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Abstract 

In this paper, we investigate the form of the solution of the following system of 

difference equations of second order: 
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where the parameters fedcba ,,,,,  and initial conditions 0101 ,,, yyxx   

are arbitrary positive real numbers. 

1. Introduction 

In this paper, we deal with the behaviour of the solution of the 

following system of difference equation: 
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where the initial conditions 0101 ,,, yyxx   and fedcba ,,,,,  are 

positive real numbers. 

The hypothesis of difference equations involves a focal position in 

applicable analysis. There is no uncertainty that the hypothesis of 

difference equations will keep on playing a vital part in science overall. 

Nonlinear difference equations, of order more than one, are of 

principal significance in applications. Such equations likewise seem 

normally as discrete analogs and as numerical arrangements of 

differential equations which show several assorted wonders in science, 

biology, physics, physiology, engineering and economics, see [1]-[39]. 

As of late, there has been incredible enthusiasm for examining 

systems of difference equations. One reason for this is the need for a few 

strategies that can be utilized as part of investigating equations emerging 

in mathematical models. There are many papers on systems of difference 

equations. 
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Khan and Qureshi [6] investigated the qualitative behaviour of the 

following systems of second-order rational difference equations: 
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and 
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The authors in [47] have obtained the form of the solutions of the 

following system of difference equations: 
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Touafek et al. [51] investigated the periodic nature and gave the form 

of the solutions of the following systems of rational difference equations: 
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Din et al. [7] dealt with the behaviour of the solutions of the following 

fourth-order system of rational difference equations of the form: 
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The persistence and the asymptotic behaviour of the positive 

solutions of the system of two difference equations of exponential form 
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were studied by Papaschinopoulos et al. [48]. 

Yalçinkaya [58] obtained the sufficient conditions for the global 

asymptotic stability of the system of two nonlinear difference equations 
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Elsayed and El-Dessoky [31] investigated the behaviour of the 

rational difference equation 
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Yang et al. [60] studied the global behaviour of the system of the two 

nonlinear difference equations 
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Mnguni et al. [46] studied the Lie point symmetries of difference 

equations of the form 
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In [35], Folly-Gbetoula and Nyirenda investigated the sixth-order 

recursive sequences of the form 
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where na  and nb  are sequences of real numbers. 

Also, Folly-Gbetoula and Nyirenda [34] found the exact formulas for 

the solutions of the following system of   order-th-1k  difference 

equations: 
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See also [40]-[62]. 

Let us consider a two-dimensional discrete dynamical system of the 

form 

    ,,1,0,,,, 111111   nyxgyyxfx nnnnnn  (2) 

where IJIf  22:  and JJIg  22:  are continuously 

differentiable functions and JI ,  are some intervals of real numbers. 
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Furthermore, a solution     1, nnn yx  of system (2) is uniquely 

determined by the initial conditions   JIyx ii ,  for  .0,1i  

Definition 1 ([50]). Let  yx ,  be an equilibrium point of the system 

(2). 

(i) An equilibrium point  yx ,  is said to be locally stable if for every 

0  there exists 0  such that for every initial condition 

   0,1,, iyx ii  with ,,
0
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 yyxx nn ,  for all .0n  

(ii) An equilibrium point  yx ,  is said to be unstable if it is not stable. 

(iii) An equilibrium point  yx ,  is said to be asymptotically stable if 

there exists 0  such that ,,
0
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(iv) An equilibrium point  yx ,  is called a global attractor if 

   yxyx nn ,,   as .n  

(v) An equilibrium point  yx ,  is called a globally asymptotically 

stable if it is a global attractor and stable. 

Definition 2. Let  yx ,  be an equilibrium point of the map 

 ,,,, 11  nn ygxfF  where f  and g  are continuously differentiable 

functions at  ., yx  The linearized system of (2) about the equilibrium 

point  yx ,  is 

  ,1 njnn XFXFX   

where 











1

1

n

n
n y

x
X  and JF  is the Jacobian matrix of the system (2) 

about the equilibrium point  ., yx  
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Lemma 1 ([50]). For the system   ,1,0,1  nXFX nn  of 

difference equations with X  as a fixed point of .F  If all eigenvalues of the 

Jacobian matrix fJ  about X  lie inside an open unit disk ,1  then X  

is locally asymptotically stable. If one of them has norm greater than one, 

then X  is unstable. 

Definition 3 ([9] (Lyapunov function)). Let .:  kV  The 

variation of V  relative to 

    ,1 nxfnx   (3) 

where ,,: kk   GGf  is continuous. We assume that x  is an 

equilibrium point of (3), that is,   .xxf   

Let  k:V  be a real-valued function. The variation of V  

relative to (3) would then be defined as 

      ,xVxfVxV   

and 

               .1 nxVnxVnxVnxfVnxV   

Note that if   ,0 xV  then V  is non-increasing along solutions of (3). 

