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Abstract 

The past two decades witnessed Cholera outbreaks in several countries, such 

as Zimbabwe, Nigeria, DRC, South Sudan and Yemen. In this paper, we 
consider a system of four delay differential equations model of cholera outbreak 
with two time delays. These time delays represent incubation periods of vibrio 

cholerae transmitted indirectly from environment to human or directly from 
human to human. The model is analyzed and the stability properties have been 
concluded. Finally, numerical simulations are carried out to case of cholera 

outbreak in Zimbabwe. The results obtained show that neither of the delays 
leads to periodic oscillations. 

1. Introduction 

Mathematical modelling of cholera disease transmission dynamics is 

an important research topic for ecologists, biologists and applied 

mathematicians. 

Differential equations have been effective tools to model 

epidemiological diseases. For example, the delayed and non-delayed HIV 
infection models [62, 6, 61], Hantavirus infection model [22], and     

COVID-19 models [63, 14, 5]. 

In the past few decades, attention has been drawn to cholera, and 

many mathematical models have been proposed to understand multiple 

transmission paths and control their propagation, for example, don’t 
exclusive [11], [15], [47], [23], [39], [38], [55], [38], [4], [52], [13], [41], [3], 

[50], [57], [18], [56], [38], [29], [37], [58], [10], [44], [8], [44], [7], [21], [1], 

[45], [24], [30], [42], [19], [53], [40], [53], [27], [59]. 

The aforementioned epidemiological models above were formed using 

systems of ordinary differential equations. A challenge to consider 
including appropriate delay conditions on the model. Time delay plays an 

important role to reflect a realistic dynamic behaviors of models. There 

are few researchers in the literature that have proposed and analyzed 
cholera models involving time delays. Such examples include [9], [36], 

[51], [2], [60], [35], [32], [33], [46], [64], [28]. 

According to [58], Vibrio that is transmitted from human to human 

has a much higher rate of infection (up to 700 times higher) than the 

original Vibrio that is ingested from the environment.  
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Based on the model that was introduced in [38], this paper introduces 

a cholera model consisting of four delay differential equations with two 
time delays. These time delays represent two different kinds of 

incubation periods, referring to the incubation period of vibrio cholerae 

that is transmitted from environment to human and the incubation 
period of vibrio cholerae that is transmitted from human to human. The 

proposed model will be subject to qualitative analysis to investigate the 

impact of including time delays to the model. 

This paper is organized as follows. In Section 2, we formulate the 

mathematical model. In Section 3, we study the qualitative behavior of 
the model via stability of the endemic equilibrium and Hopf bifurcation 

when time delays is considered as a bifurcation parameter. To verify our 

theoretical predictions, some numerical simulations are also included in 
Section 4. In Section 5 are the conclusions. 

2. Model Formulation 

The model has standard type SIR (susceptible-infected-recovered) 

compartments, with an additional compartment B that represents the 

concentration of the bacteria Vibro cholerae in the contaminated water. 

We now extend model [38] by incorporating two time delays that 

represent incubation periods. Assuming that 1  denote the incubation 

period of the vibrio cholerae transmitted from environment to human, 

and 2  denote the incubation period of the vibrio cholerae transmitted 

from human to human. The new model takes the form: 

,SSI
B

SBN
dt
dS 


 k  
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In the equations above, the parameter k  is the concentration of vibrios in 

contaminated water in the environment,   and   are rates of ingesting 

vibrios from the contaminated environment and through human-to-

human interaction, respectively. The parameter   represents the natural 

human birth/death rate, ,  the recovery rate and   the bacterial death 

rate. The total human population at time ,t  denoted by  ,tN  is given by 

       .tRtItStN   

For ecological reasons, we assume that the initial conditions for system 

(2.1) satisfies: 

         .0,,0,0,0,0 0000  BRIS  (2.2) 

The initial conditions for the model (2.1) is given by 

               ,,,, 4321  BRIS  (2.3) 

where   ,,,, 4321 C  such that     00  ii  for  ,0,  

 4,3,2,1i  and C  denotes the Banach space   .,0, 4
 RC   

The solutions         tBtRtItS ,,,  of system (2.1) with the initial 

conditions as stated above exist for all 0t  and are unique [26]. 

