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Abstract 

Rota-Baxter operators on Lie groups were introduced recently as integrals of 

Rota-Baxter operators on Lie algebras with applications to integrable systems. 

In [5], Das and Rathee listed Rota-Baxter operators on the dihedral group 8D  

which are extension of some homomorphism on the unique cyclic subgroup 

with order 4 of .8D  The aim of this paper is to classify Rota-Baxter operators 

on .8D  With the aid of Matlab procedures, it is proved that there exist 56 

Rota-Baxter operators on 8D  including 18 splitting Rota-Baxter operators and 

28 Rota-Baxter operators that are group endomorphisms. The Rota-Baxter 
endomorphisms form a semigroup with respect to composition. 
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1. Introduction 

In 1960, Rota-Baxter operators for commutative algebras was first 
considered in [3] by Baxter. Subsequently, various authors have 

contributed to the development of the theory of Rota-Baxter operators; 

see [9] for further details. In 2021, Guo et al. [10] introduced the notion of 
Rota-Baxter operators on groups and Lie groups and gave some basic 

examples and properties of these operators. A group G with a Rota-

Baxter operator is called a Rota-Baxter group. 

Soon after the intial breakthrough in [8], quite a few studies were 

carried out in this direction (see [1, 2, 4, 5, 6, 7, 11, 12]). More specifically, 
Bardakov and Gubarev [1] have investigated the relationship between 

skew left braces and Rota-Baxter groups, and shown that every Rota-

Baxter group gives rise to a skew left brace and every left brace can be 
embedded into a Rota-Baxter group. In 2023, Bardakov and Gubarev [2] 

have given different constructions of Rota-Baxter operators on a group. In 

particular, they have proved that all Rota-Baxter operators on all 
sporadic simple groups are splitting. In the same year, Catino et al. [4] 

defined Rota-Baxter operators for Clifford semigroups and extended some 

results in [1] to Clifford semigroups. In [5], Das and Rathee investigated 
the extensions and automorphisms of Rota-Baxter groups, and in 

particular, in [5, Example 6.7], they listed Rota-Baxter operators on the 

dihedral group 8D  which are extension of some homomorphism on the 

unique cyclic subgroup with order 4 of .8D  On the other hand, Gao, Guo, 

Liu and Zhu [6] constructed free Rota-Baxter groups and Goncharov [7] 
investigated Rota-Baxter operators on cocommutative Hopf algebras, 

respectively. More recently, Li and Wang introduced Rota-Baxter systems 

and studied the relationship between Rota-Baxter systems and Rota-
Baxter groups in [11]. Now the theory of Rota-Baxter groups has become 

a very active topic. 

As mentioned earlier, Bardakov and Gubarev proved that all Rota-

Baxter operators on 26 sporadic simple groups are splitting. A natural 

question is the following: what is the structure of Rota-Baxter operators 
on other groups? This problem seems very difficult in general case. In 

this paper, by using some key facts on Rota-Baxter operators on groups 
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given in the texts [2] and [10], we have determined and classified all the 

Rota-Baxter operators on the dihedral group 8D  with the help of Matlab 

procedures. In particular, we have proved that there exist 56 Rota-Baxter 

operators on 8D  including 18 splitting Rota-Baxter operators and 28 

Rota-Baxter endomorphisms. Moreover, the Rota-Baxter endomorphisms 

on 8D  form a semigroup with respect to the composition of mappings. 

The results of this paper show that the structure of Rota-Baxter operators 

on general groups is very complicated. 

The paper is organized as follows. In Section 2, we first recall some 

necessary results on Rota-Baxter operators on groups and some basic 

properties of the dihedral group .8D  In particular, it is showed that the 

size of the image of a Rota-Baxter operator on 8D  may be 8, 4, 2 or 1 (see 

Lemmas 2.1 and 2.4 (1)). Then we have determined the Rota-Baxter 

operators on 8D  by considering the sizes of the images of these operators 

in Sections 3-5. More specifically, Section 3 explores the Rota-Baxter 

operators on 8D  whose images have 8 elements and shows that there are 

12 candidates of this kind of operators. In Section 4, Rota-Baxter 

operators on 8D  whose images have 4 elements are considered and 28 

candidates of this class of operators are described. Section 5 is devoted to 

Rota-Baxter operators on 8D  whose images contain at most 2 elements 

and 16 candidates of Rota-Baxter operators on 8D  are obtained. In the 

final section, among other things we prove that the above mentioned       

56 candidates are all really Rota-Baxter operators, where there are        
28 Rota-Baxter endomorphisms and 18 splitting Rota-Baxter operators. 

2. Preliminaries 

In this section, we shall recall some necessary results on Rota-Baxter 

operators on groups and some basic properties of the dihedral group .8D  

Let  ,G  be a group with the identity e. From [10], a map GGB :  is 

called a Rota-Baxter operator of weight of 1 on G if 

         ,1 ghBggBBhBgB  (2.1) 
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for all ., Ghg   In this case, 

  exBGxB ker  and   ,Im GxxBB   

are called the kernel and image of B, respectively. In the sequel, we shall 

call Rota-Baxter operators of weight of 1 Rota-Baxter operators for 

simplicity. Now let us recall some properties of Rota-Baxter operators on 

groups. 

Lemma 2.1 (Lemmas 5 and 6 in [2], also see [10]). Let B be a Rota-

Baxter operator on a group G with identity e. Then   .eeB   Moreover, 

Bker  and BIm  are subgroups of G. 

Lemma 2.2 (Proposition 2.6 in [1]). Let B be a Rota-Baxter operator 

on a finite group G. Define a new multiplication B  on G as follows: 

    1 ghBggBhg B  for all ., Ghg   

Then  BG ,  is also a group and B is a group homomorphism from 

 BG ,  to  ., G  As a consequence, we have     ,Imker, BBG B  and 

so .
Im

ker
B

G
B   

Lemma 2.3 (Lemma 7 in [2]). Let B be a Rota-Baxter operator on a 

finite group G with identity e and .Gg   If   ,egB   then    ghBhB   

for any .Gh   In particular, if 

  ,ker i
Ii

gBG 


  

is the decomposition of G into the disjoint union of right cosets with 

respect to the subgroup ,ker B  then    yBxB   if x and y lie in the same 

coset. 
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Now, we shall give some known results and properties of the dihedral 

group: 

 .,,,,,,,,, 32321124
8 babababaaaeababebabaD    

We use e to denote the identity of 8D  throughout the remaining part of 

the paper. 

