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Abstract 

Copulas are multi-dimensional functions used to describe the dependence or 
association between variables separately from their marginal distributions. 
Among the numerous types of copulas, the strict Archimedean copulas are the 
most popular. However, the same short list of Archimedean copulas always 
attracts attention; a lot of strict Archimedean copulas are often discarded 
because they have limited tail dependence or insufficient flexibility in their 
shapes. In this article, we attempt to rehabilitate some of the understudied 
strict Archimedean copulas by making their properties more attractive via new 
functional modifications depending on several parameters. For each of them, the 
main contribution is theoretical; it consists of determining the range of 
admissible values for the involved parameters. Then, we concentrate on the two 
that show the greatest promise, which have the advantages of simple 
expressions and adaptable dependence qualities as a result of various tuning 
configurations. The first one extends the famous Clayton copula and depends on 
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three complementary parameters. It has the particularity of allowing negative 
dependence, which was not the case with the original Clayton copula. The 
second one can be presented as a new two-parameter trigonometric copula. We 
investigate several of their main properties, such as symmetry, tail dependence, 
and correlation; the median correlation and tau of Kendall are considered. The 
theoretical results are supported by graphics and numerical tables. 

1. Introduction 

The copula approach was developed in probability theory by Abe 
Sklar, an American mathematician, in the 1950s and 1960s (see [28]). In 
a few words, this approach allows the understanding of multi-
dimensional distributions. What is commonly called “copulas” can be 
presented as multi-dimensional functions that separate the modelling of 
the margins from the dependence structure of a multi-dimensional 
distribution. They are helpful in situations where the marginal 
distributions are known but the dependence structure is not. From a 
more statistical viewpoint, copulas can also be used to model non-linear 
dependence structures and simulate data from complex multi-
dimensional distributions. They have applications in finance, actuarial 
science, medicine, biology, informatics, and environmental science, 
among other fields. Hence, the copula approach is crucial for modelling 
and analyzing multi-dimensional data. The main information on this 
topic can be found in [20], [22], [16] and [23]. For significant recent 
developments, the following list of references can be consulted: [3], [5], 
[1], [18], [27], [11], [6], [10], [14], [15] and [8]. Applications with modern 
data analysis problems can be found in [2], [31] and [26]. 

There are many types of copulas that are used in probability and 
statistics. Among them, we may mention the Gaussian and Student type 
copulas, which are popular choices for modelling financial data; they 
allow for easy modelling of tail dependence; the Farlie-Gumbel-
Morgenstern (FGM) type copulas, which are appreciated for their 
mathematical simplicity and their controlled perturbed action on the 
independence copula; and the Archimedean copulas, which can be viewed 
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as an easy, manageable family of copulas designed for modelling non-
linear dependence structures. As a matter of fact, each copula has its own 
strengths and weaknesses, and the choice of which copula to use depends 
on the specific problem at hand. 

Archimedean copulas are frequently used in multi-dimensional 
statistical analysis due to their adaptability, simplicity, and the fact that 
most mathematical software supports them. Indeed, the most popular 
Archimedean copulas are implemented in free packages in R (with the 
eponymous package copula), Python, Matlab, etc. They are based on the 
idea of a generator function, which makes it possible to build numerous 
different kinds of copulas with various tail dependences and correlation 
structures. To select the best copula from a list fixed in advance, a 
thorough analysis of the data is required. It is crucial to keep in mind 
that the choice of copula ultimately depends on the particular problem at 
hand. Anyway, in the family of the Archimedean copulas, it is surprising 
to see that the same short list of members is often considered. This list is 
composed by the Gumbel-Hougaard, Ali-Mikhail-Haq, Frank, Joe, and 
Clayton copulas. See, for instance, the studies in [12], [13], [4] and [32]. 
However, many of the other Archimedean copulas might be suitable for 
different uses and data sets. In particular, the thirteen copulas presented 
in Chapter 4 of [22] are the most well-known among the group of “strict” 
Archimedean copulas, but a lot of them have been unfairly overlooked. 
Indeed, they can still be more flexible with certain mathematical 
modifications to gain competitiveness against others. To this end, a 
theoretical work must come before everything. The first steps in this 
sense have been taken in [21], where it is indicated how to modify a 
generator function with scale and shape parameters to extend any of the 
existing Archimedean copulas. Beyond such a standard transformation, 
the study in [9] proposed an extension of the Clayton copula by the use of 
an additional power function in the generator function. With two 
parameters, under some interdependence conditions on these 
parameters, the obtained copula reveals itself to be a suitable alternative 
to the Clayton copula. It allows negative dependence, among other 
notable properties. On the other hand, the study in [7] revisited the 
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Nelsen strict Archimedean copula numbers 10 and 17, known as the 
NSA10 and NSA17 copulas. More precisely, extensions of them have been 
elaborated with the addition of one parameter in each of them. The 
presence of this parameter enhanced the range of values of the other 
involved parameters and allowed the reach of new levels in terms of 
correlation ranges. 

This article provides the following theoretical contributions to this 
subject: In the first part, we generalize four generator functions by 
adding new parameters using various schemes, including the addition or 
composition of power functions. The baseline generator functions taken 
as references correspond to (a) the strict version of the Clayton generator 
function (see [22, Equation (4.2.1)]), (b) the Nelsen strict generator 
function number 10 (see [22, Equation (4.2.10)]), (c) the Nelsen strict 
generator function number 19 (see [22, Equation (4.2.19)]), and (d) the 
cosecant strict generator function in [24] (with )1=θ  (see [24, page 41]). 

