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Abstract 

The double pendulum, a simple system of classical mechanics, is widely studied 

as an example of, and testbed for, chaotic dynamics. In [1], Maiti et al. study a 

generalization of the simple double pendulum with equal point-masses at equal 

lengths, to a rotating double pendulum, fixed to a coordinate system uniformly 

rotating about the vertical. In this paper, we study a considerable 

generalization of this rotating double pendulum, constructed from physical 

pendula, and ask what equilibrium configurations exist for the system across a 

comparatively large parameter space, as well as what bifurcations occur in 

those equilibria. Elimination algorithms are employed to reduce systems of 

polynomial equations, which allows for equilibria to be visualized, and also to 
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demonstrate which models within the parameter space exhibit bifurcation. We 

find the DixonEDF [2] algorithm for the Dixon resultant [3], written in the 

computer algebra system (CAS) Fermat [4], to be capable to complete the 

computation for the challenging system of equations that represents 

bifurcation, while alternative algorithms or implementations could not be 

found to complete the computations. This work demonstrates the opportunity 

that exists if equations of equilibrium and bifurcation can be transformed into 

polynomial systems, to make use of computational algebra techniques to 

further analyze these features of dynamical systems. 

1. Introduction 

This work is concerning a system of classical physics, namely a 

rotating double pendulum (RDP). Here, ‘rotating’ is used to indicate a 

double pendulum that is made to rotate about a vertical axis with a 

constant angular velocity .aω  A double pendulum has two joints or 

pivots, and we take the vertical axis of this rotation to pass through the 

inner, stationary pivot. Additionally, our consideration is of a physical 

double pendulum, constructed from two 3-dimensional rigid bodies. Thus 

the physics depends on many dimensional parameters: masses, lengths, 

,aω  the strength of gravity, and principal moments of inertia − 13 in 

total. However, only 6 dimensionless parameters are required to describe 

the dynamics of the system. 

A. Double pendulum systems 

The standard (non-rotating) double pendulum is much studied for it’s 

simple construction and existence of chaotic dynamics (see [5] for an 

excellent treatment). Studies of bifurcations in the non-linear dynamics of 

double pendula can be found in [6-9]. Many researchers have also studied 

similar systems to the one in consideration in this work. In 2001, Bridges 

and Georgiou [10] studied a transverse rotating double pendulum, in 

which the axes of the two pivots are not parallel, so that the pendula do 

not swing in the same plane. This system admits a doubly-degenerate 

equilibrium at the trivial solution (both pendula hanging down) in 

linearization, indicated by the coalescence of four zero eigenvalues. It is 

claimed that this is the simplest autonomous system one could construct 
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with two degrees of freedom and admits such a critical point. In [1], Maiti 

et al. study a rotating double pendulum model of equal point-masses on 

equal length massless rods. With increasing rotation speed, they observe 

a transition from chaotic dynamics, to quasi-periodic order, and back to 

chaos, as evidenced by Poincaré sections. 

B. Structure of this paper 

In Section 2, we introduce the physical construction of the rotating 

double pendulum that we consider, and introduce the system's 

Lagrangian (which is derived in Appendix B) as well as the dimensionless 

parametrization that will be used, and a particular special case of point-

masses on massless rods (PMMR). In Section 3, we analyze the Euler-

Lagrange equations to derive equations for the equilibrium configurations 

of the system and for bifurcation of those equilibria. In Section 4, we 

consider certain trivial equilibrium solutions (among other respects, they 

are equilibria of the system for all parameter values) and analyze what 

bifurcations occur for these constant equilibria. Finally, in Section 5, we 

use polynomial elimination algorithms, including DixonEDF [2] for the 

Dixon resultant [3], to (1) visualize bifurcation diagrams in the PMMR 

special case and (2) derive a polynomial condition on the parameter space 

for bifurcation. This not only recovers the bifurcations for the trivial 

equilibria, but confirms and describes an addition non-trivial bifurcation 

that is seen in the bifurcations plots (Figure 5). We then present some 

conclusions and some possible directions for future study. The appendices 

include: the normal mode analysis of a single rotating (physical) 

pendulum in Appendix A. This brief analysis is very much the motivation 

and model for the desired analysis of the RDP―if possible, one would 

hope to be able to complete a normal mode analysis for the equilibrium 

solutions of the RDP. Appendix B details the derivation of the RDP 

Lagrangian, while Appendix C contains long-form output of the 

polynomial systems for equilibrium and bifurcation that derive from this 

work. 
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2. The Rotating Double Pendulum (RDP) 

We study a rotating double pendulum consisting of two physical 

pendula with masses 1M  and .2M  Each pendulum has principal 

moments of inertia, 
( ) ( )

,
2,1
,, NP

I
⊥

 and the pendula are aligned by their 

principal axes, as demonstrated in Figure 1. In particular, the pivots 1O  

and 2O  are co-linear with 1CM  the center-of-mass of ,1M  lying along 

the 1P  axis. Similarly, the second pivot 2O  and center-of-mass 2CM  of 

2M  lie along the 2P  axis. The upper pivot 1O  is fixed, while the lower 

pivot 2O  fastens the pendula together. The 1P  and 2P  axes make angles 

θ  and ϕ  with the vertical, respectively. These axes also define the plane 

of the pendulum − the vertical plane in which the masses swing 

independently − and this plane is made to rotate about the vertical axis 

through 1O  with angular frequency aω  (this rotation is taken to be 

counter-clockwise when the pendulum is viewed from above). Further 

principle axes 21 , ⊥⊥  are also in the vertical plane, so that the third 

principle axes of the pendula coincide, normal to the plane of the 

pendulum (pointing into the page) .21 NNN ==  
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Figure 1. Schematic showing the construction and configuration of a 

rotating double pendulum from two physical pendula. 

This system has the Lagrangian1 

( ( ) )22
2 cos2

2

1
ϕ+ϕθθ−ϕ+θ= ɺɺɺɺ CBAL   

 ( )2 2
1 2

1
sin 2 sin sin sin cos cos ,

2
A B C K K+ θ + θ ϕ + ϕ + θ + ϕ  

(1) 

where dot-derivatives indicate differentiation with respect to 

dimensionless time ,tω=τ  the characteristic frequency ω  to be 

determined. The coefficients of the Lagrangian (1) are 

                                                      

1The subscript 2 in 2L  is to indicate the Lagrangian for a double pendulum. At (3), 1L  is 

used for the Lagrangian of a (single) rotating physical pendulum. 
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( ( ) ) ,212
2

2
11 ω++=

N
ILMLMA      ( ( ) ( ) )12 2 2

1 1 2 ,aP
A M L M L I I= + + − ω

1

⊥
 

2
2 2 ,B M L L= ω                                2

2 2 ,aB M L L= ω  

( ( ) )
22 2

2 2 ,
N

C M L I= + ω                   ( ( ) ( ) )
22 2

2 2 ,aP
C M L I I= + − ω

2

⊥
 

( )1 1 1 2 ,K M L M L g= +                     2 2 2 .K M L g=    (2) 

The coefficients all have dimensions of energy. The terms of the first 

parentheses of (1), quadratics in time-derivatives, are the kinetic terms, 

and we refer to , ,A B C  as the kinetic coefficients. The terms of the 

second parentheses give rise to centrifugal forces; we call , ,A B C  then 

centrifugal coefficients. The second line of (1) is the negative of the total 

gravitational potential energy of the pendula, so we will call these the 

gravitational terms, and 1 2,K K  the gravitational coefficients. 

We determine ω  by reducing to a single rotating pendulum: if we lock 

the second pivot such that ,ϕ ≡ θ  we have 

( ) ( ) ( )2 2
1 2 1 2

1 1
2 2 sin cos ,

2 2
A B C A B C K Kϕ→θ= = + + θ + + + θ + + θɺL L  

(3) 

and we make the identifications 

( ) ( ) ( )1 222 2
1 1 2 22 ,

N N
E A B C M L M L L I I = + + = + + + + ω

 
  (4) 

( ) ( ) ( ) ( ) ( )1 2 1 222 2
1 1 2 22 ,aP P

E A B C M L M L L I I I I = + + = + + + + − − ω
 ⊥ ⊥

 

(5) 

( )[ ]1 2 1 1 2 2 .K K K M L M L L g= + = + +   (6) 
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We now fix ω  by the condition ,E E K= +  which gives 

( ) ( ) ( )
2

1 222
1 1 2 2

,

N N

E K

M L M L L I I

+
ω =

+ + + +
  (7) 

and define the bounded dimensionless parameter 

[ ]0, 1 .
E E

Q
E E K

= = ∈
+

  (8) 

Then if we normalize the Lagrangian (3), dividing through by ,E  we have 

( ) .cos1sin
2

1

2

1 22
11 θ−+θ+θ== QQE ɺLL  (9) 

The equilibrium, bifurcation, and normal mode analyses of this sub-

system are elementary and contained in Appendix A; we propose to 

undertake the corresponding analysis for the RDP, to such extent as is 

tractable. Next, we continue to parametrize the Lagrangian (1) with 

dimensionless combinations of the coefficients. 