Lemma 2.4. With the above notation, we have the following well 

known facts: 

(1) The subgroups of 8D  are 

         ,,,,,,,,, 0
3

3
2

210 eNbaeHbaeHbaeHbeH   

     ,,,,,,,,,, 22
3

32
2

2
1 babaeNaaaeNaeN   

  ,,,,, 85
32

4 DNbabaaeN   

and the normal subgroups of 8D  are ,,,,, 43210 NNNNN  and .5N  

(2) The center of 8D  is  2, ae  and .,, 3223 abbababababa   

(3) The conjugacy classes of 8D  are        ,,,,,, 232 babaaae  and 

 ., 3baba  

Lemma 2.5. Let B be a Rota-Baxter operator on .8D  

(1) If 8, Dyx   and    ,xyByxB   then      .xyByBxB   In 

particular,      22 xaBaBxB   for all .8Dx   

(2)        eaeaBxB ,, 222   for all .8Dx   

(3) If   ,0,Im 3 aaB   then   .22 aaB   

Proof. (1) Let ., 8Dyx   Then by (2.1), we have 

                 .11 xyBxBxxyBBxyBxxBByBxB    
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Since 2a  lies in the center of 8D  by Lemma 2.4 (2), it follows that 

   xBaaxB 22   and so      22 xaBaBxB   for all .8Dx   

(2) Let .8Dx   we have            .12  xxBxxBBxBxBxB  

Observe that   eeB   by Lemma 2.1, it follows that   .2 eeB   Since 

     31 , aaaaBaB   by Lemma 2.4 (3), we have 

                  .,,,, 224232 eaBeBaBaBaBaaaBaB   

By similar arguments, we can see that      eaBxB ,22   for all 

.8Dx   Moreover, it is easy to check that  eag ,22   for all .8Dg   

Thus (2) follows. 

(3) If   ,0,Im 3 aaB   then    3
0 , aaxB   for some .80 Dx   

This implies that        eaBaaxB ,22232
0   by item (2) above. 

This implies that   .22 aaB     

3. Rota-Baxter Operators B  on 8D  with 8Im B  

In view of Lemma 2.1, the kernel and image of a Rota-Baxter operator 

on a group G are always subgroups of G. So by Lemma 2.4 (1) the images 

of Rota-Baxter operators on 8D  may be iH  and ,jN  where 3,2,1,0i  

and .5,4,3,2,1,0j  We shall determine all the Rota-Baxter operators 

on 8D  by considering their images. In this section, we study the Rota-

Baxter operators B on 8D  with 8Im B  (i.e., .Im 85 DNB   

 

 

 



CLASSIFICATION OF ROTA-BAXTER OPERATORS ON 8D  159 

Proposition 3.1. Let B be a Rota-Baxter operator on 8D  with 

.Im 8DB   Then B is one of the following permutations on :8D  

     ,,,,,, 3
3

2
2

3
1 aaBbabBbabaB   

           ,,,,,,,, 323
5

323
4 bababaabaBbabababaaB   

   ,,,,,,,, 32
7

23
6 babaaBbaabaB   

       ,,,,,,,, 33
9

332
8 baabaaBbabababaaB   

       ,,,,,,,, 33
11

233
10 baabaaBbabbaabaaB   

     .,,, 233
12 babbaabaaB   

Moreover, 7
1

6 BB   and .11
1

9 BB   

Proof. Let B  be a Rota-Baxter operator on 8D  with .Im 8DB   

Then B  is bijective, and we have 

    ,, 22 aaBeeB   

by Lemmas 2.1 and 2.5 (3), respectively. This implies that    ,, 3aaaB   

.,,, 32 bababab  We consider the following cases: 

Case 1.    ., 3aaaB   In this case, we have       aaBBbBaB   

    baBabB 1  by (2.1), Lemma 2.4 (2) and simple calculations. If 

   ,, 3aabB   then 

          .,,, 233 eaaaaabBaBbaB   

This is impossible as B  is bijective and     ., 22 aaBeeB   So  

   .,,, 32 babababbB   If    ,, 3bababB   then 

              ,212 aBbbBbbBBbBbBbBe    
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a contradiction. This implies that    ,, 2babbB   and so      3baBaBbB   

by (2.1), Lemma 2.4 (2) and simple calculations. From the above 

statements, we have 

                   .,,,,, 323 baBaBbBbaBbBaBbabbBaaaB   

(3.1) 

If     ,, bbBaaB   then we have 

      232 baaBbBbaB   and       323 aaBaBaB   

by Lemma 2.5 (1), and   3baabbaB   and   babaB 3  by (3.1), 

respectively. In this situation, we have 

        ,,,, 3322 aaBaaBaaBeeB   

        .,,, 3223 babaBbabaBbabaBbbB   

That is to say,  ., 3babaB   Similarly, we can obtain the following facts: 

If     ,, 2babBaaB   then  ,, 2babB   if     ,,3 bbBaaB   then 

 ,, 3aaB   if     ,, 23 babBaaB   then      .,,, 323 babababaaB   

Case 2.    ., 2babaB   In this case, by (2.1) and Lemma 2.4(2) we 

have        .3baBabBbBaB   In view of Lemma 2.5 (1) and the fact 

  ,22 aaB   we obtain that  

         .,2223 bbaaaBaBaBaB   

This implies that    bbabB ,2  as B  is bijective. If    ,, 3bababB   

then we can see that      3baBaBbB   by (2.1) again. This shows that 

       .aBbBbBaB   However, it is easy to check that yxxy   for all 

 2, babx   and  ., 3babay   A contradiction. Observe that 
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    22, aaBeeB   and the fact that B  is bijective, it follows that 

   ., 3aabB   This yields that      baBaBbB   by (2.1). From the 

above discussions, we have 

                   .,,,,, 332 baBaBbBbaBbBaBaabBbabaB   

(3.2) 