We determine the possible values of the involved parameters, making our 
generalized generator functions valid from a mathematical viewpoint. 
The established strict generator functions are able to produce numerous 
innovative Archimedean copulas with different targets in terms of 
modelling. In the second part, in order to support this claim, we focus on 
the two most promising copulas, which have the features of having a 
simple expression and attractive dependence properties. The first one 
generalizes the Clayton copula and depends on three parameters. The 
second one is a new two-parameter trigonometric copula, also depending 
on a tuning angle parameter. For each of them, we examine the effects of 
the involved parameters, the symmetry (diagonal and radial), lower and 
upper tail dependences, and correlation properties. We mainly 
concentrate on the medial correlation and a benchmark measure 
established by Kendall: the tau of Kendall. In particular, in contrast to 
the original Clayton copula, which can only model positive dependency, 
the proposed generalized Clayton copula has the notable property of 
permitting negative dependence. When appropriate, several figures and 
tables are offered to support the theory.  
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The rest of the article is organized as follows: Section 2 presents the 
main results on the generalized strict generator functions, along with the 
detailed proofs. Section 3 completes the previous section by describing 
the two strict Archimedean copulas mentioned. The article ends with a 
conclusion in Section 4. 

2. Generalized Strict Generator Functions 

This section presents four new generalized strict generator functions, 
which are the main theoretical results of the article. Before that, the 
precise definition of a strict generator function needs to be recalled. 

2.1. Definitions 

The mathematical requirements of a valid strict generator function 
are detailed below. 

Definition 1. A function ( ) [ ],1,0, ∈η uu  is said to be a strict 

generator function if and only if the following conditions hold: 

C1: Zero value: ( ) ,01 =η  

C2: Divergence: ( ) ,lim 0 +∞=η→ uu  

C3: Strict decrease: for any [ ) ( ) 0,1,0 <η′∈ uu  and ( ) ,01 ≤η′  

C4: Convexity: for any [ ] ( ) .0,1,0 ≥η′′∈ uu  

The notion of a strict generator function is at the basis of the 
definition of strict Archimedean copulas; any strict Archimedean copula 
is defined by the addition and composition of a strict generator function. 
Further details will be given in Section 3, mainly in Definition 2.  

As a first example, the Clayton strict generator function is defined by 

( ) [ ],1,0,1 ∈−=η − uuu b  with ,0>b  which is a slight modification of 

the one in [22, Equation (4.2.1)]. The corresponding strict Archimedean 
copula is known to be diagonally symmetric, invariant under truncation, 
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and to have a modulable lower tail dependence. It is commonly used in 
risk management and financial modelling to assess the joint behavior of 
variables, such as credit risk and extreme events. Except in [9], attempts 
to generalize or extend it are rare.  

The next result presents a generalized version of this generator 
function involving three parameters. Conditions on these parameters are 
required, but we will see later that they are easily manageable. 

Proposition 2.1. The following function defines a new strict generator 
function: 

( ) ( ) ( ) [ ],1,0,11 ∈−−−=η − uaauu ccb   (1) 

for ,0,0 >> cb  and a such that 

.1
1,1max 






+
+≥ bc

ba  

Proof. The proof is centered around the four conditions presented in 
Definition 1. 

For C1: We clearly have 

( ) ( ) ( ) .01111 =−−−×=η − ccb aa  

For C2: Since ,0,1 >≥ ba  and ,0>c  and ,lim 0 +∞=−
→

b
u u  we 

have 

( ) [( ) ( ) ] .11limlim
00

+∞=−−−=η −
→→

ccb
uu

aauu  

For C3: For any [ ),1,0∈u  we have 

( ) ( ) .1 11 −−−− −−=η′ cbb auabcuu  

Since ,0,1 >≥ ba  and ,0>c  it is clear that ( ) .0<η′ u  Moreover, it is 

obvious that ( ) ( ) .011 1 ≤−−=η′ −caabc  
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For C4: For any [ ],1,0∈u  we have 

( ) ( ) ( )
( )

.11 22 b

b
cb

uau
ubaabcauabcu

−

+−+−=η′′ −  

Since ,0,0 >> cb  and ( ) ( ),1/1 ++≥ bcba  we have 

( ) ( ) ( ) ( ) .01111 ≥+−+=+−+≥+−+ bbcabaabcubaabc b  

Since the other main sub-terms are non-negative, we have ( ) .0≥η′′ u  

This completes the proof; the considered function ( )uη  is validated as 

a strict generator function.   

Based on Proposition 2.1 and Equation (1), the Clayton strict 
generator function is obtained with 1=a  and .1=c  Thus, our 
generalization is motivated by the presence of a and ,c  which can have 
significant effects on the shapes and dependence properties of the copula. 
This aspect will be developed in detail in Section 3. In particular, we will 
show that, in contrast to the original Clayton copula, which can only 
model positive dependency, the proposed generalized Clayton copula has 
the unique property of permitting negative dependence. 