A. Dimensionless parameters for the rotating double pendulum 

We define the following dimensionless parameters in terms of the 

coefficients (2): 

2 2
, ,

2 2

A C B A C B

A B C A B C

+ − + −
δ = δ =

+ + + +
ɶ   (10) 

,
A C

A C

−
σ =

+
ɶ             ,

A C

A C

−
σ =

+
   (11) 

( ) ( )
( ) ( )

,
2 2

A C B A C B

A B C B A B C B

+ − +
α =

+ + + + +
  (12) 

( ) ( )
( ) ( )

,
2 2

A C B A C B

A B C B A B C B

− − −
η =

+ + + + +
  (13) 

1 2

1 2

.
K K

K K

−
χ =

+
  (14) 



JONATHAN TOT and ROBERT H. LEWIS 142 

Each of the parameters (10)-(14) takes values in the interval [ ]1, 1 .−  

These 7 rational functions of the coefficients are not all independent; δɶ  

and σɶ  can be written in terms of , , ,δ σ α  and .η  We now reduce the 

Lagrangian (1), dividing by /4E  for convenience, and we have 

( )2 2
2 2

1
4 / 2 cos

2
E a b c = = θ + ϕ − θ θϕ + ϕ 

ɶɺ ɺɶ ɺ ɶ ɺLL  

( )2 2sin 2 sin sin sin
2

Q
a b c+ θ + θ ϕ + ϕ  

( ) ( ) ( )[ ]2 1 1 cos 1 cos ,Q+ − + χ θ + − χ ϕ   (15) 

where Q  is as defined in (8), and the reduced Lagrangian coefficients2 

are given in terms of the dimensionless parameters by 

( ) ( ) ( ) ( )
4 1

1 1 1 1 4 ,
1 1

A
a

E

α + η− α
= = + δ + σ = + δ + σ +

+ α + α
ɶɶ ɶ   (16) 

( ) ( ) ( ) ( )
4 1

1 1 1 1 4 ,
1 1

C
c

E

α − η− α
= = + δ − σ = + δ − σ +

+ α + α
ɶɶ ɶ   (17) 

( ) ( ) ( ) ( )
4 4

1 1 , 1 1 ,
A C

a c
E E

= = + δ + σ = = + δ − σ   (18) 

( )
4 1 4

1 1 , 1 .
1

B B
b b

E E

− α
= = − δ = − δ = = − δ

+ α
ɶ ɶ   (19) 

 

                                                      

2For easier computations, the expressions for , ,a b cɶɶ ɶ  can be somewhat simplified by using 

alternate functions of α  and ( ) ( ): / 1 ,xη = α + η + α  and ( ) ( )/ 1 .y = α − η + α  Then 

( ) ( )1 4 , 1 ,a x y a x b x y b= − − + = − −ɶɶ  and ( )1 4 .c x y c y= − − +ɶ  The preference for α  and η  

is on account of the resulting parameter space ( ) [ ]2, 1, 1 .α η ∈ −  This corresponds to 

( ) 2, , 1x y x y∈ ≤R  and 1.x y+ ≤  
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In keeping with our terminology of kinetic, centrifugal and gravitational 

coefficients, all of ( ), , ,δ σ α ηɶ ɶ  are called kinetic parameters, ( ),δ σ  are 

centrifugal parameters, while χ  is the gravitational parameter. The 

parameter Q  indicates the relative strength of different parts of the 

potential; it is related to the ratio of centrifugal to gravitational forces, 

and 0Q =  gives the standard (non-rotating) double pendulum. 

B. RDP parameter space 

The Lagrangian (1) has 8 dimensional coefficients, all energies, but 

they are constrained by the condition ,E E K= +  so that in fact 

parameter space is 7-dimensional. Then dimensional analysis says we 

should employ one dimensional parameter with units of energy (we take 

E), and 6 additional dimensionless parameters. We take Q as one of these. 

We have the 5 remaining parameters in various combinations of (10)-(14). 

 

Figure 2. The ‘positive definite’ region of the parameter space 

( ) [ ]2, 1, 1 .δ σ ∈ −  
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The coefficients (2) inform the values we allow for the dimensional 

parameters. Most are straightforward: 
( ) ( )1 2

1 2 2 ,
, , , , ,

N
M M L L g I

⊥
 are 

either positive or non-negative, and we can say non-negative by including 

limiting cases. However, requiring that the coefficients of the Lagrangian 

are non-negative gives the following conditions: , 0A C ≥  give 
( )1

0
P

I≤ ≤  

( )2 2
1 1 2M L M L I+ +

1

⊥
 and 

( ) ( )2 22
2 20 ,

P
I M L I≤ ≤ +

⊥
 while 1 0K ≥  allows 

1 2 1/ .L M L M≥ −  Additionally, observe that with masses and moments 

non-negative, A  and C  are manifestly non-negative, so that the kinetic 

coefficients , , ,A B C  which are best understood as the entries of a 

symmetric 2 2×  matrix, defining a quadratic form. This quadratic form is 

positive definite since 2BAC >  (in fact, ).2
2

2
121

2 LLMMBAC ≥−  In 

general, this does not follow for the centrifugal coefficients , , .A B C  In 

terms of the dimensionless parameters, ( ),δ σɶ ɶ  are constrained by the 

following condition: 

( )
22 24 1 0,ac b− = δ − σ + δ ≥ɶ ɶ ɶɶ ɶ ɶ   (20) 

but ( ),δ σ  are not likewise constrained. This region is shown in Figure 2. 

If we use parameters ( ), , , ,δ σ α η  then for any given values 

( ) [ ]2, 1, 1 ,δ σ ∈ −  (20) is a corresponding condition on the values of 

( ), .α η  

C. Special case of point masses on massless rods (PMMR) 

We also consider a special case of particular interest: the textbook 

model of point-masses 1 2,M M  on massless rods. In this case the pivot 

2O  coincides with ,1CM  the masses constrained to remain distances 

21 , LL  apart from the pivots ,, 21 OO  respectively. This case is defined 

by the following relations: ,1LL =  and all principle moments 
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( ) ( )
.0

2,1
,,

=
NP

I
⊥

 However, we call this case Strict PMMR. There are wider 

classes of models that are not point-masses on massless rods, but they 

nevertheless exhibit identical dynamics for the subset of the parameter 

space where they overlap. Observe that the Strict PMMR case has 

,0, =ηα  so that the pairs ( )σδ,  and ( ),δ σɶ ɶ  coincide. Both pairs are thus 

constrained by positive definiteness, as in Equation (20). Meanwhile, the 

condition 1LL =  establishes the following common ratio between the 

centrifugal and gravitational coefficients 

1

2

,
KA

KB
=  equivalently 

1
.

1

a

b

+ χ
=

− χ
  (21) 

We take the resulting conditions in the dimensionless parameters: 

0, 0α = η =  and Equation (21) to define the Strong PMMR case. The 

vanishing kinetic parameters 0α = η =  imply AB AB=  and ,CB CB=  

which simplify to 2 2
aA Aω = ω  and 2 2 ,aC Cω = ω  which in turn require 

( ) ( ) ( )i i i
N P

I I I= +
⊥

 for 1, 2.i =  Thus any RDP consisting of physical pendula 

with principle moments satisfying these conditions will exhibit identical 

dynamics to the model of point masses on massless rods, provided that 

(21) also holds. 

Furthermore, we take only the condition (21) to define the Weak 

PMMR case. It is a codimension-1 hypersurface of the (dimensionless) 

parameter space, or 5-dimensional, whereas Strict and Strong PMMR are 

3-dimensional. However, these three cases are nearly equivalent for 

questions of equilibrium and bifurcation, which do not involve the kinetic 

parameters (see Section 3, lines (25, 31)). The only difference is that in 

Strict/Strong PMMR ( ) ,α = η = 0  the centrifugal parameters ( ),δ σ  are 

still restricted to be positive definite as in (20), while in Weak PMMR this 

condition is relaxed. 
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The Weak PMMR condition (21) allows us to express the gravitational 

parameter χ  as a rational function of ( ),δ σ  

2
.