If   baB   and   ,abB   then by (3.2), we have   3baabbaB   and 

  .3 babaB   In view of Lemma 2.5 (1), we obtain that    bBbaB 2  

  322 aaaaB   and       .223 baaBaBaB   In this situation, 

     .,,, 323 bababaabaB   Similarly, we can obtain the following facts: 

If     ,, 3abBbaB   then  ,,,, 23 baabaB   if     ,,2 abBbaaB   

then  ,,,, 32 babaaB   if     ,, 32 abBbaaB   then    babaaB ,, 32  

 ., 3baba  

Case 3.    ., 3babaaB   By similar arguments used in Case 2, we 

can show that 

                   .,,,,, 323 baBaBbBbaBbBaBbbabBbabaaB   

In this situation, we have 

       ,,,,,,,, 33233 baabaaBbabbaabaaB   

     ,,,, 233 babbaabaaB   

or  .,,, 33 baabaaB      

4. Rota-Baxter Operators B  on 8D  with 4Im B  

In this section, we study the Rota-Baxter operators B  on 8D  with 

.4Im B  In this case, BIm  may be 32 , NN  or 4N  by Lemma 2.4 (1). 
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4.1. Rota-Baxter operators B  on 8D  with  32 ,,,Im aaaeB   

Let B  be a Rota-Baxter operator on 8D  with  aNB 2Im  

 .,,, 32 aaae  Then      ,,,,, 32 aaaebBaB   and so 

              ,,,, 22 aaBaBbBbaBaBaBeeB iiii   (4.1) 

for all positive integer i by Lemmas 2.1 and 2.5 (1), (3). In view of Lemma 

2.2, we have .2ker
4
8 B  Since   ,22 eaaB   we have .ker2 Ba   

By Lemma 2.4 (1) and the fact that the kernel of B  is a subgroup of 8D  

(see Lemma 2.1), we have the following cases: 

Case 1:  .beB ,ker   The right cosets of G  with respect to the 

subgroup  be,  are  

       .,,,,,,, 3322 baabaabaabe  

In view of Lemma 2.3 and (4.1), we have 

            ,,, 222 aaBbaBbaBaBebBeB   

      ,333 aBaBbaB   

which implies that    2, aeaB   as  .,,,Im 32 aaaeaB   If 

  ,aaB   then B  is 

.
3232

3232

13 









aaaeaaae

babababaaaeB  

If   ,3aaB   then B  is 

.
2323

3232

14 









aaaeaaae

babababaaaeB  
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Case 2:  .baeB ,ker   By similar arguments in Case 2, B  is one of 

the followings: 

,
2332

3232

15 









aaeaaaae

babababaaaeB  

.
2323

3232

16 









aaeaaaae

babababaaaeB  

Case 3:  .2,ker baeB   In this case, B  is one of the followings: 

,
3232

3232

17 









aeaaaaae

babababaaaeB  

.3223

3232

18 









aeaaaaae

babababaaaeB  

Case 4:  .3,ker baeB   In this case, B  is one of the followings: 

,3232

3232

19 









eaaaaaae

babababaaaeB  

.
2323

3232

20 









eaaaaaae

babababaaaeB  

4.2. Rota-Baxter operators B  on 8D  with  bab,aeB 22 ,,Im   

Let B be a Rota-Baxter operator on 8D  with  baNB ,Im 2
3  

 .,,, 22 babae  Then    ,,,, 22 babaexB   and so 

             bBxBxbBaBxBxaBeeB  ,, 22   (4.2) 

by Lemmas 2.1 and 2.5 (1) for all .8Dx   This implies that 

                   ,, 23323 bBaBaBbBaBbaBbaBaBaBaB   

(4.3) 
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               ., 3222 bBaBabBbaBbBaBbaBbaB    (4.4) 

In view of Lemma 2.2, .2ker
4
8 B  By Lemma 2.4 (1), we have the 

following cases: 

Case 1:  .2,ker aeB   The right cosets of G  with respect to 

 2, ae  are: 

       .,,,,,,, 3232 babababaaae  

In view of Lemma 2.3 and (4.3)-(4.4), we have 

           ,,, 232 baBbBaBaBeaBeB   

       .3 bBaBbaBbaB   

Since  babaeB 22 ,,,Im   and  ,,ker 2aeB   we have    bBaB ,  

 baba 22 ,,  and    .bBaB   Thus B  is one of the followings: 

,
2222

3232

21 









babbabaeae

babababaaaeB  

,
2222

3232

22 









bbabbaaeae

babababaaaeB  

,2222

3232

23 









baabaabebe

babababaaaeB  

,
2222

3232

24 









abaababebe

babababaaaeB  

,
2222

3232

25 









bababaebae

babababaaaeB  

.2222

3232

26 









ababbaebae

babababaaaeB  
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Case 2:  .beB ,ker   The right cosets of G  with respect to  be,  

are: 

       .,,,,,,, 3322 baabaabaabe  

In view of Lemma 2.3 and (4.3)-(4.4), we have     eeBbB   and 

             .332 aBbBaBbaBaBaBaB   

This gives   eaB 2  and so .ker2 Ba   A contradiction. 

Case 3:  .baeB ,ker   The right cosets of G  with respect to  bae,  

are: 

       .,,,,,,, 3322 babaabaabae  (4.5) 

By Lemma 2.3, we have    .32 baBaB   As  ,,ker baeB   we have 

  .2 eaB   Assume that      ., 232 babbaBaB   Since  133 bbbaba  

2233 abbababa   and 

    ,2232312323 abaabbabababababababa   

we have 

            ,33133332 ebaBbaBbaBbabaBbaBaB    

and so .ker2 Ba   A contradiction. Thus     232 abaBaB   as 

 .,,,Im 22 babaeB   Since ,4Im B  we have      2,, aebBaB   

by Lemma 2.3 and (4.5), and so      2,, babbBaB   and    .bBaB   

In view of (4.3)-(4.4), B is one of the followings: 

,
2222

3232

27 









abebabaabe

babababaaaeB  

.
2222

3232

28 









abaebbabae

babababaaaeB  
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Case 4:  .2,ker baeB   The right cosets of G  with respect to 

 2, bae  are: 

       .,,,,,,, 3232 baababaabae  

In view of (4.3)-(4.4) and Lemma 2.3, we have        ,3 aBbaBbBaB   

and so   .ebB   This gives that .ker Bb   A contradiction. 