An important remark is that, if ,1≥c  then ,11 +≥+ bbc  and the 
condition on a simply becomes .1≥a  In this case, the assumptions on 
the parameters become ,0,1 >≥ ba  and ,1≥c  making them completely 

independent. This fact is clearly attractive from a statistical perspective. 
On the other hand, for ( ),1,0∈c  we have ( ) ( ).11 ++≥ bcba  We will 

see later that this case is important to make the corresponding 
Archimedean copula able to capture the negative dependence. 

Let us now focus on the Nelsen strict generator function number 10 
(see [22, Equation (4.2.10)]). It is mainly defined with logarithmic and 

power functions, and, more precisely, ( ) ( ) [ ],1,0,12log ∈−=η − uuu a  

with .0>a  This special strict generator has found theoretical 
developments in [7] and practical use in [17], mainly. 
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The result below uses a power function to explore a new 
generalization. 

Proposition 2.2. The following function defines a new strict 
generator function: 

( ) ( ) ( ) [ ],1,0,121log ∈



 +−+=η ubbu
u

u a  (2) 

for [ ],0,1−∈b  and 

( ) ( ) .112
2

≤≤
++

abb
b  

Proof. The four requirements listed in Definition 1 serve as the 
foundation for the proof. 

For C1: It is clear that 

( ) ( ) ( ) ( ) .01log112
1
1log1 ==



 +−×+×=η bba  

For C2: Since ,0>a  we have ( ) ,2lim 0 +∞=+→
a

u ubu  implying 

that 

( ) ( ) ( ) ( ) .loglim121loglimlim
000

+∞=−=



 +−+=η

→→→
xabbu

u
u

xauu
 

For C3: For any [ ),1,0∈u  we have 

( ) ( )
[ ( ) ]

.
12

21
buubu

aabuu a ++−

−−=η′  

Since ( ]1,0∈a  and [ ],0,1−∈b  we have ( ) ( )1212 +−≥++− bbuub a  

,01 >=+ b  and ( ) ,01 ≤− abu  implying that ( ) .0<η′ u  On the other 

hand, we have ( ) [ ( ) ] [ ( ) ] .012211 ≤++−−−=η′ bbaab  
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For C4: For any [ ],1,0∈u  with the use of multiple differentiation 

rules, we have 

( ) ( ) ( ) ( )[ ]
[ ( ) ]

.
12

441211
22

2222

buubu
ubaabuabuaubauabu a

a

++−

−++++−+−
=η′′  

We have 

( ) ( ) ( )[ ] 2222 441211 ubaabuabuaubauab a −++++−+−  

( ) ( ) ( ) ( ) 22122 4411211 ubaabuuaabuaabbuab aa −++++−−++= +  

( ) ( ) ( ) ( ) ( ) 221 14112114 ubaabuuaabuaabba aa −−+++−−++= +  

( ) ( ) ( ) ( ) ( ) 214112114 baabaabaabba −−+++−−++≥  

( ) ( ) ( )12232 222 ++−−++= bbabbba  

( )[ ( ) ( ) ].121 2bbbaa −++−=  

 For [ ( ) ( )[ ] ],1,122 ++∈ bbba  we have ( ) ( ) ,012 2 ≥−++ bbba  

implying that ( ) .0≥η′′ u  This completes the proof; it is verified that the 

function under consideration, ( ),uη  is a strict generator function.   

Based on Proposition 2.2 and Equation (2), the Nelsen strict 
generator function number 10 is obtained with .0=b  Thus, the presence 
of b allows for more flexibility by modulating the term u into the 
logarithmic term. It is worth noting that the proposed generalization is 
different to the one in [7], with a new power function activation. 

Let us now put the light on another unexplored function: the Nelsen 
strict generator function number 19 (see [22, Equation (4.2.19)]). It is 
given by ( ) ( ) ( ) [ ],1,0,expexp ∈−=η uauau  with .0>a  It has found a 

practical interest in [17]. 
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Proposition 2.3. The following function defines a new strict generator 
function: 

( ) ( ) ( ) [ ],1,0,exp1exp ∈+−



 +=η ubabuauu c  (3) 

for ,0>a  and either: 

H1: 0≤b  and [ ],2,1∈c  

H2: 0>b  and .1≥c  

Proof. The four conditions listed in Definition 1 are the focal point of 
the proof. 

For C1: Under H1 or H2, it is clear that 

( ) ( ) ( ) .0exp11
1exp1 =+−



 ×+=η baba c  

For C2: Under H1 or H2, since ( ) ,lim 0 +∞=+→ ubua c
u  we have 

( ) ( ) ( ) .exp1explimlim
00

+∞=






 +−



 +=η

→→
babuauu c

uu
 

For C3: For any [ ),1,0∈u  we have 

( ) [ ( ) ] ( ) .1exp11
2 



 ++−−=η′ cc buauaucb

u
u  

For ( ) ,01 ≥− cb  which is the case under H1 or H2, we have ( ) +− cucb 1  

,0≥a  implying that ( ) .0<η′ u  Furthermore, it is clear that 

( ) −=η′ 1 [ ( ) ] ( ) .0exp1 ≤++− baacb  

For C4: For any [ ],1,0∈u  we get 

( ) { ( ) [( ) ] ( )uaaaucucb
u

u c 22211
4 +++−−=η′′  

( ) } ( ) .1exp1 222




 +−+ cc buauucb  
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For ( ) 01 ≥− cb  and ,02 ≥− c  which is the case under H1 or H2, we 

have ( ) [( ) ] ,0221 ≥+−− aucucb c  implying that ( ) .0≥η′′ u  

This end the proof; all the conditions are satisfied, ( )uη  is a valid 

strict generator function.   