2PMMR
δ + σ + δσ

χ =
+ σ + δσ

 (22) 

3. Equations of Motion, Equilibrium, Normal Mode  

Frequencies, and Bifurcation 

The reduced Lagrangian has the potential function 

( ) ( )ϕ+ϕθ+θ−=ϕθ 22 sinsinsin2sin
2

, cba
Q

V  

 ( ) ( ) ( )[ ],cos1cos112 ϕχ−+θχ+−− Q   (23) 

and the equations of motion (given be Euler-Lagrange equations) simplify 

to 

( )

( )

( )

( ) ( )

2

2

cos
sin , 0,

cos

a b
b V

b c

ϕ−θ

    ϕ − θ θ − ϕ
     + ϕ − θ + ∇ θ ϕ =
      ϕ − θ ϕ θ    

ɶ

ɶ ɺɺɶ ɺ
ɶ

ɶ ɺɶ ɺɺ
�����������������

M

 

(24) 

so that equilibria of the system are extrema of .V  Using simplified 

( )/ 1q Q Q= −  (which is 0q ≥  for [ ] )0, 1 ,Q ∈  

( )
( ) ( )

( ) ( )

sin sin cos 2 1 sin 0,

, 0

sin sin cos 2 1 sin 0.

q a b

V

q b c

θ + ϕ θ − + χ θ =

∇ θ ϕ = ⇔

θ + ϕ ϕ − − χ ϕ =

 (25) 

Next, we expand the equations of motion near an equilibrium point 

( )0 0,θ ϕ  satisfying (25). Substituting ( ) ( )( ) ( ) y�+ϕθ=ϕθ 00 ,, ττ  for 

some 1��  and ,2y R∈  to leading order in �  the equations of motion 

(24) become 

( ) [ ]( )0 0 0 0, ,H Vϕ − θ + θ ϕɶ ɺɺM y y = 0   (26) 
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where [ ]H V  is the second derivative matrix of the potential. From (26), 

we can examine the normal mode behaviour near equilibria in the linear 

approximation. Assume a common exponential behaviour 

( ) ,ττ
Ω±= ivey  (27) 

where 2v R∈  is constant, 0>Ω  indicates oscillatory solutions while 

0<Ω  gives rise to two exponential modes ―one growing, the other 

decaying.3 In (26) this gives 

( ) ( ) [ ]( ){ }0 0 0, .H Vϕ − θ − Ω + θ ϕ =ɶ
0M v 0   (28) 

Thus we have the following generalized eigenvalue equation for (the 

square of) normal mode frequencies :Ω  

( ) [ ]( )0 0 0 0det , 0.H V − Ω ϕ − θ + θ ϕ = 
ɶM  (29) 

This is a quadratic in .Ω  Bifurcation is precisely the scenario in which at 

least one root of (29) is 0,Ω =  which occurs if and only if the constant 

term of (29) vanishes. Thus bifurcation is given by the conditions 

( )0 0, 0,V∇ θ ϕ =  (30) 

[ ] ( )( )0 0det , 0.H V θ ϕ =   (31) 

These equations involve the coefficients cba ,,  (or equivalently, δ  and 

)σ  and parameters ., χq  Of course, they also involve the trigonometric 

functions .sin,cos,sin,cos 0000 ϕϕθθ  However, if these are replaced 

with polynomial variables, respectively ,,,, 2211 scsc  and Pythagorean 

identities 01,01 2
2

2
2

2
1

2
1 =−+=−+ scsc  are added to the Equations 

(30)-(31), the result is a system of polynomial equations that describe 

bifurcation. 

                                                      

3Since both matrices in (29) are symmetric, and ɶM  is positive definite (see Subsection B of 

Section 2), we know that (29) only has real solutions. 
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The system is 5 equations in 4 variables and 4 parameters, fully given 

in expanded form in Appendix C1. In Section 5, we employ various 

methods of elimination for systems of polynomial equations, to eliminate 

the trig variables 2211 ,,, scsc  and produce a single condition on the 

parameters, representing the codimension-1 subset of parameter space 

for which the system is in bifurcation. This is a large polynomial system, 

and a challenging computation for many algorithms in different 

implementations. DixonEDF [2], written in the Fermat computer algebra 

system [4], is a very powerful elimination algorithm, extracting factors of 

the resultant while computing the determinant of the Dixon matrix. 

4. Trivial Equilibria and Expected DixonEDF Factors 

Observe that the equations for equilibrium (25) have constant 

solutions ,0, 21 =ss  for all parameter values. The Pythagorean identities 

give .1, 21 ±=cc  These configurations are 0, =ϕθ  or 4;π±  

combinations in total. We refer to them as: down-down, ;0=ϕ=θ  down-

up, ;,0 π=ϕ=θ  up-down, ;0, =ϕπ=θ  up-up, ,π=ϕ=θ  and 

collectively as the trivial equilibria. They are the only equilibria of the 

standard (non-rotating) double pendulum, and they are equilibria of the 

RDP for all parameter values. This means questions of bifurcation, or 

even of the normal mode frequencies, are simple to evaluate for these 

equilibria, substituting the coordinates into (31) and (29), respectively. 

When utilizing polynomial elimination algorithms in applications, the 

resulting polynomial (whether a resultant, the first polynomial of a 

Groebner basis, etc.) often has many factors, some of them spurious. Most 

algorithms or implementations compute this polynomial to full expansion, 

so the effective multiplying-out of all these factors adds to the 

computational costs. Typically, one factor in particular, or perhaps a 

handful of factors, are relevant to the problem, and so the resultant 

polynomial wants to be factored anyway, which may itself be costly for 

sufficiently large outputs. One of the comparative advantages of 
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DixonEDF, then, is that as the determinant of the Dixon matrix is being 

computed, common numerators and denominators of rows and columns 

are extracted as the computation proceeds. The end result is a list of 

factors of the resultant. The factorization problem is not completely 

resolved, as the factors in the list are not necessarily irreducible, but the 

problem is often greatly reduced. The relevant factor or factors are 

typically easy to identify as the longest (with the highest number of 

terms).  

In the case of the rotating double pendulum, the trivial equilibria 

actually provide us with factors to expect from elimination computations 

− namely, 0, 00 =ϕθ  or π  substituted into (31) or (29) for bifurcation or 

normal mode frequencies, respectively. In Section 5, we confirm precisely 

these factors in elimination computations. 

A. Trivial bifurcations in the PMMR case 

In any of the PMMR special cases introduced in Subsection C of 

Section 2, elimination of the polynomial system for bifurcation, with (22) 

substituted in for χ  and numerators taken, will result in a single 

polynomial condition on the three parameters ( ).,, Qσδ  We thus 

anticipate visualizing the degenerate models in parameter space with 3D 

contour plots. Likewise, the expected factors given by the trivial 

equilibria are polynomial conditions in the same space, indicating for 

which RDP models is, say for example, the down-down equilibrium in 

bifurcation. Figure 3 shows the bifurcations of the four trivial equilibria 

in the PMMR subcase. 

The translucent blue surfaces in each plot of Figure 3 are the 

same−the surface given by equality of (20) for ( )., σδ  Thus the convex 

region on one side of the blue surface, with only positive values of ,δ  

corresponds to positive definite centrifugal coefficients, matching the 

Strong PMMR case. The entire space ( )Q,, σδ  [ ] [ ]1,01,1
2 ×−∈  is 

allowed by Weak PMMR. 
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Figure 3. Contour plots of bifurcation condition: [ ]( )( ) ,0,det =ϕθVH  

evaluated at the four trivial equilibria. The horizontal axes measure 

δ+= 1d  and ,1 σ+=s  while the vertical is .Q  The vertical blue 

surface is the same in each plot−it is the surface where the centrifugal 

parameters ( )σδ,  form a singular quadratic form, i.e., equality in (20). 

Thus the positive-definite region is the convex one, with only positive 

values of ,δ  corresponding to Strong PMMR, whereas Weak PMMR 

allows the entire box [ ] [ ].1,01,1
2 ×−  Thus, we may observe that the up-

up equilibrium never undergoes bifurcation under Strong (or Strict) 

PMMR, while it does in Weak PMMR. 

 The bifurcation equation [ ]( )( ) 0,det =ϕθVH  is quadratic in ,Q  so 

formally we can write two solutions as the separate branches of the 

quadratic formula. We observe that for the down-down equilibrium, both 

branches give physical values [ ],1,0∈Q  although the “first” of these, 

with smaller Q-value, occurs in Weak PMMR, for any values 

( ) [ ] ,1,1,
2

−∈σδ  whereas the second branch only exists in Strong PMMR. 

For the down-up and up-down equilibria, the lower branch gives 

[ ]1,0∈Q  across the positive-definite region, but both branches have 

solutions for only very narrow regions outside of positive-definite. 