From [38], we know that model (2.1) has a disease-free equilibrium 

(DFE) given by 

 ,0,0,0,0 NE   (2.4) 

and based on the next-generation matrix approach [54] the basic 

reproduction number 0  has the following expression: 

    .0 he
N  


 kk  

Additionally, when ,10   there is an endemic equilibrium given by 

 ,,,,1
 BRISE  (2.5) 
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where 

 
,,,
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


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
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



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

 I
B
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NS  

and I  is the positive root of the quadratic equation 02  cbIaI  

given by 

,
2

42

a
acbbI   

where 

 ,a  

    ,k Nb  

   . kk Nc  

Such positive root exists if 0b  and ,0c  that is  N  

  k  and     kk N  or 0b  and 0c  (i.e., 

    kN  and    . kk N  

3. Stability Analysis of Endemic Equilibrium 1E  

In particular, when the time delays are zeros 021    the above 

system (2.1) is reduced to the original model that was developed in [38]. 

Based on their work, follow the results below directly: 

Theorem 1. The disease-free equilibrium (DFE) of the model (2.1) 

 ,0,0,0,0 NE   when 10 R  with 021    is both locally and 

globally asymptotically stable. 

Theorem 2. The endemic equilibrium of the model (2.1) 

 ,,,,1
 BRISE  when 10   with 021    is locally and 

globally asymptotically stable. 
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The details proof of Theorem 2 can be found on pages one and two of 

the Supporting information document of [38]. 

In this section, we discuss the qualitative analysis of model (2.1) 

behaviour at the endemic equilibrium point (EEP) under the impact of 

the time-delays. We also derive the stability conditions for the endemic 

equilibrium point (EEP) and explore the possibility of Hopf-bifurcation. 

We first linearize model (2.1) around the endemic equilibrium point 

(EEP) and determine the characteristic equation of the Jacobian matrix. 

Let ,,,, bBBrRRiIIsSS    where ris ,,  and b  

are small perturbations around the equilibrium .1E  We then obtain the 

linear delay differential equation: 

     ,21   tDZtCZtAZZ  where     .,,, TBRIStZ   (3.1) 

The linearization of the system (2.1) is 
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So, the characteristic equation of the linearized system of delayed 

differential (2.1) is given by 

          ,021
321    ePePP  (3.2) 

where     21 , PP  and  3P  are polynomials, each of degree not 

exceeding 4. 

In case of positive delays 01   and ,02   the characteristic 

equation for the linearized model (2.1) given by (3.2) at the endemic 

equilibrium 1E  is given by: 
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   1
32

2
143

2
2

3
1

4 eQQQUUUU  

  ,02
43

2
2

3
1  eVVVV   (3.3) 

where 

  ,43
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2
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3

13 VVVVP   

In the above expressions of     21 , PP  and    ,4,3,2,1, ,
3  isUP i  

   4,3,2,1,3,2,1 ,,  isVisQ ii  are given as follows: 
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Theorem 3. Necessary and sufficient conditions for the endemic 

equilibrium 1E  to be asymptotically stable for all delays 01   and 

02   are as follows: 

 The real parts of all the roots of characteristic equation   0,  j  

are negative. 

 For all j  and   ,0,0  jjj i   where .2,1j  

Now we analyze the corresponding characteristic equation that 

correspond the endemic equilibrium .1E  Analysis of the general case is 

very complicated when choosing two delays as parameters of systems 

(2.1). Hence, we study two cases: 
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Case 1  .0,0 21    In this case, we regard 01   as the 

bifurcation parameter so the characteristic polynomial (3.3) is reduced to 

       4433
2

22
3

11
4 VUVUVUVU   

  .01
32

2
1  eQQQ   (3.4) 