Based on Proposition 2.3 and Equation (3), the Nelsen strict 
generator function number 19 is obtained with .0=b  Thus, the presence 

of b allows for more flexibility by modulating the power function ,cu  and 

the exponent c tunes this power function. To the best of our knowledge, it 
is the first attempt at a non-trivial parametric generalization of the 
Nelsen strict generator function number 19. 

On the other hand, beyond the standard constructions, the 
trigonometric strict generator functions and the corresponding 
Archimedean copulas have received some interest. The first work 
dedicated to this was the PhD thesis [24], followed by [29]. By leveraging 
the flexibility of trigonometric functions, these copulas enable a 
comprehensive analysis of complex relationships and are particularly 
relevant in fields such as meteorology, finance, and signal processing. 

The case for the cosecant strict generator function in [24] (with 
)1=θ  is of particular interest (see [24, page 41]). In the following 

proposition, we develop a parametric generalization of it. 

Proposition 2.4. The following function defines a new strict 
generator function: 

( )
[ ( ) ] ( ) ( ) [ ],1,0,cos1

1
cos1cos

1 ∈
−

−
−−

=η uaaua
u b  (4) 

for ( ]2,0 π∈a  and .1≥b  

Proof. The proof is centered around the four conditions presented in 
Definition 1. 
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For C1: Since ( ) ,10cos =  it is clear that 

( )
[ ( ) ] ( ) ( ) .0cos1

1
cos11cos

11 =
−

−
−−

=η aaa b  

For C2: Since [ ( ) ] ( ),cos1coslim 0 aua b
u =−→  we have 

( )
[ ( ) ] ( ) ( ) .cos1

1
cos1cos

1limlim
00

+∞=












−
−

−−
=η

→→ aaua
u buu

 

For C3: For any [ ),1,0∈u  we have 

( ) ( ) [ ( ) ]
{ [ ( ) ] ( )}

.
cos1cos

1sin1
2

1

aua
uauabu b

bb

−−

−−−
=η′

−
 

We have [ )1,01 ∈− u  and { [ ( ) ] ( )} .0cos1cos 2 ≥−− aua b  Since 

( ]2,0 π∈a  and ,1≥b  we have [ ( ) ] .01 >− bua  This implies that 

( ) .0<η′ u  Moreover, it is clear that ( ) .01 =η′  

For C4: For any [ ],1,0∈u  we have 

( ) ( ) [ ( ) ]
{ [ ( ) ] ( )}

( ) { [ ( ) ]}
{ [ ( ) ] ( )}3

22222

2

2222

cos1cos
1sin12

cos1cos
1cos1

aua
uauba

aua
uaubau b

bb

b

bb

−−

−−
+

−−

−−
=η′′

−−
 

 ( ) ( ) [ ( ) ]
{ [ ( ) ] ( )}

.
cos1cos

1sin11
2

2

aua
uaubba

b

bb

−−

−−−
+

−
 

We have [ ]1,01 ∈− u  and { [ ( ) ] ( )} .0cos1cos 2 ≥−− aua b  Since 

( ]2,0 π∈a  and ,1≥b  we have [ ( ) ] ( ),cos1cos,01 auab b ≥−≥−  

[ ( ) ] 01sin >− bua  and [ ( ) ] .01sin >− bua  All the main being non-

negative, we obtain ( ) .0≥η′′ u  

This finishes the proof; ( )uη  is effectively a strict generator     

function.   
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Based on Proposition 2.4 and Equation (4), the cosecant strict 
generator function in [24] (with )1=θ  is obtained with 2π=a  and 

.1=b  We thus innovate by making it more flexible by introducing a and 
,b  which have the advantage of being independent between them. 

The rest of the study examines two simple, strict Archimedean 
copulas that can be derived from our findings. 

3. Two New Copulas 

The aim of this section is to show how the findings elaborated in 
Section 2 can be applied in a copula setting. We select only two copulas 
based on their simplicity, originality, and potential applicability. The 
study remains, however, mainly theoretically oriented. 

3.1. Strict Archimedean copula 

First, we must recall the exact connection between a strict generator 
function and the associated strict Archimedean copula. This is done in 
the definition below. 

Definition 2. The strict Archimedean copula related to a strict 
generator function ( )uη  is defined by 

( ) ( ) ( )[ ] ( ) [ ] ,1,0,,, 21 ∈η+ηη= − yxyxyxC   (5) 

where ( )u1−η  denotes the inverse function of ( ).uη  

Hence, if ( )uη  is a strict generator function of moderate complexity, 

and with an explicit ( ),1 u−η  we define a quite manageable strict 

Archimedean copula. With this in mind, and the findings of Section 2, we 
focus on the strict generator functions defined in Equations (1) and (4). 

The two others are not considered because ( )u1−η  has an analytical 

expression only for very specific values of the parameters, which makes 
them less manageable, despite some interest. 
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3.2. A generalized Clayton copula 

The Clayton copula is commonly used to model positive dependence 
and is characterized by its lower tail dependence. In this portion, based 
on Equation (1), we develop a three-parameter generalization of it, 
beginning with the result below. 