Perhaps most strikingly, only one of the branches for the up-up 

equilibrium presents a bifurcation, and that only outside the positive-

definite region. 
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5. Elimination Computations for the Rotating Double Pendulum 

In this section, we report the results of various elimination 

computations on polynomial systems derived from the rotating double 

pendulum, including performance comparison of DixonEDF to other 

techniques in the software systems Maple and Magma. 

Table 1. Values of σδ,  and χ  for 3 values each of the mass ratio and 

length ratio of a rotating double pendulum consisting of point-masses on 

massless rods 

 4312 =LL  112 =LL  3412 =LL  

3212 =MM  
13
7

49
31

73
25 ,, =χ=σ=δ  

7
3

7
3

11
3 ,, =χ=σ=δ  

23
7

77
13

125
29 ,, =χ=σ=δ  

112 =MM  
11
5

41
23

65
17 ,, =χ=σ=δ  

3
1

3
1

5
1 ,, =χ=σ=δ  

5
1

17
1

29
5 ,, =χ=σ=δ  

2312 =MM  
29
11

107
53

179
35 ,, =χ=σ=δ  

4
1

4
1

7
1 ,, =χ=σ=δ  

9
1

31
1

55
7 ,, =χ−=σ=δ  

A. PMMR equilibria 

First, to get a sense for what equilibria exist for the RDP model, and 

what bifurcations to expect, we compute resultants of the equilibrium 

system. It should be noted that we think of bifurcation primarily in terms 

of varying ;Q  the double pendulum rotating faster or slower. This also 

corresponds to the fact that the dimensionless parameters, apart from ,Q  

depend on how the pendulum is constructed, whereas Q  is the only 

parameter that characterizes the environment which the RDP is placed 

in: namely, the ratio of the strength of gravity to the strength of the 

centrifugal forces due to rotation. 

Early in this study, we only considered the Strict PMMR case 

(generalization to physical pendula came later), in which the potential 

function can be parameterized in terms of 3 parameters; in addition to ,Q  

the ratio of the pendulum masses 12 MM  and ratio of lengths .12 LL  To 
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sample these dimensions of parameter space, we chose 3 values for each: 

,1,3212 =MM  or ,23  and ,1,4312 =LL  or .34  The combinations 

of these give the values for ( )PMMRχσδ ,,  in Table 1. 

To visualize the non-trivial equilibria, depending on ,Q  for RDP 

parameters in Table 1, we will use an alternative to the polynomial 

system made by inclusion of Pythagorean theorems. Rather, we will 

parameterize the angles θ  and ϕ  by their half-tangents. 

( ) ,
1

1
cos,

1

2
sin2tan

2

2

2 t

t

t

t
t

+

−
=θ

+
=θ⇒θ=   (32) 

( ) .
1

1
cos,

1

2
sin2tan

2

2

2 s

s

s

s
s

+

−
=ϕ

+
=ϕ⇒ϕ=   (33) 

With these rational parameterizations, the equations for equilibrium 

( ) 0, =ϕθ∇V  become 

432323322 22220 qsttqstsqtttqstsqttqs
V

−−−−−+−+−⇒=
θ∂

∂
 

 σ+σ+δ+δ−δ−δ+δ+δ− tqsqtqsttqsqttqsqtqs 243232  

 χ−δσ−δσ−δσ+δσ+σ−σ− ttqsqttqsqttqsqt 23232323  

 .0222 3232 =χ−χ−χ− tstts   (34) 

232322433 22220 tqstsqststtqsqtqssqss
V

−−+−−+−−+−⇒=
ϕ∂

∂
 

σ+σ−δ−δ+δ+δ−δ−δ+ 323243 qsqstqsqsttqsqtqsqs  

χ+δσ+δσ−δσ+δσ−σ+σ− stqsqstqsqstqsqst 22323232  

.0222 2323 =χ+χ+χ+ tssts   (35) 

These polynomials are the numerators of the partial derivates, when 

sines and cosines are replaced by the half-angle tangent parametrizations 

(32), (33). 
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We compute three resultants of the polynomials (34) and (35), 

eliminating in turn each of st,  and .q  This is done very simply with the 

built-in Mathematica command Resultant, which may be used to 

eliminate one variable from a system of two polynomial equations. 

( ) =χσδ ,,,, qsf  Largest irreducible factor of resultant ( ) ( ){ }[ ],,35,34 t  

(36) 

( ) =χσδ ,,,, qtg  Largest irreducible factor of resultant ( ) ( ){ }[ ],,35,34 s  

(37) 

( ) =χσδ ,,,, sth  Largest irreducible factor of resultant ( ) ( ){ }[ ].,35,34 q  

(38) 

The largest irreducible factors of the resultants are of interest; call 

these ,, gf  and .h  The other factors are products of powers of ,1,, 2tst +  

and .1 2s+  The factors f  and h  are both 1290 terms, while h  is 32 

terms. Of course, h  is very easy to arrive at; simply solving both (34), (35) 

for q−they are linear in q−setting the results equal, collecting everything 

to one side on common denominator, and take the numerator. For the 

parameter values in Table 1, Figure 4 shows the 0-contours of these 

resultants, giving projections of the equilibria into ( ) ( ),,,, θϕθ Q  and 

( )ϕ,Q  planes for 0≥θ  and [ ].1,0∈Q  

For the 9 sets of parameter values, each subplot of Figure 4 consists 

of 4 panels. The top-left panel shows the equilibria-solutions of (25) in 

( ) ,space-, ϕθ  for all Q-values [ ].1,0∈  Curves coming from either the 

corners of the plots or the axis-θ  at π=θ ,0  indicate equilibria 

originating at the trivial bifurcations (see Section 4), while curves 

elsewhere indicate additional, non-trivial bifurcations. The top-right 

panel shows the solutions ( )Qϕ  of (25) for 0>θ  only. The bottom panels 
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are the same plot, but rotated 90° relative to each other, and shows the 

solutions ( ) 0>θ Q  of (25). In the bottom-left, the Q-axis descends down 

the vertical, the axis-θ  coinciding with that of the top-left panel above. In 

the bottom-right, the Q-axis is the horizontal, matching that of the 

( ) plot-Qϕ  at top-right. The top-left panels are produced by a 

transformation of 0-contours 0=h  of the resultant (38), while the top-

right panels are transformations of 0-contours 0=f  of the resultant 

(36). The bottom panels are similarly produced by a transformation of 

0=g  of the resultant (37). In combination, these panels allow to be read 

off which ( )Qϕ  and ( )Qθ  solutions pair together as equilibria in the top-

left, as well as the bifurcation Q-values at which solutions diverge. In 

particular, we observe non-trivial bifurcations, typically associated with 

two solutions of (25), for sufficiently large ,Q  in the vicinity of 

( ).2,2 π−=ϕπ=θ  We thus anticipate at least one additional relevant 

factor in the results of a potential DixonEDF computation for the 

bifurcation system (30), (31), beyond the four expected factors 

corresponding to the trivial bifurcations. Within this 9-point sample of the 

remaining parameter space, we also notice that the non-trivial 

bifurcations only occur for .3412 =LL  
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Figure 4. For each of the mass and length ratio pairs in Table 1, this 

figure visualizes the equilibria of the RDP−solutions of (25)−across 

continuous values of the parameter Q, demonstrating both trivial and 

non-trivial equilibria. 
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B. DixonEDF computation of the RDP bifurcation resultant 

Bifurcation of the RDP system is described by the system of equations 

(30), (31). Taken together with Pythagorean identities to constrain 

trigonometric variables, this gives a system of 5 polynomial equations. 

When expressed in terms of: σ+=δ+== − 1,1,,,,, 12211 sdqscsc Q
Q  

and ,χ  these equations have 5, 6, 48, 3 and 3 terms, respectively. These 

are given in full in Appendix C1. The 48 terms, corresponding to the 

bifurcation equation (31), is at most cubic in trigonometric variables, 

quadratic in parameters, and has maximum total order 10. 

The Fermat implementation of DixonEDF succeeds in computing the 

resultant for this system, eliminating ,,, 211 csc  and .2s  Specifically, 

DixonEDF extracts common factors while computing the determinant of 

the Dixon matrix, so that the computation identifies factors with the 

following number of terms: 

Lengths of factors of the Dixon resultant: 1 1 5 2 1 23288 2 2 1 1.  (39) 

However, the 23288-term polynomial does factor. Four expected factors, 

corresponding to bifurcations of the constant equilibria 0, =ϕθ  or ,π±  

are found by evaluating the 48-term polynomial with ,1,,0, 2121 ±== ccss  

which gives the following 10-term polynomials: 

down-down: 121 == cc  

2222222222 24444444 sqdsqddqsqddqqdqdq −+χ+−+−χ−−χ−  

(40) 

down-up: 1,1 21 −== cc  

2222222222 24444444 sqdsqddqsqddqqdqdq −++−+−χ−−χ+−  

(41) 
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up-down: 1,1 21 =−= cc  

2222222222 24444444 sqdsqddqsqddqqdqdq −+−−+−χ++χ+−  

(42) 

up-up: 121 −== cc  

.24444444 2222222222 sqdsqddqsqddqqdqdq −+χ−−+−χ++χ−  

(43) 

The 23288-term factor is divisible precisely by the polynomials (40)-(43). 