Case 5:  .3,ker baeB   Exchange the roles of 3a  and a in Case 4, 

we can obtain that B is one of the followings: 

,
2222

3232

29 









ebaabbaabe

babababaaaeB  

.
2222

3232

30 









ebabababae

babababaaaeB  

4.3. Rota-Baxter operators B  on 8D  with  32 ,,Im baba,aeB   

Denote 3ac   and .bad   Observe that 

 ,,,,,,,,, 3232
8 dcdcdcdcccedcD   

it follows that     .,,,,,, 3222 babaaedcdce   Replacing a and b by c 

and d in Subsection 4.2, respectively, we have the following candidate 

Rota-Baxter operators on 8D  whose images are  :,,, 32 babaae  

,
3322

3232

31 









babababaaeae

babababaaaeB  

,
3322

3232

32 









babababaaeae

babababaaaeB  

,3232

3232

33 









baabaabaebae

babababaaaeB  
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,2323

3232

34 









abaababaebae

babababaaaeB  

,
2233

3232

35 









baabaabaebae

babababaaaeB  

,
2233

3232

36 









abaababaebae

babababaaaeB  

,3232

3232

37 









baabaebaabae

babababaaaeB  

,
2323

3232

38 









baabaebaabae

babababaaaeB  

,
3232

3232

39 









baebaabaabae

babababaaaeB  

.3223

3232

40 









baebaabaabae

babababaaaeB  

5. Rota-Baxter Operators B  on 8D  with 2Im B  

In this section, we study the Rota-Baxter operators B  on 8D  with 

.2Im B  In this case, BIm  may be 10 , NN  or 3210 ,,, HHHH  by 

Lemma 2.4 (1). 

Let B  be a Rota-Baxter operator on 8D  with  2
1Im aNB  

 ., 2ae  In view of Lemma 2.2, we have .4ker
2
8 B  By Lemma 2.4(1), 

we have the following cases: 

Case 1:  .32 ,,,ker aaaeB   In this case, since  ,,Im 2aeB   it 

follows that B  is 

.
2222

3232

41 









aaaaeeee

babababaaaeB  
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Case 2:  .22 ,,,ker babaeB   In this case, B  is 

.
2222

3232

42 









aeaeaeae

babababaaaeB  

Case 3:  .32 ,,,ker babaaeB   In this case, B  is 

.
2222

3232

43 









eaeaaeae

babababaaaeB  

Let B  be a Rota-Baxter operator on 8D  with   ,,Im i
ii HbaebaB   

.3,2,1,0i  Then by similar arguments as above, we obtain that B  is 

one of the followings: 

,
3232

44 









bbbbeeee

babababaaaeB  

,
3232

45 









bebebebe

babababaaaeB  

,
3232

46 









ebebbebe

babababaaaeB  

,
3232

47 









babababaeeee

babababaaaeB  

,
3232

48 









baebaebaebae

babababaaaeB  

,
3232

49 









ebaebabaebae

babababaaaeB  

,
2222

3232

50 









babababaeeee

babababaaaeB  
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,2222

3232

51 









baebaebaebae

babababaaaeB  

,2222

3232

52 









ebaebabaebae

babababaaaeB  

,
3333

3232

53 









babababaeeee

babababaaaeB  

,
3333

3232

54 









baebaebaebae

babababaaaeB  

.3333

3232

55 









ebaebabaebae

babababaaaeB  

Finally, let B  be a Rota-Baxter operator on 8D  with   .Im 0NeB   

Then B  is 

.
3232

56 









eeeeeeee

babababaaaeB  

6. The Classification of Rota-Baxter Operators on 8D  

By the statements in the previous sections, 8D  has no more than      

56 Rota-Baxter operators, namely .56,,2,1, iBi  In this section, 

among other things we shall show that these 56 candidates are all really 

Rota-Baxter operators. 

Let G  be a group and denote the set of all maps from G  to G  by 

 .G  For each  ,GB   define   B G   as follows:     1 1B g g B g    

for all .g G  Then  .B B  In fact, for ,g G  we have 

         1 1 1 .B g g B g g gB g B g      
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Now, define a binary relation   on  G  as follows: for all  , ,B C G   

B C  if and only if C B  or .C B  

Obviously,   is an equivalence on  .G  Furthermore, we have the 

following lemma by direct calculations. Observe that on 
8 , j iD B B  if 

and only if 

       aaBaBaBaaB ijij  333 ,  and    ,xxBxB ij   

for all  ., 3
8 aaDx   

Lemma 6.1. The 56 candidate Rota-Baxter operators 561-BB  can be 

divided into the following 28 :-classes  

           ,,,,,,,,,,,, 556365414563432421 BBBBBBBBBBBB  

           ,,,,,,,,,,,, 251251112310459348497 BBBBBBBBBBBB  

           ,,,,,,,,,,,, 501822174716321544142113 BBBBBBBBBBBB  

           ,,,,,,,,,,,, 482835273826392453203119 BBBBBBBBBBBB  

       .,,,,,,, 5240463733305429 BBBBBBBB  

Define another binary relation   on  G  as follows: for all 

 ,, GCB   

CB   if and only if there exists an automorphism   on G  such that 

. BC   (6.1) 

Then   is also an equivalence on  .G  The following lemma lists the 

automorphisms of ,8D  which is well-known and can be proved easily. 
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Lemma 6.2. The automorphisms of 8D  are listed as follows: 

,3222

3232

1 









babababaaae

babababaaae  

,
3232

3232

2 









bbababaaaae

babababaaae  

,
3232

3232

3 









babbabaaaae

babababaaae  

,2332

3232

4 









bababbaaaae

babababaaae  

,
2323

3232

5 









babababaaae

babababaaae  

,
2323

3232

6 









bababbaaaae

babababaaae  

,3223

3232

7 









babbabaaaae

babababaaae  

.
2323

3232

8 









bbababaaaae

babababaaae  

By Lemma 6.2 and routine calculations, we have the following result. 