Proposition 3.1. The following function defines a valid strict 
Archimedean copula: 

( ) [( ) ( ) ( ) ]{ } ,1111,
111 bcccbcbb aayaxayxC
−−− −−−+−+=  

( ) [ ] ,1,0, 2∈yx   (6) 

for ,0,0 >> cb  and a such that 

.1
1,1max 






+
+≥ bc

ba  

Proof. The inverse function of the strict generator function ( )uη  in 

Equation (1) is obtained by developing the following equivalence: 

( ) ( )vuvu 1−η=⇔=η  for any [ ].1,0∈u  The step-by-step development 

is as follows: 

 ( ) ( ) ( ) vaauvu ccb =−−−⇔=η − 11  

( ) ( )ccb avau 11 −+=−⇔ −  

[ ( ) ] ccb avau 111 −++=⇔ −  

[ ( ) ]{ } .11
111 bccb avau
−

−++=⇔  

Therefore, we have 

( ) [ ( ) ]{ } .0,11
1111 ≥−++=η
−− vavav

bccb  
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Owing to Definition 2, the corresponding strict Archimedean copula is 
obtained as 

( ) ( ) ( )[ ]yxyxC η+ηη= −1,  

[( ) ( ) ( ) ]{ } .1111
111 bcccbcbb aayaxa
−−− −−−+−+=  

The desired copula is obtained, ending the proof.   

The Clayton copula is obtained by taking 1=a  and 1=c  in 
Equation (6). Let us call the copula in Equation (6) the generalized 
Clayton (GClay) copula. To our knowledge, it is the first three-parameter 
generalization of the Clayton copula with a quite implementable 
representation. As for any (absolutely continuous) copula, one can     
prove that it satisfies ( ) ( ) ( ) ( ) ,,1,1,,0,00, yyCxxCyCxC ====  and 

( ) ( ) .0,2 ≥∂∂∂ yxyxC  

The shapes possessed by a copula determine the type of dependence 
exhibited by the random variables it models. With this in mind, Figure 1 
displays the contour shapes of the GClay copula for various values of 

,, ba  and .c  The software R is used (see [25]). 

 

 

 

 

 



CHRISTOPHE CHESNEAU 64

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 1. Plots of the contour shapes of the GClay copula for (a) ,1=a  
,1,1.0 == cb  (b) ,5.1,5.1,5.1 === cba  (c) 2,5.0,2 === cba  and 

(d) .5,2,5 === cba  
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Diverse contour shapes are observed, including round and almost 
squared forms depending on the values of the parameters. This 
illustrates the versatility of the GClay copula. 

The corresponding GClay copula density is given as 

( ) ( )
( ) ( )

( ) ( )cbcb
bb

b
ayax

yaxaxy
ayxCyxyxc 11,,

212
−−

−−
=

∂∂
∂= −−

+
 

[( ) ( ) ( ) ] 21111 −−− −−−+−× cccbcb aayax  

[( ) ( ) ( ) ]{ } 211 1111
−−−− +−−−+−×

bcccbcb aayax  

[( ) ( ) ( ) ]{ cccbcb aayax 1111 −−−+−× −−  

[( ) ( ) ( ) ]( )},1111 1 −+−−−+−+ −− caayaxcb cccbcb  

( ) [ ] .1,0, 2∈yx  

More versatile are the shapes of this function, and more adaptable is the 
dependence structure of the copula. To get an idea of this aspect, Figure 2 
displays the shapes of the GClay copula density for various values of 

,, ba  and .c  
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2. Plots of the shapes of the GClay copula density for (a) 
,1,1.0,1 === cba  (b) ,5.1,5.1,5.1 === cba  (c) ,2,5.0,2 === cba  

and (d) .5,2,5 === cba  
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The GClay copula density demonstrates a grant contour shape 
diversity, illustrating the interest of the proposed dependence model. 

On the other hand, the survival GClay copula is obtained as 

( ) ( )yxCyxyxC −−+−+= 1,11,ˆ  

{[ ( ) ][ cbb xaayx 1111 1 −−++−+= −  

[ ( ) ] ( ) } ] ( ) [ ] .1,0,,111 211 ∈−−−−+
−− yxaya

bcccb  

As the GClay copula, the survival GClay copula adds a new three-
parameter copula to the body of knowledge. 

The GClay copula is obviously diagonally symmetric. However, since 

there exists ( )yx,  such that ( ) ( ),,,ˆ yxCyxC =/  the GClay copula is not 

radially symmetric. 

The Fréchet-Hoeffding bounds can be applied. Hence, for any 

( ) [ ] ,1,0, 2∈yx  the GClay copula satisfies the min-max-inequalities: 

( ) ( ) ( ),,min,0,1max yxyxCyx ≤≤−+  i.e., 

( ) [( ) ( ) ( ) ]{ } bcccbcbb aayaxayx
111 11110,1max
−−− −−−+−+≤−+  

( ).,min yx≤  

These two-dimensional inequalities can be thought of as standalone 
multivariate analysis tools that are not limited to the copula topic. 

Using standard limit techniques, the lower tail dependence 
parameter of the GClay copula is calculated as 

( ) [ ( ) ( ) ]{ }
x

aaxa
x

xxC
bcccbb

xxL

111

00
1121lim,lim

−−

→→

−−−+
==λ  

  ( ).2 1 bc−=  
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Hence, the GClay copula has a lower tail dependence depending on b and 
c. By putting 1=a  and ,1=c  we refined the well-known lower tail 
dependence result for the Clayton copula. 