Initializing the list of denominators with these expected factors, the 

following list is then found 

Lengths of factors, taking account of (40-43):  

5 1 2 2 1 2 1 2 2 2 5 5 1 1 5 3 3 175 6744,  (44) 

where the 175-term factor is the product of (40)-(43). Thus we are most 

interested in the 6744-term polynomial, which contains all of ( ).,,, χsdq  

Many of the smaller factors depend on a strict subset of these parameters. 

Repeating the computation using alternate parameters to d and s, the 

longest factor is then 3257 terms. Performing the change-of-variables to 

our 6744-term factor matches the 3257 terms, a confirmation that these 

results are at least consistent. The computation resulting in (44) took 16 

seconds and 134MB of RAM on a 24-core Intel Xeon Gold 6126 CPU 

running Linux Redhat 6 with access to 150GB of RAM and 2.3 TB of 

storage. The computation with alternate parameters takes only 7.24 

seconds, although 139MB. Attempts with the FGb Maple package for 

Grobner bases, and a Groebner basis method in Magma by Allan Steel4 

were both terminated after tens of hours and several gigabytes of RAM 

used, or more. 

                                                      

4Both of these Groebner basis implimentations are referenced in [2]. 
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C. Bifurcation in PMMR special case 

Considering bifurcation in the special case of point-masses on 

massless rods, we can proceed in two ways. We can take the 6744-term 

resultant from the computation described above and substitute for χ  

according to (22). Or we can make the substitution into the bifurcation 

system of equations (30), (31), taking numerators (the resulting 

polynomials are given in Appendix (C2), and compute a resultant. We 

have completed both of these calculations, and compare the results. 

The DixonEDF computation for the PMMR bifurcation system finds 

factors with the following numbers of terms: 

Lengths of factors: 8 3 13 2 1 1 1 1924 5 1 2 21 23 23 21,  (45) 

this computation using 19s and 92 MB. The 1924-term factor is precisely 

the result of the substitution ( ) ( ),1221 −+−+=χ sdsd  according to (22), into 

the longest factor of (44). Replacing ( )QQq −→ 1  in these 1924 terms, 

the primary factor of the numerator is 3356 terms long. Figure 5 shows a 

contour plot of this polynomial 03356 =R  in ( ) .space-,, Qsd  
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Figure 5. Contour plot of .03356 =R  Subset of PMMR parameter space 

( )Qsd ,,  which exhibits the non-trivial bifurcation identified by the 3356-

term resultant. 

5. Conclusion 

In this work, we have found that both the equilibrium configurations 

and bifurcation parameter values which produce degenerate equilibria of 

the rotating double pendulum can be described by systems of polynomial 

equations. Several questions about these features can then conceivable be 

answered by employing algorithms of computational algebraic geometry, 

in particular elimination by resultant computations. While the system of 

equations for bifurcation appears to be intractable for classic algorithms 
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such as Grobner bases, as exemplified by two routines in Maple and 

Magma, the Fermat implementation of the DixonEDF [2, 4] algorithm, 

computing the Dixon resultant with early detection of factors, is able to 

complete these computations on the order of seconds. With early detection 

of factors, these calculations recover the trivial bifurcations which occur 

at the (trivial) vertical equilibria of the RDP, as well as confirm and 

describe a fifth5 ‘non-trivial’ bifurcation which occurs for comparatively 

high Q-values. This work suggests that the equilibrium and bifurcation 

structures of other physical systems could be analyzed by the use of 

similar computations, provided that the Equations (30), (31) can be 

expressed (or perhaps approximated) as systems of polynomial equations. 

This work also suggests a potential link with the work in [1]. It would 

be conjectured that the transition to quasi-periodic behaviour that Maiti 

et al. observe via numerical experiments corresponds to the first 

bifurcation of ( ),0,0 =ϕ=θ  which occurs near 21≈Q  for generic 

values of the other parameters fixed. This bifurcation appears to be a 

pitchfork (this should be confirmed in future work), with the vertical 

configuration ( )0,0  becoming unstable for increasing ,Q  and spawning 

two stable equilibria which are ( ) 0, =/ϕθ± ∗∗  by the symmetry of the 

system. 

 

 

 

                                                      

5We note here that the non-trivial bifurcation we have found for the RDP, as described by 

the resultant ,03356 =R  may actually be rightly understood as three additional 

bifurcations: there is a narrow region, approximately the ‘crease’ of the surface in Figure 5, 

within which a vertical line (particular σδ,  values chosen) intersects the surface three 

times; for three distinct Q-values ( ) .1,0∈  Thus three non-trival bifurcations would be 

expected in the corresponding bifurcations plots. This detail must be analyzed in future 

work.  
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A. Further work 

There are many directions in which this work can be continued 

(1) Normal mode analysis 

As demonstrated in Appendix A, one desires to characterize the 

nature of the RDP equilibria and bifurcations by completing the normal 

mode analysis. This invokes the system of equations (30) and (29) 

( ) ,0, 00 =ϕθ∇V   (46) 

( ) [ ]( )0 0 0 0det , 0,H V − Ω ϕ − θ + θ ϕ = 
ɶM   (47) 

which reduces to the bifurcation system (30), (31) for .0=Ω  Preliminary 

investigations already show that this problem, attempting to eliminate 

the angle variables, is approaching the limit of DixonEDF practical 

capabilities, at least on the hardware that has been in use. Moreover, the 

resultants we have found are on the order of 1 million terms long, and 

thus they are impractical to use for further calculations. However, rather 

than considering this system in full, observe that the second equation is a 

quadratic in .Ω  Since both matrices in (47) are symmetric, and the 

kinetic matrix ( )0 0ϕ − θɶM  is positive-definite, we know (47) always has 

real roots, and we are interested in the sign of these roots. Thus we may 

consider various questions of the signs of the coefficients of this quadratic 

polynomial. This line of investigation is currently underway. 

(2) Other special cases 

A further special case that would be in some sense natural to 

consider, is that of the double pendulum constructed from uniform slabs, 

i.e., rectangular prisms, made of the same material, as depicted in Figure 

6. This case similarly reduces the parameter space by one dimension, 

since the ratio LL1  is .21  At most minimal, one may consider pendula 

of 0 cross-section but uniform linear mass density, with the joints fixed at 

the end points of the first pendulum. In this sense, the uniform slabs case 
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is something like a counterpoint to the PMMR case. The minimal subcase 

(perhaps we would refer to thin rods) reduces the relevant parameter 

space a dimension further, as masses are proportional to the lengths, in 

addition to the kinetic parameters ηα,  vanishing. 

 

Figure 6. A double pendulum constructed from similar uniform slabs; a 

frame from a demonstration video by YouTube user stevenbtroy [11]. 

Yet another case which could be considered, was made somewhat 

famous, or perhaps infamous, by the inclusion of a certain kinetic 

sculpture in the original Iron Man movie (2008) [12], namely so-called 

Swinging Sticks® [13], as pictured in Figure 7. 
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Figure 7. The kinetic sculpture Swinging Sticks® [13], as seen in the 

Film Iron Man (2008) [12]. 

This construction appears to include the following properties: not only 

is the CM of the second pendulum very close to the second pivot, giving a 

comparably low 2K  value, furthermore the CM of the first pendulum is 

behind the first pivot, corresponding to a negative value 01 <L  and thus 

a comparatively lower 1K  value. If this construction does indeed keep 

,01 ≥K 6 then these properties would mean the Swinging Sticks coincide 

with our model of the double pendulum for larger Q-values when 

compared to the generic construction and a given rotation frequency .aω  

Thus if a swinging sticks model were employed to experimentally study 

the dynamics of the RDP, we may expect to be able to observe the effects 

of the non-trivial bifurcation, which occurs for higher Q-values, with 

moderate rotation speeds. 

 

 

 

                                                      

6Equivalently [ ] ,1,1−∈χ  and in any case if it does not, our analysis would be in this 

regime, at least initially. 
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(3) Generalizations 

We finally mention some further generalizations that could be added 

to the RDP. As many other researches have considered [6, 10], one may 

take the transverse pendulum: the axes of the two joints of the pendulum 

not restricted to parallel. It would be expected that rotation would tend to 

disturb the doubly-degenerate equilibrium that Bridges and Georgio [10] 

study, but it would be natural to ask whether the rotation then might 

produce this degeneracy at different parameter values or for other 

equilibrium solutions. 