The function V  is said to be a Lyapunov function on a subset H  of K  

if: 

(i) V  is continuous on ,H  and 

(ii)   ,0 xV  whenever x  and  xf  belong to .H  

Definition 4 ([9]). Let  ,xB  denote the open ball in k  of radius 

  and center x  defined by    .,  xyyxB k  For the sake 

of brevity,  ,0B  will henceforth be denoted by  .B  We say that the 

real-valued function V  is positive definite at x  if: 
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(i)   ,0xV  and 

(ii)   0xV  for all   ,,, xxxBx   for some .0  

Definition 5 ([9] (Lyapunov stability theorem)). If V  is a Lyapunov 

function for (3) in a neighbourhood H  of the equilibrium point ,x  and V  

is positive definite with respect to ,x  then x  is stable. If, in addition, 

  0 xV  whenever   Hxfx ,  and ,xx   then x  is asymptotically 

stable. 

Moreover, if k HG  and   xV  as ,x  then x  is 

globally asymptotically stable. 

2. Stability of System (1) 

In this section, we investigate the local stability character of the 

solutions of system (1). System (1) has two equilibrium points and are 
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Therefore, it follows that 
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Theorem 2.1. The equilibrium point E is unstable. 

Proof. The linearized equation of system (1) about the equilibrium E  
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The roots of the characteristic equation of the system (1) about E  are 

given by 
   

,12,1 ad
fdca 

  and it turns out that .11   So the 

equilibrium point E  is unstable. 
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Theorem 2.2. The equilibrium point O  is locally stable if .1ad  

Proof. Let 

    ,, 211 nn xnuxnu    
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Then 0V  if   ,112  adad  thus the equilibrium point O  is 

locally stable if .1ad  
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3. Existence of Bounded Solutions of System (1) 

In this section, we study the boundedness of the solution of system 

(1). 

Theorem 3.1. Every positive solution of system (1) is bounded if 

fdca  ,  and .0limlim   nnnn yx  

Proof. It follows from Equation (1) that 
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Then 

., 1111   nnnn yyxx  

This implies that 1212   nn xx  and .1232   nn xx  Hence, the 

subsequences    2212 ,  nn xx  are decreasing, i.e., the sequence  nx  is 

decreasing. Similarly, one has 1212   nn yy  and .1232   nn yy  Hence, 

the subsequences    2212 ,  nn yy  are decreasing, i.e., the sequence  ny  

is decreasing. Hence, .0limlim   nnnn yx  

Lemma 3.2. If ,1ad  then the equilibrium point O  is globally 

asymptotically stable. 

Proof. From Theorem 2.2, the equilibrium point O  is locally stable. 

In addition, from Theorem 3.1, we have .0limlim   nnnn yx  

Thus the equilibrium point O  is a global attractor. This means O  is 

globally asymptotically stable. 
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4. Existence of Periodic Solutions of System (1) 

In this section, we study the existence of periodic solutions with 

period two of system (1). 

Theorem 4.1. The system (1) has no prime period-two solutions. 

Proof. Assume that       ,,,,,, 112211 qpqpqp  is a prime period-

two solution of system (1) such that 21 pp   and .21 qq   Then, from 

system (1), we have 

,,
2

22
2

1

11
1 cqb

qap
p

cqb
qap

p





  (4) 

and 

.,
2

22
2

1

11
1 fpe

qdp
q

fpe
qap

q





   (5) 

From (4), we see that 

  ,0111  qpacbp  (6) 

  .0222  qpacbp  (7) 

Multiply Equation (6) by  22qp  and Equation (7) by  ,11qp  we get 

  ,02121221  qqppacqpbp  

  .02121121  qqppacqpbp  

Now, we have 

  .0 211221 qqqqpbp   

Similarly, from (5) 

  ,0111  qpcfeq   (8) 

  .0222  qpcfeq   (9) 
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Multiply Equation (8) by  22qp  and Equation (9) by  ,11qp  we get 

  ,02121212  qqppdfqqep  

  .02121211  qqppdfqqep  

Now, we have 

  ,0 211221 ppppqeq   

which is a contradiction. Hence, system (1) has no prime period-two 

solutions. 

5. Numerical Examples 

To confirm the results of this paper, we consider numerical examples 

which represent different types of solutions to system (1). 

Example 5.1. Figure 1 shows the solution when ,4,2 01  xx  

.3and,2,7,3,5,2,3,5 01  fedcbayy  

 

Figure 1. 
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Example 5.2. Figure 2 shows the solution when ,8.0,12 01  xx  

.4and,2,2,7.0,5.0,9,9,1.1 01  fedcbayy  

 

Figure 2. 

Example 5.3. Figure 3 shows the behaviour of the solutions when we 
take ,7.0,3,15,12,23.0,5,4,2 0101   dcbayyxx  

.3.0and,2  fe  

 

Figure 3. 
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Example 5.4. Figure 4 shows the dynamics of solutions of the   

system where ,3.0,5.0,2.1,3,1.0,2.0,7 0101   cbayyxx  

.3.0and,12,7.1  fed  

 

Figure 4. 
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