The upper tail dependence parameter follows as 

( )
x

xxCx
xU −

+−
=λ

→ 1
,21lim

1
 

 [ ( ) ( ) ]{ } .01
112121lim

111

1
=

−
−−−++−

=
−−

→ x
aaxax

bcccbb

x
 

As a result, the GClay copula has no upper tail dependence. 

The medial correlation of the GClay copula is 

12
1,2

14 −




= CM  

[ ( ) ( ) ]{ } .1112214
111 −−−−+=
− bcccbb aaa  

The roles of ,, ba  and c are relatively complex, but from a computational 

standpoint, the medial correlation is quite doable. A numerical study of 
M  reveals that it can be negative, meaning that the GClay copula is also 
suitable to model negative dependence. This fact will be developed in 
more depth below with the tau of Kendall. 

For any strict Archimedean copula with a strict generator function 
( ),uη  the general definition of the tau of Kendall is 

( )
( ) .41

1

0
duu

u
η′
η+= ∫τ   (7) 

In the setting of the GClay copula, we obtain 

( ) ( )
( )

.
1

1141 11

1

0
du

auabcu
aau

cbb

ccb

−−−−

−

−

−−−
−= ∫τ  

Due to its great level of complexity, it cannot be further improved 
analytically. 



 

 

Table 1 presents some of its numerical values for various values of ba,  and c  satisfying 

0,1 >≥ ba  and .1≥c  

Table 1. Values of the tau of Kendall of the GClay copula for selected values of ba,  and :c  the 

case 1≥c  

→=a  1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

2,5.0 == cb  0.6 0.5166 0.4776 0.4531 0.4361 0.4234 0.4137 0.4058 0.3994 0.394 0.3895 

5.1,5.1 == cb  0.619 0.5954 0.5835 0.5756 0.5699 0.5655 0.562 0.5591 0.5567 0.5547 0.553 

→=b  0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 

2,1 == ca  0.5238 0.5652 0.6 0.6296 0.6552 0.6774 0.697 0.7143 0.7297 0.7436 0.7561 

1,2 == ca  0.0476 0.1304 0.2 0.2593 0.3103 0.3548 0.3939 0.4286 0.4595 0.4872 0.5122 

→=c  1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

2,1 == ba  0.5 0.5455 0.5833 0.6154 0.6429 0.6667 0.6875 0.7059 0.7222 0.7368 0.75 

5.1,5.1 == ba  0.4286 0.4619 0.4919 0.5188 0.5433 0.5655 0.5858 0.6043 0.6214 0.6371 0.6516 

 

 

 

 

 



 

 

From this table, in the case 1≥c  and the considered values of the parameters, we see that [ ].75.0,0∈τ  

This range of values is quite acceptable, making the GClay copula suitable to model various kinds of positive 
dependence. 

Table 2 presents some numerical values of the tau of Kendall of the GClay copula for various values of ba,  

and ,c  with ( ).1,0∈c  We chose a as ( ) ( )1/1 ++= bcba  and we vary b and c. 

Table 2. Values of the tau of Kendall of the GClay copula for selected values of ba,  and ,c  the case ( )1,0∈c  

→=b  0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 

1.0=c  − 0.3109 − 0.2577 − 0.2131 − 0.175 − 0.1421 − 0.1132 − 0.0876 − 0.0646 − 0.0437 − 0.0247 − 0.0072 

5.0=c  − 0.1997 − 0.124 − 0.0581 4102 −×−  0.0512 0.0972 0.1387 0.1763 0.2105 0.2419 0.2708 

9.0=c  − 0.0253 0.0609 0.1339 0.1963 0.2504 0.2977 0.3394 0.3764 0.4095 0.4393 0.4662 
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From this table, in the case ( )1,0∈c  and the considered values of 
the parameters, it is interesting to see that [ ].47.0,31.0−∈τ  This 
proved numerically that the GClay copula can also model negative 
dependence, contrary to the original Clayton copula. This is a real plus 
for dependence modelling. Overall, we have [ ],75.0,31.0−∈τ  making 
the GClay copula competitive on the correlation range aspect. 

On the other hand, for any strict Archimedean copula with a strict 
generator function ( ),uη  the general definition of the distribution 
function of Kendall is 

( ) ( )
( ) [ ].1,0, ∈

η′
η−= uu

uuuK   (8) 

In the setting of the GClay copula, we obtain 

( ) ( ) ( )
( )

[ ].1,0,
1

11
11 ∈

−

−−−
+=

−−−−

−
u

auabcu
aauuuK cbb

ccb
 

Figure 3 presents some of its plots for various values of ,, ba  and c  
satisfying ,0,1 >≥ ba  and .1≥c  

 

Figure 3. Graphics for the distribution function of Kendall of the GClay 
copula for various values of a, b and c; the case .1≥c  
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Various concave shapes are observed, demonstrating a relative 
functional flexibility. Figure 4 completes Figure 3 by presenting some 
plots of the GClay distribution function of Kendall for various values of 

,, ba  and c for the case ( ).1,0∈c  We chose a as ( ) ( )11 ++= bcba  and 

we vary b and c. 