One may also shift the pendulum horizontally from the axis of 

rotation, either in the plane of the pendulum or perpendicular to it. 

Indeed, it should be remarked that our analysis here (specifically, the 

derivation of the Lagrangian in Appendix B) assumes that all the pivots 

and centers of masses are co-planar with the “plane of the pendulum”, 

whereas physical constructions typically have the second pendulum offset 

from the first in this direction. However, it is easy to verify (for a non-

transverse pendulum) that any fixed translation perpendicular to the 

pendulum plane, either of the first mass at the inner pivot or of the 

second mass at the outer pivot, has no effect on the dynamics; the terms 

added to the Lagrangian (1) by such displacements are total derivatives. 

However, this generalization may be expected to have non-trivial 

implications if one considers a transverse double pendulum (of course in 

this case, a single ‘plane of the pendulum’ doesn’t exist). 

If, on the other hand, the pendulum is translated horizontally in it’s 

plane, there are non-trivial consequences. Even just considering the 

rotating physical pendulum of Appendix A, shifting the rotation axis 

away from the inner pivot introduces much larger centrifugal forces for 

small rotation speeds. The trivial equilibria are no longer equilibrium 

solutions for all parameter values, but must be considered functions of 

parameter space. Given that the non-shifted rotating physical pendulum 

exhibits a pitchfork bifurcation, one might expect to see the pitchfork 

perturbed under this alteration of the system. 
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Appendix A: A Single Rotating Physical Pendulum 

In this Appendix, we consider a much simpler system: a single 

physical pendulum, made to rotate uniformly about the vertical axis 

through the pivot. We find all equilibria and bifurcations of the system, 

and assess the normal mode frequency of the system for any non-

degenerate equilibria. This is partly to demonstrating the scope of 

analysis which the authors hope to complete in studying the RDP, but 

also a step towards the derivation of the double pendulum Lagrangian in 

Appendix B. 

Consider a single spinning physical pendulum of mass ,M  with 

principal axes aligned in the following way: 

• The pivot O  and center of mass CM a distance ℓ  apart along one of 

the principal axes of the rigid body, with moment of inertia PI  (P for 

“pendulum”, i.e., the axis of the arm of the pendulum). This axis is an 

angle θ  from the vertical. 

• Another principal axis, with moment ,NI  normal to the plane of the 

pendulum. This plane rotates about the vertical axis through the pivot 

with angular frequency .aω  

• The third principal axis, perpendicular to the previous two, has 

moment .I⊥  

• In a typical construction, NI  might be the largest moment, and PI  

the smallest, but this does not necessarily have to be the case. 
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Figure 8. A schematic showing the orientation of a solid body as a 

rotating physical pendulum. 

With these axes ordered ( ), , ,P N⊥  set the basis vectors P̂  pointing 

from CM to the pivot, N̂  into the page (i.e., in the direction of counter-

clockwise rotation when seen from above), and so ˆ ˆˆ N P= ×⊥  pointing as 

shown in Figure 8, keeping a right-hand oriented frame. In this frame the 

moment of inertia tensor [I] is diagonal, and the angular velocity is 

( )ˆˆ cos , sin , .a a az Nω = ω − θ = ω θ ω θ − θ
� ɺ ɺ  (A1) 

The kinetic energy of the system is 

[ ] 2

2

1

2

1
CMMvIT +ω⋅ω=

��
 

 ( ) .
2

1

2

1
sin

2

1
sin1

2

1 222222
CMNaaP MvIII +θ+θω+θ−ω= ɺ

⊥   (A2) 
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The velocity of the center of mass has two perpendicular components: 

one due to rotation about the vertical with angular frequency ,aω  and the 

other due to the pendulum swinging, i.e., changing θ  

( ) ˆˆ sin .CM av N= θ θ ω
� ɺℓ ℓ⊥ +   (A3) 

Thus ( )2 2 2 2 2sin ,CM av = θ + ω θɺℓ  and so 

( ) ( )

ignore

sin
2

1
sin

2

1

2

1

2

1 22222222� θω+θ+θω−+θ+ω= aaPNaP MIIIIT ɺℓɺ
⊥  

 ( ) ( ) .sin
2

1

2

1 22222 θω+−+θ+= aPN MIIMI ℓɺℓ ⊥   (A4) 

The gravitational potential energy ,U  with 0=U  at ,O  is 

,cos θ−= ℓMgU  making the Lagrangian of the system 

( ) ( ) ,cossin
2

1

2

1 22222
1 θ+θω−++θ+= ℓℓɺℓ MgIIMIM aPN ⊥L   (A5) 

where the subscript-1 is to indicate the single pendulum; the 

generalization to any number of pendula linked together being nL  for n a 

positive integer. 

We now non-dimensionalize time, and the Lagrangian will simplify 

considerably. Let ,τω=t  with ω  to be determined shortly. With 

,ωθ=θ=θ′ ɺτdd  the Lagrangian is 

( ) ( ) .cossin
2

1

2

1 222222
1 θ+θω−++θ′ω+= ℓℓℓ MgIIMIM aPN ⊥L   

(A6) 

Let ( ) ( ) ,,, 2222 ℓℓℓ MgKIIMEIME aPN =ω−+=ω+= ⊥  and define 

2ω  by .E E K= +  That is, 

( )2 2
2

2
,P a

N

M I I Mg

M I

+ − ω +
ω =

+

ℓ ℓ

ℓ

⊥   (A7) 
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and finally let 

( )

( )
[ ]

2 2

2 2
0, 1 .P a

P a

M I IE
Q

E M I I Mg

+ − ω
= = ∈

+ − ω +

ℓ

ℓ ℓ

⊥

⊥

 (A8) 

This gives the normalized Lagrangian 

( )2 21 1 1
sin 1 cos ,

2 2
Q Q

E
′= = θ + θ + − θ

L
1L  (A9) 

and the equation of motion is 

( ) θ−−θθ=
θ∂

∂
=θ ′′=

θ′∂

∂
sin1cossin QQ

d

d 11 LL

τ
  (A10) 

[ ] .sincos1 θθ−−−=θ ′′∴ QQ   (A11) 

(1) Equilibria and their stability 

The equilibria of the system are given by 

,0cos1 =θ−− QQ  OR ,,0 π±=θ  

Q

Q−
=θ

1
cos  









−
±=θ −

Q

Q

1
sec 1  for .

2

1
≥Q   (A12) 

Figure 9 shows the stability of the equilibria, as is easily confirmed by the 

potential function ( ),θV  and it’s second derivative 

( ) ( ) ,cos1sin
2

2 θ−−θ−=θ Q
Q

V  

( ) .cos1cos2 2
2

2
QQQd

Vd +θ−+θ−=θ   (A13) 
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Figure 9. The equilibria of a rotating physical pendulum, and the 

bifurcation at parameter value .21=Q  

The linearization of (A11) about any equilibrium ∗θ=θ  is 

( ) ( ),
2

2
∗

θ=θ

∗ θ−θ














θ
−=″θ−θ

∗d

Vd
 (A14) 

so that near equilibrium, solutions are an oscillatory normal mode 

τΩ±∗θ−θ ie~  if the second derivative of V is positive, and 

.2
2

θ=Ω dVd  Alternately, if the second derivative of V is negative, 

then the equilibrium is a saddle and has two exponential modes; one 

growing, one decaying: ,~ τα±∗θ−θ e  where .22
θ−=α dVd  In general 

we refer to 22 θdVd  as the normal mode rate (NMR). 
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To better understand the physics of these rates, consider again the 

definition (A7) of ,ω  and let ( ) ( ) 22
2 2

,
2

aP
N

IIM
rIMK

g
ω−+

+ =ω=ω ⊥ℓ
ℓ  

( )NIM +2ℓ  define gravitational and rotational characteristic frequencies, 

respectively, such that .222
gr ω+ω=ω  We then have that 

( ) ,1, 2222
gr QQ ω=ω−ω=ω  (A15) 

and ( ).222
grrQ ω+ωω=  The bifurcation 21=Q  and conditions such as 

21>Q  correspond to gr ω=ω  and ,gr ω>ω  respectively. We use these 

relations to evaluate the final column of Table 2, where we also use the 

alternate parameter ( ) =ωω=−= 221 grQQq .E K  

Table 2. Classification and normal mode rates of the equilibria of a 

rotating physical pendulum 

Equilibrium Dimensionless NMR 2 2d V dθ  Physical ,Ωω αω  

0=θ  

Q21 −=Ω  for ,210 <≤ Q  

12 −=α Q  for 121 ≤< Q  

22
rg ω−ω=ωΩ  for gr ω<ω  

22
gr ω−ω=αω  for gr ω>ω  

π±=θ  1=α  22
gr ω+ω=αω  

( )q1sec−±=θ  12 −−=Ω Q  for 121 ≤< Q  

441 rgr ωω−ω=ωΩ  for gr ω>ω  

      21 −−ω= qr  for 1>q  

Appendix B: Derivation of the RDP Lagrangian 

In this Appendix, we present the details of the derivation of the RDP 

Lagrangian. We begin with the rotating physical pendulum as described 

in Appendix A, and attach a second rigid body, as shown in Figure 10. 

