine so-called Rota-Baxter

endomorphisms on Dg. Recall that a Rota-Baxter endomorphism

(respectively, automorphism) on a group is a Rota-Baxter operator which
is also an endomorphism (respectively, automorphism). In the sequel, we

consider Rota-Baxter endomorphisms on Dg. The following result is
useful.
Lemma 6.18 (Proposition 21 in [2]). Let G be a group. If G has a

Rota-Baxter automorphism, then G is abelian. On the other hand, if B is

an endomorphism on G such that ImB is an abelian subgroup of G, then

B is a Rota-Baxter endomorphism.
In view of the first part of Lemma 6.18 and the fact that Dg is non-
ableian, there is no Rota-Baxter automorphism on Dg. On the other

hand, the kernel of a Rota-Baxter endomorphism on Dg is certainly a
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normal subgroup of Dg. By Lemma 2.4 (1) and the discussions in
Sections 3-5, the candidates for Rota-Baxter endomorphisms on Dg are
Bs1-Bog, B31-Bsg, and By;-Bsg. Again by using the representation

given in Remark 6.4 and Matlab procedures (see A.4 in Appendix), we can

show these candidates are really Rota-Baxter endomorphisms on Dg. For
example, if we check

B :[e a a> a® b ba ba® baSJ
21 a? e a® b ba? b ba?)

is an endomorphism, we only need to enter the second line
[e; a°2;e;a°2; b; b*a"2; b; b*a 2]

of By, after the cursor in Matlab. When you have entered this line, the

sentence “The mapping is a Rota-Baxter endomorphism” is displayed.

Let B be an endomorphism on Dg which is not an automorphism.
Then ImB is a subgroup of Dg and ImB # Dg, and so ImB is abelian
by Lemma 2.4 (1). By the second part of Lemma 6.18, B is a Rota-Baxter

endomorphism on Dg. Thus non-automorphism endomorphisms are
exactly Rota-Baxter endomorphisms on Dg. It is obvious that the

composition of any two non-automorphism endomorphisms is again a

non-automorphism endomorphism on Dg. In view of the statements in

the previous paragraph and Lemma 6.2, we have the following corollary:

Corollary 6.19. The semigroup of endomorphisms on Dg is
EndDS = {¢1, ey ¢6; B21, ey BZG; B31, ey BSG; B41, ey B56}7

which contains 34 elements, and the set of Rota-Baxter endomorphisms on

Dg forms a 28-element subsemigroup of EndDg.



CLASSIFICATION OF ROTA-BAXTER OPERATORS ON Dg 183

Remark 6.20. We observe that the set of bijective Rota-Baxter

operators
U = {B]_, Bz, ceey B]_z},

does not form a subgroup of the symmetric group Sym(Dg) on Dg. In

fact, U does not contain the identity permutation on Dg.

Now we summarize our results as a theorem.

Theorem 6.21. The set of Rota-Baxter operators on Dg is

{Bl, Bz, ceey B56} in which
B21, ey B26; B31, ey B36; B41, ey B56’

are 28 Rota-Baxter endomorphisms and
Bs, Byy, Big, Big, Bag, Bag, Bag, By, Byo;
By, Byg, By7, Byg, Bso, Bso, Bss, Bsys, Bse,

are 18 splitting Rota-Baxter operators.

We end the paper with some perspective and outstanding questions.
In this paper, we have determined and classified all the Rota-Baxter

operators on Dg by some known facts on Rota-Baxter operators of groups

in [2] and [10] together with necessary Matlab procedures. From the
results obtained in this paper, we can recognize that the construction of
Rota-Baxter operators on a group is complicated even if the construction
of the corresponding group is relative simple. In the present paper, we

have only considered the group Dg. This suggests the following problem

naturally.

Problem 6.22. How to generalize the results in this paper to all

dihedral groups Dy, ?
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By the comments before Corollary 6.19, any non-automorphism

endomorphism on Dg is a Rota-Baxter operator. In fact, all finite inner

abelian groups (Recall that a group is called inner abelian if any proper
subgroup of this group is abelian) have this property by Lemmas 2.1 and
6.18. This suggests the following problem.

Problem 6.23. How to characterize those groups in which every non-

automorphism endomorphism is a Rota-Baxter operator?

In the statements following Remark 6.17, up to isomorphism we have

determined all 7 skew left braces which can be induced by Dg and its
Rota-Baxter operators. By using GAP ([13]), one can know that there are
12 skew left brace structures over Dg up to isomorphism. Hence, there
are now 5 skew left brace structures on Dg that cannot be obtained from

Rota-Baxter operators. So the following problem seems meaningful.

Problem 6.24. Determine all 5 skew left brace structures on Dg that

cannot be obtained from Rota-Baxter operators.
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A. Appendix

A.1. The codes to check whether two candidate Rota-Baxter
operators are c-equivalent

e=[1000;0100;0010;000 1];
a=[0001;1000;0100;0010];
b=[0001;0010;0100;1000];
A=[e,a,a"2,a"3,b,b*a,b*a"2,b*a"3];
T=[e,a,a"2,a"3,b,b*a,b*a"2,b*a"3;
e,a,a"2,a"3,b*a,b*a”2,b*a”"3,b;
e,a,a"2,a"3,b*a"2,b*a"3,b,b*a;
e,a,a"2,a"3,b*a"3,b,b*a,b*a’2;
e,a"3,a"2,a,b,b*a"3,b*a"2,b*a;
e,a"3,a"2,a,b*a,b,b*a"3,b*a"2;
e,a"3,a"2,a,b*a”2,b*a,b,b*a"3;
e,a"3,a"2,a,b*a"3,b*a"2,b*a,b];
B=input (‘Please enter operator B.”);
R=input (‘Please enter operator R.’);
c=[1;5;9;13;17;21;25;29];

u=0;