 

Figure 4. Graphics for the distribution function of Kendall of the GClay 
copula for various values of ,, ba  and c; the case ( ).1,0∈c  

Last but not least, the GClay copula can serve as a two-dimensional 
distribution generator. Indeed, by considering two baseline uni-
dimensional distribution functions, say ( )xF  and ( ),xG  we introduce a 

new two-dimensional distribution function by 

( ) ( ) ( )[ ]yGxFCyxH ,, =  

 [( ( ) ) ( ( ) ) ( ) ]{ } ,1111
111 bcccbcbb ayaGxaFa
−−− −−−+−+=  

( ) ., 2R∈yx  
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As a result, novel perspectives on two-dimensional modelling are offered 
for a variety of statistical applications. A particularly interesting 
direction is the use of lifetime (or survival) distributions as the baseline 
distributions (see [30]). Let us mention that other two-dimensional 
approaches can be considered, such as the structural one established in 
[19]. 

3.3. A new trigonometric copula 

Copulas defined with trigonometric functions can be useful for 
circular or directional data. See [24], [14], [15], [29] and [6]. By their 
nature, they have different dependence modelling objectives than copulas 
defined with power functions, such as the GClay copula. We contribute in 
this direction by offering a new, flexible candidate. The strict 
Archimedean copula corresponding to the strict generator function 
described in Equation (4) has a closed-form expression, and it is 
determined in the next proposition. 

Proposition 3.2. The following function defines a valid strict 
Archimedean copula: 

( )
[ ( ) ] ( )

















−−
×−= −

axa
ayxC b

b

cos1cos
1arccos1, /1  

[ ( ) ] ( ) ( ) ( ) ,coscos1
1

cos1cos
1

11 b

b aaaya 











+







−
−

−−
+

−

 

( ) [ ] ,1,0, 2∈yx   (9) 

for ( ]2,0 π∈a  and .1≥b  

Proof. Let us consider the strict generator function ( )uη  in Equation 

(4). Then the inverse function of ( )uη  is obtained by developing the 

following equivalence: ( ) ( )vuvu 1−η=⇔=η  for any [ ].1,0∈u  This 

development is as follows: 
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 ( )
[ ( ) ] ( ) ( ) vaaua

vu b =
−

−
−−

⇔=η cos1
1

cos1cos
1  

[ ( ) ] ( ) ( )av
aua b cos1

1
cos1cos

1
−

+=
−−

⇔  

[ ( ) ] ( )
[ ( )] ( )aav

aua b cos1cos1
cos11cos +

+−
−=−⇔  

( ) ( )
[ ( )] ( )







 +

+−
−=−⇔ − aav

aau b cos1cos1
cos1arccos1 1  

( )
[ ( )] ( ) .cos1cos1

cos1arccos1
1

1
b

b aav
aau 











 +

+−
−−=⇔ −  

Hence, we have 

( ) ( )
[ ( )] ( ) .0,cos1cos1

cos1arccos1
1

11 ≥











 +

+−
−−=η −− vaav

aav
b

b  

Therefore, based on Definition 2, the corresponding strict Archimedean 
copula is obtained as 

( ) ( ) ( )[ ] bayxyxC 11 1, −− −=η+ηη=  

[ ( ) ] ( )

















−−
×

axa b cos1cos
1arccos  

[ ( ) ] ( ) ( ) ( ) .coscos1
1

cos1cos
1

11 b

b aaaya 











+







−
−

−−
+

−

 

The desired copula is obtained, ending the proof.   

Let us call the copula in Equation (9) the generalized cosine (GCos) 
copula. When 2π=a  and ,1=b  it becomes the cosecant copula as 
described in [24] with .1=θ  To the best of our knowledge, it is a new 
two-parameter trigonometric copula in the literature. As for any 
(absolutely continuous) copula, one can prove that it satisfies 

( ) ( ) ( ) ( ) ,,1,1,,0,00, yyCxxCyCxC ====  and ( ) ( ) .0,2 ≥∂∂∂ yxyxC  
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Figure 5 displays the contour shapes of the GCos copula for various 
values of a and b. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5. Plots of the contour shapes of the GCos copula for (a) ,1,6 =π= ba  

(b) ,5.1,3 =π= ba  (c) ,3,3 =π= ba  and (d) .2,2 =π= ba  
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Different contour shapes are seen, demonstrating how adaptable the 
GCos copula is. The GCos copula density can be expressed, but due to a 
large formula, it is omitted here. On the other hand, the survival GCos 
copula is obtained as 

( )
( ) ( )













−
×−+= −

aax
ayxyxC b

b
coscos

1arccos,ˆ /1  

( ) ( ) ( ) ( ) ( ) [ ] .1,0,,coscos1
1

coscos
1 2

11
∈
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
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







+





−
−

−
+

−

yxaaaay

b

b  

As the GCos copula, the survival GCos copula adds a new three-
parameter copula to the body of knowledge. 

Clearly, the GCos copula is diagonally symmetric. Since there exists 

( )yx,  such that ( ) ( ),,,ˆ yxCyxC =/  the GCos copula is not radially 

symmetric. 