Observe that 

     
                  

,3232

3232
1













BbaBbaBbaBbBaBaBaBe

babababaaaeB  

for any bijective transformation   on 8D  and  .8DB   
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Lemma 6.3. The 56 candidate Rota-Baxter operators 561 -BB  on 8D  

can be divided into the following 18 :-classes  

         ,,,,,,,,,,,, 119761210854321 BBBBBBBBBBBB  

     ,,,,,,,,,,,, 323122212018161419171513 BBBBBBBBBBBB  

     ,,,,,,,,,,,, 393830273533262436342523 BBBBBBBBBBBB  

       ,,,,,,,,,,, 5350474443424140372928 BBBBBBBBBBB  

     .,,,,,,,, 565452484655514945 BBBBBBBBB  

Remark 6.4. We can obtain Lemma 6.3 by using Matlab. To this aim, 

we need the matrix representation of .8D  In fact, if we let 

,

0001

0010

0100
1000

,

0100

0010

0001
1000







































 ba  

then the subgroup of  ,4GL  generated by a and b is isomorphic to .8D  

By using this representation and corresponding procedures (see A.1 in 

Appendix), We can check whether any two candidate Rota-Baxter 

operators are -equivalent. For example, if we check 

,2222

3232











babbabaeae

babababaaaeB  

,
2222

3232











bbabbaaeae

babababaaaeR  

we only need to enter 

 2,,2,,2,,2,;3,2,,,3,2,, ^^^^^^^^ abbabbaeaeabababbaaae   

 babbabaeaeabababbaaae ,2,,2,2,,2,;3,2,,,3,2,, ^^^^^^^^   

after the cursor in Matlab. When you have entered this line, the sentence 

“B is equivalent to R” is displayed. 
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Denote the least equivalence of  G  containing   and   by .  That 

is,    in the lattice of the equivalences in  .G  In view of 

Lemmas 6.1 and 6.3, we have the following result: 

Lemma 6.5. The 56 candidate Rota-Baxter operators on 8D  can be 

divided into the following 9 -classes: 

     ,,,,,,,, 414563434221 BBBBBBBB  

 ,,,,,,,, 36342523121085 BBBBBBBB  

 ,,,,,,,, 5551494511976 BBBBBBBB  

 ,,,,,,,, 3231222119171513 BBBBBBBB  

 ,,,,,,,, 5350474420181614 BBBBBBBB  

 ,,,,,,,, 3938353330272624 BBBBBBBB  

 ,,,,,,,, 5452484640372928 BBBBBBBB  

In order to achieve our purpose, we also need to state some known 

results. 

Lemma 6.6 (Lemma 8 in [2], also see [10]). Let B be a Rota-Baxter 

operator on a group G. Then the operator on G defined by the rule that 

    1 1B g g B g   for all ,g G  

is also a Rota-Baxter operator on G. 

Lemma 6.7 (Lemma 9 in [2]). Let B be a Rota-Baxter operator on a 

group G and   be an automorphism of .G  Then  B1  is also a         

Rota-Baxter operator on .G  

Let G  be a group. According to [2], if H and L are two subgroups of 

G  such that HLG   and  ,eLH   then we call  LH ,  an exact 

pair of .G  In this case, we can define LHB ,  in  G  as follows: 

.,: 1
,

 lhlGGB LH   Moreover, we say an element B  in  G  

splitting if LHBB ,  for some exact pair  LH ,  of .G  
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Lemma 6.8 (Example 15 in [2], also see [10]). Let  LH ,  be an exact 

pair of a group .G  Then LHB ,  is a Rota-Baxter operator on .G  In this 

case, HB ker  and .Im LB   

In view of Lemmas 2.4 (1) and 6.8, we have the following lemma by 

direct calculations. 

Lemma 6.9. The exact pairs of 8D  can be listed as follows: 

           ,,,,,,,,,,,, 312322212080 NHNHNHNHNHDN  

     ;,,,,, 424033 NHNHNH  

           ,,,,,,,,,,,, 242213120402 HNHNHNHNHNHN  

     .,,,,, 083332 NDHNHN  

The corresponding splitting Rota-Baxter operators are: 

;,,,,,,,, 40372928201816143 BBBBBBBBB  

.,,,,,,,, 565453525048474644 BBBBBBBBB  

Proposition 6.10. The transformations 561-BB  mentioned above are 

all Rota-Baxter operators on .8D  

Proof. By Lemmas 6.5-6.9, to check the 56 candidate Rota-Baxter 
operators, we only need to check the following 6 candidates: 

.,,,,, 24136541 BBBBBB  (6.2) 

We can check these 6 candidates one by one certainly. But to avoid 

lengthy calculations, we can realize this verification process by using 

Matlab. By using the representation given in Remark 6.4 and 
corresponding procedures (see A.2 in Appendix), we can obtain that each 

item in (6.2) is a Rota-Baxter operator on ,8D  and so all 56 candidates 

are really Rota-Baxter operators on .8D  For example, if we check that 

  ,, 2332

3232
3

1 









babababaaae

babababaaaebabaB  
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is a Rota-Baxter operator, we only need to enter the second line 

 ,;2;3;;3;2;; abababbaaae  ^^^^  

of 1B  after the cursor in Matlab. When you have entered this line, the 

sentence “The mapping is a Rota-Baxter operator” is displayed. 

Remark 6.11. In [2, Theorem 53], it has been shown that all         

Rota-Baxter operators on 26 sporadic simple groups are necessarily 

splitting. However, by Lemma 6.9 and Proposition 6.10, there exist non-

splitting Rota-Baxter operators in .8D  

Now, we consider another equivalence on the set of Rota-Baxter 

operators in .8D  To this aim, we need the notion of skew left braces from 

[8]. 

Definition 6.12. A skew left brace is a triple  ,, G  such that  ,G  

and  ,G  are groups and 

     ,1 caabacba     

holds for all ,,, Gcba   where 1a  denotes the inverse of a in the group 

 ., G  

Bardakov and Gubarev [1] have obtained the relationship between 

skew left braces and Rota-Baxter groups. In particular, they have proved 

that Rota-Baxter groups give rise to skew left braces. 