Z=zeros (4,32);

G=[AZ];

H=[AZ];

fori=1:8
F=[A;T(c(i,:):c(i,:)*+3,1:32)];

for j=1:8
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for k=1:8
if F(5:8,¢(j,:):c(§,:)+3)==A(,c(k,:):c(k,:)+3)
G(5:8,¢(,:):¢(j,:)+3)=B(5:8,c(k,:):c(k,:)+3);
else
end
end
end
for b=1:8
for d=1:8
if R(5:8,c(b,:):c(b,:)+3)==A(:,c(d,:):c(d,:)+3)
H(5:8,c(b,:):c(b,:)+3)=F(5:8,c(d,:):c(d,:)+3);
else
end
end
end
ifG==
u=u+l;
else
end
end
ifu>0
disp('B and R are equivalent.")
else
disp ('B and R are not equivalent.")

end
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A.2. The codes to check that a mapping is a Rota-Baxter operator

e=[1000;0100;0010;000 17;
a=[0001;1000;,0100;001 0];
b=[0001;0010;0100;1000];
A=[e;a;a"2;a"3;b;b*a;b*a"2;b*a"3];

B=input (‘Please enter the matrix composed by the images of each element
corresponding to matrix A.’);

c=[1;5;9;13;17;21;25;29];

O=zeros(8,8);

R=ones(8,8);

for i=1:8

for j=1:8
A(e(i,):e(i,)+3,)*B(e(i,):e(i,)+3,)*Ae(,):c(,)+3,)
*inv(B(c(i,:):c(i,:)+3,));

for k=1:8

if Ac(i,2):e(i,)+3,)*B(c(i,:):e(i,)+3,:) *A(c(,1):¢(,)+3,0)
*inv(B(c(i,:):c(i,:)+3,:)==A(c(k,:):c(k,:)+3,:)

s=k;

else

end

end

if B(e(i,:):c(i,:)+3,)*B(c(j,:):¢(,)+3,:)==B(c(s,:):c(s,:)+3,:)
O@.j)=1;

else

end

end

end
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ifO==
disp(‘The mapping is a Rota-Baxter operator.”’)
else
disp(‘The mapping is not a Rota-Baxter operator.”)

end

A.3. The codes to check whether two Rota-Baxter operators are
~-equivalent

e=[1000;0100;0010;00017;
a=[0001;1000;0100;00 1 0];
b=[0001;0010;0100;1000];
A=[e,a,a"2,a"3,b,b*a,b*a"2,b*a"3];
T=[e,a,a"2,a"3,b,b*a,b*a"2,b*a"3;
e,a,a”2,a"3,b*a,b*a”2,b*a”"3,b;
e,a,a"2,a"3,b*a"2,b*a"3,b,b*a;
e,a,a"2,a"3,b*a"3,b,b*a,b*a"2;
e,a"3,a"2,a,b,b*a"3,b*a"2,b*a;
e,a"3,a"2,a,b*a,b,b*a"3,b*a"2;
e,a"3,a"2,a,b*a"2,b*a,b,b*a"3;
e,a"3,a"2,a,b*a"3,b*a"2,b*a,b];
B=input (‘Please enter operator B.”);
R=input (‘Please enter operator R.’);
c=[1;5;9;13;17;21;25;29];

u= zeros (8);

p=0;

q= zeros (1,8);
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Z=zeros (4,32);

E= zeros (1,8);

I=ones (1,8);

G=[AZ];

H=[AZ];

for r=1:8

F=[A;T(c(r,:):c(r,:)+3,1:32)];

for i=1:8

for j=1:8

If R(5:8,¢(i,1):c(i,:)+3)==A(:,¢(j,:):¢(j,)+3)
H(5:8,¢(i,:):c(1,:)+3)=F(5:8,¢(j,:):c(j,:)+3);
else

end

end

end

for k=1:8

for s=1:8

if F(5:8,c(k,:):c(k,:)+3)=A(:,c(s,:):c(s,:)+3)
G(5:8,c(k;,):c(k,)+3)=B(5:8,¢(s,1):c(s,:)+3);
else

end

end

end

for t=1:8

P=inv(G(5:8,c(t,:):c(t,:)+3))* H(5:8,c(t,:):c(t,:)+3);

if P==¢
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u(r,t)=1;
else
end
if P==a2
u(r,t)=1;
else
end
end
ifu(r,1:8)==
q(,0)=r;
p=p+l;
else
end
end
if p>=1
disp (‘B and R satisfy the relation ~.”)
else
disp (‘B and R do not satisfy the relation ~.”)

end




192 Q. LIU and S. WANG

A.4. The codes to check that a Rota-Baxter operator is an
endomorphism

e=[10000100;0010;000 17;
a=[0001;1000;0100;001 0];
b=[0001;0010;0100;1000];
A=[e;a;a"2;a"3;b;b*a;b*a"2;b*a"3];

B=input (‘Please enter the matrix composed by the images of each element

corresponding to matrix A.’);
c=[1;5;9;13;17;21;25;29];
O=zeros(8,8);

R=ones(8,8);

for i=1:8

for j=1:8
C=A(c(i,:):c(i,:)+3,:)*A(c(,):c(j,0)+3,2);
D=B(c(i,:):c(i,:)+3,:)*B(c(j,:):c(,:)+3,2);
for k=1:8

if C==A(c(k,:):c(k,:)+3,:)

t=k;

else

end

end

if D==B(c(t,:):c(t,:)+3,:)

O@j=1;

else

end
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end
end
ifO==
disp (‘The mapping is a Rota--Baxter endomorphism.”)
else
disp (‘The mapping is not a Rota--Baxter endomorphism.”)

end