The Fréchet-Hoeffding bounds can be applied. Hence, for any 

( ) [ ] ,1,0, 2∈yx  the GCos copula satisfies ( ) ( )yxCyx ,0,1max ≤−+  

( ),,min yx≤  i.e., 

( )
[ ( ) ] ( )















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×−≤−+ −

axa
ayx b

b

cos1cos
1arccos10,1max 1  
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
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−

 

( ).,min yx≤  

This result can be used for other analytical purposes. 
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The lower tail dependence parameter of the GCos copula is calculated 
by using standard limit methods. We get 

[ ( ) ] ( )

















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→ axa
ax b

b
xL

cos1cos
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



−
−

− b
aa  

Hence, the GCos copula has a rigid lower tail dependence, independent of 
a and b. 

The upper tail dependence parameter is more technical to obtain; it 
follows as 

[ ( ) ] ( )











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−
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b
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
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As a result, the GCos copula has a flexible upper tail dependence 
depending on .b  It is obviously a plus for upper tail dependence 
modelling. 

The medial correlation of the GCos copula is 

( ) ( ) ( ) ( ) .coscos1
1

cos2cos
2arccos43

11
1

b

b
b aaaa

aM
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
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−
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−
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−
−  

This expression is sophisticated but can be easily implemented for 
application purposes. 
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We have 

( )
( )

{ [ ( ) ] ( )} ( )[ ]
( ) [ ( ) ] { [ ( ) ] ( )}

.
cos1cos1sin1

cos11cos1cos1
21 auauauab

aaua
u
u

bbb
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−−−−

−−−−
−=

η′
η

−
 

The tau of Kendall of the GCos copula is thus expressed as 

{ [ ( ) ] ( )} ( )[ ]
( ) [ ( ) ] { [ ( ) ] ( )}

.
cos1cos1sin1

cos11cos1cos141 21

1

0
du

auauauab
aaua

bbb

b

−−−−

−−−−
−=

−∫τ  

It cannot be developed more in the analytical sense because of its high 
level of complexity. 

Table 3 gives some of its numerical values for various values of a  
and b  satisfying ( ]2/,0 π∈a  and .1≥b  

Table 3. Values of the tau of Kendall of the GCos copula for selected 
values of a and b 

→=b  1 3 5 7 9 11 12 15 17 19 21 

1.0=a  0.5 0.75 0.8336 0.8764 0.903 0.9214 0.9349 0.9452 0.9532 0.9596 0.9647 

1=a  0.5004 0.7501 0.8335 0.8756 0.9016 0.9194 0.9326 0.9427 0.9506 0.957 0.9622 

2/π=a  0.5025 0.7506 0.8338 0.876 0.9021 0.9201 0.9333 0.9435 0.9514 0.9578 0.963 

From this table, we observe that [ ].96.0,5.0∈τ  The GCos copula 

seems suitable to model high positive dependence. 

On the other hand, the distribution function of Kendall of the GCos 
copula is given by 

( ) { [ ( ) ] ( )} ( )[ ]
( ) [ ( ) ] { [ ( ) ] ( )}

[ ].1,0,
cos1cos1sin1

cos11cos1cos1
21 ∈

−−−−

−−−−
+=

−
u

auauauab
aauauuK bbb

b
 

Figure 6 presents some of its plots for various values of a and b satisfying 
( ]2/,0 π∈a  and .1≥b  
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Figure 6. Graphics for the distribution function of Kendall of the GCos 
copula for various values of a and b. 

Concave shapes of various sizes are seen, showing a certain degree of 
functional flexibility. 

By taking into account the GCos copula and two uni-dimensional 
distribution functions, say ( )xF  and ( ),yG  we introduce a new two-

dimensional distribution function by 

( ) ( ) ( )[ ]yGxFCyxH ,, =  
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As a result, novel perspectives on two-dimensional trigonometric 
modelling are offered for a variety of statistical applications. 

4. Conclusion 

In this article, we have developed four new strict Archimedean 
generator functions that generalize existing ones. The process of 
generalizations is based on a thorough addition of parameters or power 
functions. The main results determine the admissible values of the 
involved parameters, validating the strict Archimedean generator 
functions. These functions and parameter conditions are summarized in 
Table 4. 

Table 4. Summary of the main strict Archimedean generator functions 

 ( )uη  Conditions 

First ( ) ( )ccb aau 11 −−−−  






+
+≥>> 1

1,1max,0,0 bc
bacb  

Second ( ) ( )







+−+ bbu

ua 121log  [ ] ( ) ( ) 112,0,1
2

≤≤
++

−∈ abb
bb  

Third ( ) ( )babuau
c +−



 + exp1exp  

[ ]2,1,0,0 ∈≤> cba   

or 1,0,0 ≥>> cba  

Fourth [ ( ) ] ( ) ( )aaua b cos1
1

cos1cos
1

−
−

−−
 1,2,0 ≥



 π∈ ba  

Based on the first and fourth strict Archimedean generator functions, 
two new strict Archimedean copulas are established. One can be thought 
of as a generalized Clayton copula that depends on three parameters and 
allows a wide range of dependence, including negative dependence, and 
the other offers a new two-parameter trigonometric copula with tunable 
upper tail dependence.  

The theoretical findings of this article lay the foundation for many 
applications to the analysis of two-dimensional data. In particular, in all 
applications where the Clayton copula offers an acceptable model, one 
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can test the proposed generalized Clayton copula model. The directions 
for future work include the investigation of the multi-dimensional case, 
more copula developments based on the second and third strict 
Archimedean generator functions, real data analysis of modern two-
dimensional phenomena, and the development of copula regression 
models. These complementary aspects need more investigation, which we 
leave for future research. 
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