Lemma 6.13 (Proposition 3.1 in [1]). Let  ,G  be a group and B be a 

Rota-Baxter operator on .G  For all ,, Gyx   define  xxByx B   

  .1xyB  Then  BG ,,   forms a skew left brace. In this case,  BG ,,   is 

called the skew left brace induced by the group  ,G  and the Rota-Baxter 

operator B. 
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Let R and B be two Rota-Baxter operators on a group  ., G  If we 

define BR ~  if the skew left brace  RG ,,    is isomorphic to the skew 

left brace  ,,, BG   then ~  forms an equivalence relation on the set of 

Rota-Baxter operators in  ., G  For this equivalence, we have the 

following result. 

Lemma 6.14 (Corollary 3.12 in [12]). Let R and B be two Rota-Baxter 

operators on a group  ., G  Then BR ~  if and only if there exists an 

automorphism on  ,G  such that, for all      gBgRGg  1,  lies in 

the center of  ., G  

By (6.1) and Lemma 6.14, one can obtain the following corollary: 

Corollary 6.15. Let R and B be two Rota-Baxter operators on a group 

 ., G  If ,BR   then .~ BR  In particular, if the center of G is trivial, 

then BR   if and only if .~ BR  

Since the center of 8D  is  ,, 2ae  by using Lemmas 6.2, 6.3, 6.14 and 

Corollary 6.15, we can obtain the following result by routine calculations: 

Lemma 6.16. The 56 Rota-Baxter operators 561-BB  on 8D  can be 

divided into the following 7 ~-classes: 

 ,,,, 4321 BBBB  

 ,,,,,,,, 11976121085 BBBBBBBB  

 ,,,,,,,, 2018161419171513 BBBBBBBB  

 ,,,,,,,, 5350474432312221 BBBBBBBB  

 ,,,,,,,, 5551494536342523 BBBBBBBB  

 ,,,,,,,,,,,,,,,, 54524846403729283938302735332624 BBBBBBBBBBBBBBBB  

 .,,, 56434241 BBBB  
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Remark 6.17. We can also obtain Lemma 6.16 by using Matlab. In 

fact, by using the representation given in Remark 6.4 and Matlab 

procedures (see A.3 in Appendix), we can check whether any two       

Rota-Baxter operators are ~-equivalent. For example, if we check 

,
2332

3232











babababaaae

babababaaaeB  

,3223

3232











babababaaae

babababaaaeR  

we only need to enter 

 ;3,2,,,3,2,, ^^^^ abababbaaae   

,,2,3,,3,2,, abababbaaae  ^^^^  

 ;3,2,,,3,2,, ^^^^ abababbaaae   

3,2,,,,2,3, ^^^^ abababbaaae   

after the cursor in Matlab. When you have entered this line, the sentence 

“B and R satisfy the relation ~.” is displayed. 

In the following statements, we shall list the skew left braces induced 

by 8D  and its Rota-Baxter operators 

,,,,,,, 564645441351 BBBBBBB  

respectively. By Lemmas 6.13 and 6.16, up to isomorphism, these skew 

left braces are the only skew left braces which can be induced by 8D  and 

its Rota-Baxter operators. 

Case 1. The skew left brace  
1

,,8 BD   induced by 8D  and ,1B  where 

    ,1
111

 xyBxxByx B  
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for all :, 8Dyx   

eaaabbabababa

aeaababbababa

aaeabababbaba

aaaebabababb

bababbaaaeaa

babbabaaeaaa

bbababaeaaaa

babababaaaee

babababaaaeB

23233

32322

2323

2323

23233

32322

3232

3232

3232
1



 

In this case,    .,, 88 1
 DD B  

Case 2. The skew left brace  
5

,,8 BD   induced by 8D  and ,5B  

where 

    ,1
555

 xyBxxByx B  

for all :, 8Dyx   

eaaabbabababa

aaaebabbababa

aaeabababbaba

aeaababababb

bababbaeaaaa

babbabaaeaaa

bbababaaaeaa

babababaaaee

babababaaaeB

23233

32322

2323

3232

23233

32322

2323

3232

3232
5



 

In this case,    .,, 88 5
 DD B  
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Case 3. The skew left brace  
13

,,8 BD   induced by 8D  and ,13B  

where 

    ,1
131313

 xyBxxByx B  

for all :, 8Dyx   

23233

32322

3232

3232

23233

32322

3232

3232

3232
13

aaeabababbaba

aeaababbababa

eaaabbabababa

aaaebabababb

bababbaaaeaa

babbabaaeaaa

bbababaeaaaa

babababaaaee

babababaaaeB

 

In this case,   ., 428 13
 BD   

Case 4. The skew left brace  
44

,,8 BD   induced by 8D  and ,44B  

where 

    ,1
444444

 xyBxxByx B  

for all :, 8Dyx   

23233

32322

2323

2323

32233

32322

2332

3232

3232
44

aaeabbabababa

aeaababbababa

eaaabababbaba

aaaebabababb

bbababaaaeaa

babbabaaeaaa

bababbaeaaaa

babababaaaee

babababaaaeB

 

In this case,   ., 428 44
 BD   
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Case 5. The skew left brace  
45

,,8 BD   induced by 8D  and ,45B  

where 

    ,1
454545

 xyBxxByx B  

for all :, 8Dyx   

23233

32322

2323

3232

23233

32322

2323

3232

3232
45

aaeabbabababa

aeaababbababa

eaaabababbaba

aaaebabababb

bababbaeaaaa

babbabaaeaaa

bbababaaaeaa

babababaaaee

babababaaaeB

 

In this case,    .,, 88 45
 DD B  

Case 6. The skew left brace  
46

,,8 BD   induced by 8D  and ,46B  

where 

    ,1
464646

 xyBxxByx B  

for all :, 8Dyx   

eaaabababbaba

aeaababbababa

aaeabbabababa

aaaebabababb

bababbaeaaaa

babbabaaeaaa

bbababaaaeaa

babababaaaee

babababaaaeB

32233

32322

2332

2323

23233

32322

2323

3232

3232
46



 

In this case,   ., 2228 46
 BD   
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Case 7. The skew left brace  
56

,,8 BD   induced by 8D  and ,56B  

where 

    ,1
561356

 xyBxxByx B  

for all :, 8Dyx   

eaaabababbaba

aeaababbababa

aaeabbabababa

aaaebabababb

bbababaaaeaa

babbabaaeaaa

bababbaeaaaa

babababaaaee

babababaaaeB

32233

32322

2332

3232

32233

32322

2332

3232

3232
56



 

In this case,    .,, 88 56
 DD B  

In the end of this paper, we determine so-called Rota-Baxter 

endomorphisms on .8D  Recall that a Rota-Baxter endomorphism 

(respectively, automorphism) on a group is a Rota-Baxter operator which 

is also an endomorphism (respectively, automorphism). In the sequel, we 

consider Rota-Baxter endomorphisms on .8D  The following result is 

useful. 