We investigate existence of Hopf-bifurcation, following the methods in 

[25, 20, 49, 34, 36, 33]. We want to determined if the solution curve of 

characteristic equation (3.4) crosses the imaginary axis so we suppose 

 i  when 0  is root of Equation (3.4) if and only if 

        43
2

2
3

1
4 DiDiDiDi   

          ,01
32

2
1   ieQiQiQ    (3.5) 

and separating the real and imaginary parts we obtain the following 

transcendental equations: 

      ,sincos 1
2

1312
3

13   QQQDD  (3.6) 

      .sincos 121
2

134
2

2
4   QQQDD  (3.7) 

Squaring and adding Equations (3.6) and (3.7) and letting ,2   we get 

the following equation: 

  ,043
2

2
3

1
4  ZZZZh   (3.8) 

where 

,2 2
2

11 DDZ   

,22 2
14

2
2312 QDDDDZ   

,22 2
23142

2
33 QQQDDDZ   

.3
22

44 QDZ   
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Lemma 1. (1) If the coefficients in  h  satisfy the conditions of the 

Routh-Hurwitz criterion ([43], [17]), then Equation (3.3) will not have any 

positive real root of ,2  and the positive equilibrium 1E  is locally 

asymptotically stable for all delay .01   

(2) If the coefficients in  h  do not satisfy the Routh-Hurwitz 

criterion in this case a simple assumption for the existence of a positive 

root of Equation (3.8) is ,04 Z  we have   00 h  and    hlim  

so Equation (3.4) has a pair of pure imaginary roots .i  

Remark 1. We can easily show that for ,01   the local stability 

condition, of the Routh-Hurwitz criterion ([43], [17]) ,0,0
1

321
4 




Z
ZZZ

Z  

 
0

321

4
2
1

321

3213 






ZZZ
ZZ

ZZZ
ZZZZ

 is automatically satisfied. 

Proposition 3.1. If the Routh-Hurwitz criterion are satisfied, then 

endemic equilibrium 1E  is asymptotically stable for all delay .01   

Case 2  .0,0 12    In this case, we regard 01   and 02   

as the bifurcation parameter so the characteristic polynomial (3.3) is 

reduced to 

     3423
2

12
3

1
4 QUQUQUU   

  .02
43

2
2

3
1  eVVVV   (3.9) 

Again to show Hopf-bifurcation, we must have a pair of purely imaginary 

roots of characteristic equation (3.9) [25, 20, 49, 34, 36, 33]. 

We suppose 2 i  when 02   is root of Equation (3.9) if and 

only if 

          321423
2

22
3

21
4

2  iVLiLiLiUi  

       ,02
423

2
22  eViViV   (3.10) 
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and separating real and imaginary parts, we get the following 

transcendental equations: 

         ,sincos 224
2
2222

3
212323

3
21   VVVVLU  

(3.11) 

         .sincos 22
3

123224
2
224

2
22

4
3   VVVVLL  

(3.12) 

Squaring and adding Equations (3.11) and (3.12) and letting ,1
2
3   we 

obtained the following equation: 

  ,0918
2
17

3
16

4
111  ZZZZh  (3.13) 

where 

,2 2
2

1
2

16 LVUZ   

,222 4
2

231
2

2317 LVVVLLUZ   

,22 2
342

2
3428 VVVLLLZ   

.2
4

2
49 VLZ   

Lemma 2. 

 If the coefficients in  h  satisfy the conditions of the Routh-Hurwitz 

criterion ([43], [17]), then Equation (3.13) will not have any positive real 

root of ,2  and the positive equilibrium 1E  is locally asymptotically 

stable for all delay .02   

 If the coefficients in  h  do not satisfy the Routh-Hurwitz criterion 

in this case a simple assumption for the existence of a positive root of 

Equation (3.8) is ,09 Z  we have   00 h  and    hlim  so 

Equation (3.4) has a pair of pure imaginary roots .2i  
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Remark 2. We can also easily show that for ,02   the local 

stability condition, of the Routh-Hurwitz criterion ([43], [17])  

 
0,0,0

876

4
2
6

876

8763

6

326
9 











ZZZ

ZZ
ZZZ

ZZZZ
Z

ZZZ
Z  is automatically 

satisfied. 