The upper pendulum has physical parameters (that is, with units) as 
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follows: ( )
.,,

1
,,11 NP

ILM
⊥

 Pivot the second pendulum at a point 2O  on the 

1P  axis, so that the pivots 21 , OO  and the center of mass 1CM  of the 

first pendulum are collinear. The pivots are a distance L  apart. The 

second pendulum is similarly aligned via its principal axes (its pendulum 

axis 2P  is an angle ϕ  away from vertical), and has the following 

parameters: mass 22 , LM  is the distance from 2O  to the center of mass 

2CM  of the second pendulum, and principal moments ( )
.

2
,, NP

I
⊥

 The 

Lagrangian is 

[ ( ) ] ( ).coscos
2

1

2

1
22

2
22

2
212

2
ϕ+θ++ω⋅ω+= LLgMvMI

CM

��
LL   

(B1) 

The angular velocity 2ω
�

 is 

( ),,sin,cosˆˆ2 ϕ−ϕωϕω=ϕ−ω=ω ɺɺ
�

aaa Nz  

from which the rotational kinetic energy is 

[ ( ) ] ( ) ( ) ( ) ( )
.

2

1
sin

2

1
sin1

2

1

2

1 22222222
2

2
2 ϕ+ϕω+ϕ−ω=ω⋅ω ɺ

��
NaaP

IIII
⊥

  

(B2) 

The velocity of 2CM  has a component in the vertical plane, and an 

componentN̂  due to rotation .aω  The component in the plane is the 

velocity of 2O  plus the velocity of 2CM  relative to .2O  The velocity due 

to rotation about the vertical involves the horizontal distance from 1O  to 

.2CM  This gives 

( ) .ˆsinsinˆˆ

321

22212 ����� ������ �������
ɺ

���
ɺ�

���
v

a

vv

CM NLLLLv ωϕ+θ+ϕ+θ= ⊥⊥  (B3) 
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Observe that ( )θ−ϕ=⋅ cosˆˆ
21 ⊥⊥  and ,0ˆˆ =⋅ Ni⊥  so 

21
2
3

2
2

2
1

2 2
2

vvvvvv
CM

��
⋅+++=  

( ) ( ) .cos2sinsin 2
22

2
22

2
22 ϕθθ−ϕ+ϕ+θ+ϕ+θ= ɺɺɺɺ LLwLLLL a  

(B4) 

As with the rotating physical pendulum in Appendix A, we non-

dimensionalize time ,τω=t  so that the kinetic terms change by θ′ω→θɺ  

and ωϕ′ω→ϕ ,ɺ  to be determined. The Lagrangian of the rotating double 

pendulum is 

 

Figure 10. Schematic showing the construction and configuration of a 

rotating double pendulum from two physical pendula. 
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( ) 22
2 2

1
cos

2

1
ϕ′+ϕ′θ′θ−ϕ+θ′= CBAL  

2 21 1
sin sin sin sin

2 2
A B C+ θ + θ ϕ + ϕ  

1 2cos cos ,K K+ θ + ϕ   (B5) 

where the coefficients are 

( )( ) ,212
2

2
11 ω++=

N
ILMLMA  

,2
22 ω= LLMB  

( )( ) ,222
22 ω+=

N
ILMC  

( ) ( )( )12 2 2
1 1 2 ,aP

A M L M L I I= + + − ω
1

⊥
 

2
2 2 ,aB M L L= ω  

( ) ( )( )2 22 2
2 2 ,aP

C M L I I= + − ω
⊥

 

( )1 1 1 2 ,K M L M L g= +  

2 2 2 .K M L g=   (B6) 

The effective potential energy is 

( )2 2
eff

1
sin 2 sin sin sin

2
U A B C= − θ + θ ϕ + ϕ  

  1 2cos cos .K K− θ − ϕ    (B7) 

The coefficients are constrained once a characteristic frequency ω  is 

chosen. Following the method in Appendix A, we proceed by establishing 

a connection between the Lagrangians 2L  and 1 ,L  namely: 2L  has the 

same form as 1L  if the pendulum angles ,θ ϕ  are forced to coincide. 
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1 2 ϕ→θ=L L  

( ) ( ) ( )2 2
1 2

1
2 2 sin cos .

2 2

Q
A B C A B C K K′= + + θ + + + θ + + θ  (B8) 

Thus we identify 2 , 2E A B C E A B C= + + = + +  and 1 2 ,K K K= +  which 

gives 

( ) ( ) ( )
2

1 222
1 1 2 2

,

N N

E K

M L M L L I I

+
ω =

+ + + +
 (B9) 

and the coefficients of the RDP Lagrangian (1) are constrained by 

1 22 2 .A B C A B C K K+ + = + + + +   (B10) 

Appendix C: Full Outputs of Polynomial Systems 

(1) The general case 

The basic set of equations is the system for equilibrium; other systems 

are built from this by adding further equations. The polynomial system 

for equilibrium of the RDP consists of 

0
V∂

= ⇒
∂θ

 – 2*s1 – 2*chi*s1 + c1*d*qq*s*s1 + 2*c1*qq*s2 – c1*d*qq*s2, 

(C1) 

0
V∂

= ⇒
∂ϕ

 – 2*s2 + 2*chi*s2 + 2*c2*qq*s1 – c2*d*qq*s1 + 2*c2*d*qq*s2 

 – c2*d*qq*s*s2,  (C2) 

and we also include 

c1^2 + s1^2 – 1,  (C3) 

c2^2 + s2^2 – 1,  (C4) 

where chi stands for ,χ  d for 1 ,+ δ  s for 1 ,+ σ  and qq for .q  The 

bifurcation system is the above equations together with the Hessian 

determinant of the potential 
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[ ]( )( )det , 0H V θ ϕ = ⇒   (C5) 

4*c1*c2 - 4*c1*c2*chi^2 – 4*c1*c2^2*d*qq – 4*c1*c2^2*chi*d*qq – 

4*c1^2*c2^2*qq^2 + 4*c1^2*c2^2*d*qq^2 – c1^2*c2^2*d^2*qq^2 – 

2*c1^2*c2*d*qq*s + 2*c1*c2^2*d*qq*s + 2*c1^2*c2*chi*d*qq*s + 

2*c1*c2^2*chi*d*qq*s + 2*c1^2*c2^2*d^2*qq^2*s – c1^2*c2^2*d^2*qq^2*s^2 + 

2*c2*d*qq*s*s1^2 – 2*c2*chi*d*qq*s*s1^2 – 2*c2^2*d^2*qq^2*s*s1^2 + 

c2^2*d^2*qq^2*s^2*s1^2 + 4*c1*qq*s1*s2 + 4*c2*qq*s1*s2 + 

4*c1*chi*qq*s1*s2 – 4*c2*chi*qq*s1*s2 – 2*c1*d*qq*s1*s2 – 2*c2*d*qq*s1*s2 

– 2*c1*chi*d*qq*s1*s2 + 2*c2*chi*d*qq*s1*s2 – 4*c2^2*d*qq^2*s1*s2 + 

2*c2^2*d^2*qq^2*s1*s2 – 2*c1^2*d*qq^2*s*s1*s2 + 2*c2^2*d*qq^2*s*s1*s2 + 

c1^2*d^2*qq^2*s*s1*s2 – c2^2*d^2*qq^2*s*s1*s2 + 2*d*qq^2*s*s1^3*s2 – 

d^2*qq^2*s*s1^3*s2 + 4*c1*d*qq*s2^2 + 4*c1*chi*d*qq*s2^2 – 

2*c1*d*qq*s*s2^2 – 2*c1*chi*d*qq*s*s2^2 – 2*c1^2*d^2*qq^2*s*s2^2 + 

c1^2*d^2*qq^2*s^2*s2^2 + 4*qq^2*s1^2*s2^2 – 4*d*qq^2*s1^2*s2^2 + 

d^2*qq^2*s1^2*s2^2 + 2*d^2*qq^2*s*s1^2*s2^2 – d^2*qq^2*s^2*s1^2*s2^2 + 

4*d*qq^2*s1*s2^3 – 2*d^2*qq^2*s1*s2^3 –  

2*d*qq^2*s*s1*s2^3 + d^2*qq^2*s*s1*s2^3. 