Lemma 6.18 (Proposition 21 in [2]). Let G  be a group. If G  has a 

Rota-Baxter automorphism, then G  is abelian. On the other hand, if B is 

an endomorphism on G  such that BIm  is an abelian subgroup of G, then 

B is a Rota-Baxter endomorphism.  

In view of the first part of Lemma 6.18 and the fact that 8D  is non-

ableian, there is no Rota-Baxter automorphism on .8D  On the other 

hand, the kernel of a Rota-Baxter endomorphism on 8D  is certainly a 
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normal subgroup of .8D  By Lemma 2.4 (1) and the discussions in 

Sections 3-5, the candidates for Rota-Baxter endomorphisms on 8D  are 

,-,- 36312621 BBBB  and .- 5641 BB  Again by using the representation 

given in Remark 6.4 and Matlab procedures (see A.4 in Appendix), we can 

show these candidates are really Rota-Baxter endomorphisms on .8D  For 

example, if we check 

,
2222

3232

21 









babbabaeae

babababaaaeB  

is an endomorphism, we only need to enter the second line 

 2;;2;;2;;2; ^^^^ abbabbaeae   

of 21B  after the cursor in Matlab. When you have entered this line, the 

sentence “The mapping is a Rota-Baxter endomorphism” is displayed. 

Let B  be an endomorphism on 8D  which is not an automorphism. 

Then BIm  is a subgroup of 8D  and ,Im 8DB   and so BIm  is abelian 

by Lemma 2.4 (1). By the second part of Lemma 6.18, B  is a Rota-Baxter 

endomorphism on .8D  Thus non-automorphism endomorphisms are 

exactly Rota-Baxter endomorphisms on .8D  It is obvious that the 

composition of any two non-automorphism endomorphisms is again a 

non-automorphism endomorphism on .8D  In view of the statements in 

the previous paragraph and Lemma 6.2, we have the following corollary: 

Corollary 6.19. The semigroup of endomorphisms on 8D  is 

 ,,,;,,;,,;,,End 564136312621618 BBBBBBD    

which contains 34 elements, and the set of Rota-Baxter endomorphisms on 

8D  forms a 28-element subsemigroup of .End 8D  
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Remark 6.20. We observe that the set of bijective Rota-Baxter 

operators  

 ,,,, 1221 BBBU   

does not form a subgroup of the symmetric group  8Sym D  on .8D  In 

fact, U does not contain the identity permutation on .8D  

Now we summarize our results as a theorem. 

Theorem 6.21. The set of Rota-Baxter operators on 8D  is 

 5621 ,,, BBB   in which 

,,,;,,;,, 564136312621 BBBBBB   

are 28 Rota-Baxter endomorphisms and 

;,,,,,,,, 40372928201816143 BBBBBBBBB  

,,,,,,,,, 565453525048474644 BBBBBBBBB  

are 18 splitting Rota-Baxter operators. 

We end the paper with some perspective and outstanding questions. 

In this paper, we have determined and classified all the Rota-Baxter 

operators on 8D  by some known facts on Rota-Baxter operators of groups 

in [2] and [10] together with necessary Matlab procedures. From the 

results obtained in this paper, we can recognize that the construction of 

Rota-Baxter operators on a group is complicated even if the construction 

of the corresponding group is relative simple. In the present paper, we 

have only considered the group .8D  This suggests the following problem 

naturally. 

Problem 6.22. How to generalize the results in this paper to all 

dihedral groups ?2nD  
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By the comments before Corollary 6.19, any non-automorphism 

endomorphism on 8D  is a Rota-Baxter operator. In fact, all finite inner 

abelian groups (Recall that a group is called inner abelian if any proper 

subgroup of this group is abelian) have this property by Lemmas 2.1 and 

6.18. This suggests the following problem. 

Problem 6.23. How to characterize those groups in which every non-

automorphism endomorphism is a Rota-Baxter operator? 

In the statements following Remark 6.17, up to isomorphism we have 

determined all 7 skew left braces which can be induced by 8D  and its 

Rota-Baxter operators. By using GAP ([13]), one can know that there are 

12 skew left brace structures over 8D  up to isomorphism. Hence, there 

are now 5 skew left brace structures on 8D  that cannot be obtained from 

Rota-Baxter operators. So the following problem seems meaningful. 

Problem 6.24. Determine all 5 skew left brace structures on 8D  that 

cannot be obtained from Rota-Baxter operators. 
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A. Appendix 

A.1. The codes to check whether two candidate Rota-Baxter 

operators are -equivalent 

___________________________________________________________________ 

e=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 

a=[0 0 0 1;1 0 0 0;0 1 0 0;0 0 1 0]; 

b=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0]; 

A=[e,a,a^2,a^3,b,b*a,b*a^2,b*a^3]; 

T=[e,a,a^2,a^3,b,b*a,b*a^2,b*a^3; 

e,a,a^2,a^3,b*a,b*a^2,b*a^3,b; 

e,a,a^2,a^3,b*a^2,b*a^3,b,b*a; 

e,a,a^2,a^3,b*a^3,b,b*a,b*a^2; 

e,a^3,a^2,a,b,b*a^3,b*a^2,b*a; 

e,a^3,a^2,a,b*a,b,b*a^3,b*a^2; 

e,a^3,a^2,a,b*a^2,b*a,b,b*a^3; 

e,a^3,a^2,a,b*a^3,b*a^2,b*a,b]; 

B=input (‘Please enter operator B.’); 

R=input (‘Please enter operator R.’); 

c=[1;5;9;13;17;21;25;29]; 

u=0; 

Z=zeros (4,32); 

G= [A;Z]; 