Proposition 3.2. If the Routh-Hurwitz criterion satisfied, then 

endemic equilibrium 1E  is asymptotically stable for all delay .02   

4. Numerical Simulations 

The 2008-2009 cholera epidemic in Zimbabwe resulted in 98,585 

reported cases and caused more than 4,000 deaths [16]. 

The cholera epidemic began in August 2008, not only ravaging all 10 

districts of Zimbabwe, but also rapidly spreading to Botswana, 

Mozambique, South Africa and Zambia. The primary cause of the 

outbreak was the collapse of Zimbabwe’s public health system. By the end 

of November 2008, three of Zimbabwe’s four main hospitals were closed, 

and many places did not have essential medicines, medicine and water 

supplies long enough during the outbreak. On December 4, 2008, the 

Zimbabwean government declared a national emergency [32]. 

In this section, we present a numerical simulation of the model 

system (2.1) to confirm our analytical results, using MATLAB. The 

parameters values are according to Table 1. These parameter values have 

been taken from [38]. 
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Table 1. Parameter values for model (2.1) 

Parameter Definition Value Unit Source 

N  Total population size 12347 person [38] 

  Natural death rate 0.000442 per week [38] 

k  Half saturation rate 610  cells per mL [23] 

  Indirect transmission rate 0.525 per person per week [56] 

  Direct transmission rate 4101.1   per person per week [56] 

  Recovery rate 1.40 person per week [48], [31], [23], [55] 

  Shedding rate 70 cells ml week per person [39, 15] 

  Bacterial net death rate 0.23  [23], [12] 

The basic reproduction number is .12702.20   The positive 

equilibrium for this data is 1E  (5440.7852, 2.1801, 6904.0347, 654.0389). 

We considered four values {0, 4, 8, 12} for each of the two time delays 

1  and .2  The values 01   and 02   correspond the solutions of 

ODEs. 

For 01   and ,02   Equation (3.8) does not have positive roots. It 

may be noted that two roots are zeros and two roots are complex. Hence, 

the endemic equilibrium 1E  is locally asymptotically stable in the 01   

and .02   From Figure 1, we see that for  ,12,8,4,01   the model 

variables approach the equilibrium points ,1E  which confirms the 

stability of endemic equilibrium 1E  for .01   
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(a) Susceptible population. 

 

(b) Infected population. 
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(c) Recovered population.      

 

(d) Bacteria concentration. 

Figure 1. Solution of cholera model for  .12,8,4,11   
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In the case 02   and ,01   Equation (3.13) has two complex 

roots and two roots are zeros. Hence, the endemic equilibrium 1E  is 

locally asymptotically stable in this case.  

Figure 2 shows the dynamic of the delayed cholera model for 01   

and  .12,8,4,02   In all cases, the dynamics approaches the endemic 

equilibrium point .1E  

5. Conclusions and Discussions 

This paper is devoted to the formulation and analysis of a time 
delayed mathematical model for cholera outbreak inspired by the work in 
Mukandavire et al. [38]. It represents a coupling between multiple 
transmission pathways of cholera and multiple time delays.  

We stated the conditions under which endemic equilibrium point 1E  

can exist. Then, we analyzed the corresponding characteristic equations 
of the linearized model to investigate the local stability of 1E  when 

.2,1,0  ii  
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(a) Susceptible population.      

 

(b) Infected population. 
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(c) Recovered population. 

 

(d) Bacteria concentration. 

Figure 2. Solution of cholera model for  .12,8,4,12   
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We investigated the local stability of the endemic equilibrium point 

under two cases for time delays. In each of the two cases, we stated the 

conditions under which the endemic equilibrium is locally stable. 

It is found that in the case of cholera outbreak in Zimbabwe, changing 

either of the two delays does not cause a Hopf bifurcation, and hence the 

model under investigation does not have periodic solutions. 

Finally, we considered the case of cholera outbreak in Zimbabwe for 

the numerical illustration. It is found that changing either of the two 

delays does not cause a Hopf bifurcation, and hence the model under 

investigation does not have periodic solutions. 
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