(2) PMMR equations 

Elimination χ  in the above system by (22) results in the following 

system: 

– 4*d*s*s1 + 2*c1*d*qq*s*s1 – c1*d^2*qq*s*s1 + c1*d^2*qq*s^2*s1 + 4*c1*qq*s2 

– 4*c1*d*qq*s2 + c1*d^2*qq*s2 + 2*c1*d*qq*s*s2 – c1*d^2*qq*s*s2,  

(C6) 
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4*c2*qq*s1 - 4*c2*d*qq*s1 + c2*d^2*qq*s1 + 2*c2*d*qq*s*s1 - c2*d^2*qq*s*s1 

– 8*s2 + 4*d*s2 + 4*c2*d*qq*s2 – 2*c2*d^2*qq*s2 – 2*c2*d*qq*s*s2  

+ 3*c2*d^2*qq*s*s2 – c2*d^2*qq*s^2*s2,  (C7) 

c1^2 + s1^2 – 1,  (C8) 

c2^2 + s2^2 – 1,  (C9) 

while 

[ ]( )( )det , 0H V θ ϕ = ⇒   (C10) 

–16*c1^2*c2^2*qq^2 + 32*c1^2*c2^2*d*qq^2 – 24*c1^2*c2^2*d^2*qq^2 + 8*c1^2*c2^2*d^3*qq^2 – 

c1^2*c2^2*d^4*qq^2 + 32*c1*c2*d*s – 16*c1*c2*d^2*s – 16*c1^2*c2*d*qq*s + 16*c1^2*c2*d^2*qq*s – 

16*c1*c2^2*d^2*qq*s – 4*c1^2*c2*d^3*qq*s + 8*c1*c2^2*d^3*qq*s – 16*c1^2*c2^2*d*qq^2*s + 

32*c1^2*c2^2*d^2*qq^2*s – 20*c1^2*c2^2*d^3*qq^2*s + 4*c1^2*c2^2*d^4*qq^2*s – 8*c1^2*c2*d^2*qq*s^2 + 

8*c1*c2^2*d^2*qq*s^2 + 4*c1^2*c2*d^3*qq*s^2 – 12*c1*c2^2*d^3*qq*s^2 – 8*c1^2*c2^2*d^2*qq^2*s^2 + 

16*c1^2*c2^2*d^3*qq^2*s^2 – 6*c1^2*c2^2*d^4*qq^2*s^2 + 4*c1*c2^2*d^3*qq*s^3 – 

4*c1^2*c2^2*d^3*qq^2*s^3 + 4*c1^2*c2^2*d^4*qq^2*s^3 – c1^2*c2^2*d^4*qq^2*s^4 + 16*c2*d*qq*s*s1^2 – 

16*c2*d^2*qq*s*s1^2 + 4*c2*d^3*qq*s*s1^2 – 8*c2^2*d^2*qq^2*s*s1^2 + 8*c2^2*d^3*qq^2*s*s1^2 – 

2*c2^2*d^4*qq^2*s*s1^2 + 8*c2*d^2*qq*s^2*s1^2 – 4*c2*d^3*qq*s^2*s1^2 + 4*c2^2*d^2*qq^2*s^2*s1^2 – 

12*c2^2*d^3*qq^2*s^2*s1^2 + 5*c2^2*d^4*qq^2*s^2*s1^2 + 4*c2^2*d^3*qq^2*s^3*s1^2 – 

4*c2^2*d^4*qq^2*s^3*s1^2 + c2^2*d^4*qq^2*s^4*s1^2 + 32*c2*qq*s1*s2 – 48*c2*d*qq*s1*s2 + 

24*c2*d^2*qq*s1*s2 – 4*c2*d^3*qq*s1*s2 – 16*c2^2*d*qq^2*s1*s2 + 24*c2^2*d^2*qq^2*s1*s2 – 

12*c2^2*d^3*qq^2*s1*s2 + 2*c2^2*d^4*qq^2*s1*s2 + 16*c1*d*qq*s*s1*s2 + 16*c2*d*qq*s*s1*s2 – 

16*c1*d^2*qq*s*s1*s2 – 16*c2*d^2*qq*s*s1*s2 + 4*c1*d^3*qq*s*s1*s2 + 4*c2*d^3*qq*s*s1*s2 – 

8*c1^2*d*qq^2*s*s1*s2 + 8*c2^2*d*qq^2*s*s1*s2 + 12*c1^2*d^2*qq^2*s*s1*s2 – 28*c2^2*d^2*qq^2*s*s1*s2 

– 6*c1^2*d^3*qq^2*s*s1*s2 + 22*c2^2*d^3*qq^2*s*s1*s2 + c1^2*d^4*qq^2*s*s1*s2 – 

5*c2^2*d^4*qq^2*s*s1*s2 + 8*c1*d^2*qq*s^2*s1*s2 – 4*c1*d^3*qq*s^2*s1*s2 – 8*c1^2*d^2*qq^2*s^2*s1*s2 

+ 8*c2^2*d^2*qq^2*s^2*s1*s2 + 8*c1^2*d^3*qq^2*s^2*s1*s2 – 12*c2^2*d^3*qq^2*s^2*s1*s2 – 

2*c1^2*d^4*qq^2*s^2*s1*s2 + 4*c2^2*d^4*qq^2*s^2*s1*s2 – 2*c1^2*d^3*qq^2*s^3*s1*s2 + 

2*c2^2*d^3*qq^2*s^3*s1*s2 + c1^2*d^4*qq^2*s^3*s1*s2 – c2^2*d^4*qq^2*s^3*s1*s2 + 8*d*qq^2*s*s1^3*s2  
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– 12*d^2*qq^2*s*s1^3*s2 + 6*d^3*qq^2*s*s1^3*s2 – d^4*qq^2*s*s1^3*s2 + 8*d^2*qq^2*s^2*s1^3*s2 – 

8*d^3*qq^2*s^2*s1^3*s2 + 2*d^4*qq^2*s^2*s1^3*s2 + 2*d^3*qq^2*s^3*s1^3*s2 – d^4*qq^2*s^3*s1^3*s2 + 

16*c1*d^2*qq*s*s2^2 – 8*c1*d^3*qq*s*s2^2 – 8*c1^2*d^2*qq^2*s*s2^2 + 8*c1^2*d^3*qq^2*s*s2^2 – 

2*c1^2*d^4*qq^2*s*s2^2 – 8*c1*d^2*qq*s^2*s2^2 + 12*c1*d^3*qq*s^2*s2^2 + 4*c1^2*d^2*qq^2*s^2*s2^2 – 

12*c1^2*d^3*qq^2*s^2*s2^2 + 5*c1^2*d^4*qq^2*s^2*s2^2 – 4*c1*d^3*qq*s^3*s2^2 + 

4*c1^2*d^3*qq^2*s^3*s2^2 – 4*c1^2*d^4*qq^2*s^3*s2^2 + c1^2*d^4*qq^2*s^4*s2^2 + 16*qq^2*s1^2*s2^2 – 

32*d*qq^2*s1^2*s2^2 + 24*d^2*qq^2*s1^2*s2^2 – 8*d^3*qq^2*s1^2*s2^2 + d^4*qq^2*s1^2*s2^2 + 

16*d*qq^2*s*s1^2*s2^2 – 16*d^2*qq^2*s*s1^2*s2^2 + 4*d^3*qq^2*s*s1^2*s2^2 + 8*d^3*qq^2*s^2*s1^2*s2^2 

– 4*d^4*qq^2*s^2*s1^2*s2^2 – 4*d^3*qq^2*s^3*s1^2*s2^2 + 4*d^4*qq^2*s^3*s1^2*s2^2 – 

d^4*qq^2*s^4*s1^2*s2^2 + 16*d*qq^2*s1*s2^3 – 24*d^2*qq^2*s1*s2^3 + 12*d^3*qq^2*s1*s2^3 – 

2*d^4*qq^2*s1*s2^3 – 8*d*qq^2*s*s1*s2^3 + 28*d^2*qq^2*s*s1*s2^3 – 22*d^3*qq^2*s*s1*s2^3 + 

5*d^4*qq^2*s*s1*s2^3 – 8*d^2*qq^2*s^2*s1*s2^3 + 12*d^3*qq^2*s^2*s1*s2^3 – 4*d^4*qq^2*s^2*s1*s2^3 – 

2*d^3*qq^2*s^3*s1*s2^3 + d^4*qq^2*s^3*s1*s2^3. 