H= [A;Z]; 

for i=1:8 

F= [A;T(c(i,:):c(i,:)+3,1:32)]; 

for j=1:8 
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for k=1:8 

if F(5:8,c(j,:):c(j,:)+3)==A(:,c(k,:):c(k,:)+3) 

G(5:8,c(j,:):c(j,:)+3)=B(5:8,c(k,:):c(k,:)+3); 

else 

end 

end 

end 

for b=1:8 

for d=1:8 

if R(5:8,c(b,:):c(b,:)+3)==A(:,c(d,:):c(d,:)+3) 

H(5:8,c(b,:):c(b,:)+3)=F(5:8,c(d,:):c(d,:)+3); 

else 

end 

end 

end 

if G= =H 

u=u+1; 

else 

end 

end 

if u>0 

disp('B and R are equivalent.') 

else 

disp ('B and R are not equivalent.') 

end 

___________________________________________________________________ 
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A.2. The codes to check that a mapping is a Rota-Baxter operator 

___________________________________________________________________ 

e=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 

a=[0 0 0 1;1 0 0 0;0 1 0 0;0 0 1 0]; 

b=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0]; 

A=[e;a;a^2;a^3;b;b*a;b*a^2;b*a^3]; 

B=input (‘Please enter the matrix composed by the images of each element 
corresponding to matrix A.’); 

c=[1;5;9;13;17;21;25;29]; 

O=zeros(8,8); 

R=ones(8,8); 

for i=1:8 

for j=1:8 

A(c(i,:):c(i,:)+3,:)*B(c(i,:):c(i,:)+3,:)*A(c(j,:):c(j,:)+3,:) 

*inv(B(c(i,:):c(i,:)+3,:)); 

for k=1:8 

if A(c(i,:):c(i,:)+3,:)*B(c(i,:):c(i,:)+3,:)*A(c(j,:):c(j,:)+3,:) 

*inv(B(c(i,:):c(i,:)+3,:))==A(c(k,:):c(k,:)+3,:) 

s=k; 

else 

end 

end 

if B(c(i,:):c(i,:)+3,:)*B(c(j,:):c(j,:)+3,:)==B(c(s,:):c(s,:)+3,:) 

O(i,j)=1; 

else 

end 

end 

end 
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if O= =R 

disp(‘The mapping is a Rota-Baxter operator.’) 

else 

disp(‘The mapping is not a Rota-Baxter operator.’) 

end 

___________________________________________________________________ 

A.3. The codes to check whether two Rota-Baxter operators are   

~-equivalent 

___________________________________________________________________ 

e=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 

a=[0 0 0 1;1 0 0 0;0 1 0 0;0 0 1 0]; 

b=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0]; 

A=[e,a,a^2,a^3,b,b*a,b*a^2,b*a^3]; 

T=[e,a,a^2,a^3,b,b*a,b*a^2,b*a^3; 

e,a,a^2,a^3,b*a,b*a^2,b*a^3,b; 

e,a,a^2,a^3,b*a^2,b*a^3,b,b*a; 

e,a,a^2,a^3,b*a^3,b,b*a,b*a^2; 

e,a^3,a^2,a,b,b*a^3,b*a^2,b*a; 

e,a^3,a^2,a,b*a,b,b*a^3,b*a^2; 

e,a^3,a^2,a,b*a^2,b*a,b,b*a^3; 

e,a^3,a^2,a,b*a^3,b*a^2,b*a,b]; 

B=input (‘Please enter operator B.’); 

R=input (‘Please enter operator R.’); 

c=[1;5;9;13;17;21;25;29]; 

u= zeros (8); 

p=0; 

q= zeros (1,8); 
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Z=zeros (4,32); 

E= zeros (1,8); 

I=ones (1,8); 

G=[A;Z]; 

H=[A;Z]; 

for r=1:8 

F=[A;T(c(r,:):c(r,:)+3,1:32)]; 

for i=1:8 

for j=1:8 

if R(5:8,c(i,:):c(i,:)+3)==A(:,c(j,:):c(j,:)+3) 

H(5:8,c(i,:):c(i,:)+3)=F(5:8,c(j,:):c(j,:)+3); 

else 

end 

end 

end 

for k=1:8 

for s=1:8 

if F(5:8,c(k,:):c(k,:)+3)==A(:,c(s,:):c(s,:)+3) 

G(5:8,c(k,:):c(k,:)+3)=B(5:8,c(s,:):c(s,:)+3); 

else 

end 

end 

end 

for t=1:8 

P= inv(G(5:8,c(t,:):c(t,:)+3))* H(5:8,c(t,:):c(t,:)+3); 

if P==e 
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u(r,t)=1; 

else 

end 

if P==a^2 

u(r,t)=1; 

else 

end 

end 

if u(r,1:8)==I 

q(:,r)=r; 

p=p+1; 

else 

end 

end 

if p>=1 

disp (‘B and R satisfy the relation ~.’) 

else 

disp (‘B and R do not satisfy the relation ~.’) 

end 

___________________________________________________________________ 
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A.4. The codes to check that a Rota-Baxter operator is an 

endomorphism 

___________________________________________________________________ 

e=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 

a=[0 0 0 1;1 0 0 0;0 1 0 0;0 0 1 0]; 

b=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0]; 

A=[e;a;a^2;a^3;b;b*a;b*a^2;b*a^3]; 

B=input (‘Please enter the matrix composed by the images of each element 

corresponding to matrix A.’); 

c=[1;5;9;13;17;21;25;29]; 

O=zeros(8,8); 

R=ones(8,8); 

for i=1:8 

for j=1:8 

C=A(c(i,:):c(i,:)+3,:)*A(c(j,:):c(j,:)+3,:); 

D=B(c(i,:):c(i,:)+3,:)*B(c(j,:):c(j,:)+3,:); 

for k=1:8 

if C= =A(c(k,:):c(k,:)+3,:) 

t=k; 

else 

end 

end 

if D= =B(c(t,:):c(t,:)+3,:) 

O(i,j)=1; 

else 

end 
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end 

end 

if O= =R 

disp (‘The mapping is a Rota--Baxter endomorphism.’) 

else 

disp (‘The mapping is not a Rota--Baxter endomorphism.’) 

end 

___________________________________________________________________ 


