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Abstract 

A recent 15 moments relativistic model of extended thermodynamics for 

polyatomic gases is here considered; it is based on a new hierarchy of moments 

that takes into account the total energy, i.e., the rest energy and the energy of 

the molecular internal mode. The classical limit was there studied but only for 

the equations in integral form. However, after that, these equations were 

manipulated to obtain the closure up to first order with respect to equilibrium 

but expressed in terms of physical variables. Therefore, it is necessary to 

perform the non relativistic limit also of the resulting final closure and 

compare it with the known results concerning the classical case. This goal is 

realized in the present article. Another result here obtained is the expansions 

of the scalar coefficients appearing in the closure as finite polynomials in ,
1

2c
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where c is the light speed. The characteristic equations for determining the 

wave velocities are here deducted also for the subsystems with 5 moments 

(Euler equations), and with 6 or 14 moments. All the present results holds in 

the non polytropic case; the polytropic case is obtained only as a subcase. 

1. Introduction 

To understand the scientific framework in which the present article is 

inserted, let us recall that Extended Thermodynamics was formulated to 

eliminate some drawbacks of Ordinary Thermodynamics, for example by 

obtaining a set of field equations which is hyperbolic (in armony with the 

cause and effect principle) and predicts finite wave speeds of propagation 

(in armony with the Einstenian Principle according to which nothing can 

propagate with a velocity greater than that of light).  

An important article in this context was [1] concerning the classical 

case, followed by [2] which implemented it for the relativistic case. 

However, the resulting field equations contained an expression for the 

energy e and the pressure p which restricted the same results only to the 

case of monoatomic gases. Subsequently, Prof. Ruggeri and coworkers 

found the way to implement them, for the classical case, to polyatomic 

gases and produced the article [3]. One of the outstanding ideas of this 

and following articles was that there exist two blocks of field equations, 

namely the so-called mass block and a new one called the energy block. 

The relativistic version of this work was realized in [4]. The starting point 

was the Boltzmann-Chernikov equation (see Equation (4) of [4]), where 

the distribution function f is supposed to depend not only on the               

4-dimensional position αx  and on the four-momentum ,αp  but also on 

the internal energy .I  Moreover, Q is the collisional term. From the 

Boltzmann-Chernikov equation, the following set of field equations were 

obtained: 

.,0,0 βγαβγ
α

αβ
α

α
α =∂=∂=∂ IATV   (1) 
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But these equations have 15 independent components; so to recover the 

classical known case, it was decided to take only the traceless part of 

Equation ( ) ,1 3  i.e., >βγ<>βγ<α
α =∂ IA  instead of .βγαβγ

α =∂ IA  

However, the fact to simply put out the trace of Equation ( )31  is 

someway unnatural and this was confirmed in the subsequent article [6] 

where more moments were considered and it was seen that in the non 

relativistic limit the relativistic model predicts for the classical case field 

equations with more than 2 blocks but, in any way, there is a particular 

structure with which these blocks can be assembled. 

Following these guidelines, the article [7] was produced in the 

framework of classical thermodynamics. But, in [8], it was noted that the 

factor 
2

1
mc
j
I

+  (introduced in the definitions of [4] for αβγαβ AT ,  and 

)βγI  is nothing more than the first two terms of the binomial Newtonian 

formula for  ;1
2

j

mc








+
I

 moreover, 
2

1
mc

I
+  has more physical meaning 

because it is the total energy (i.e., I  plus the rest mass energy )2mc  

normalized by dividing it by .2mc  So it is more convenient to replace 

2
1

mc
j
I

+  with ( ) j

mc2
1

I
+  in the definitions of jA

ααα …1  and .1 jI
αα ⋯

 

For this reasons the article [7] was updated in [9]. The relativistic 

counterpart of this article has been published in [10]. In its Equation (8) 

we find the new expressions of jA
ααα …1  and .1 jI

αα ⋯
 As a bonus, we 

obtain that all the closure can be determined in terms of the energy e and 

its derivatives with respect to the absolute temperature T or, equivalently 

of  
T

mc

Bk

2

=γ  with Bk  the Boltzmann constant. 
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However, for length reasons some interesting further investigations 

are missing in this article and also in the subsequent one [11]. So they are 

here reported. They are too important; for example, in [10], the classical 

limit was studied but only for the equations in integral form. However, 

after that, these equations were manipulated to obtain the closure up to 

first order with respect to equilibrium but expressed in terms of physical 

variables. Therefore, it is necessary to perform the non relativistic limit 

also of the resulting final closure and compare it with the known results 

concerning the classical case. This was done in [6]; in fact, on pages 432 

and 433 the classical limit was studied in the integral form and, after 

that, on pages 434 and 435 it was performed for the final set of equations 

by using also the equations there found at the end of page 435. The 

importance of this aspect is outlined by the fact that the same 

calculations are reported with more particulars in the second set of 

equations on page 509 of [12] which concerned always the old approach of 

[4]. Now that [4] has been updated in [10], the same considerations need 

to be done for the new approach. Moreover, the new structure of [10] 

allows to perform similar calculations but in an easier and more elegant 

way. The new counterparts of the second set of equations on page 509 of 

[12] are here reported in (13). 

In Section 4, the particular case of a polytropic case is exploited, while 

in sect. 5 the wave speeds are investigated for the subsystems with 14, 6 

or 5 moments. In this way we can see how they evolve in the transition 

from a subsystem to the other with an increasing number of moments, In 

particular, the 6 moments model is the smallest one with dissipative 

effects and can be useful to study the evolution of the universe in its first 

stage when dynamic pressure dominates over all the other dissipative 

components. So in the present article there are the following new original 

parts: 



NON RELATIVISTIC LIMIT OF THE CLOSURE OF A …  91 

• The expansions of the scalar coefficients appearing in the closure as 

finite polynomials in ,
1
2c

 both for the non polytropic case and for the 

polytropic case. This is necessary for the following point and can be useful 

for forthcoming articles. 

• The classical limit of the closed system of 15 balance equations, 

showing that it coincides with what is reported in the paper [9]. 

• The calculation of the wave velocities for the subsystems with 14, 6, 

and 5 moments. 

2. The New Closed Field of Equations and the Expansions of  

the Coefficients as Powers of 
2

1

c

 

The closure found in [10] for the field equations (1) is the following 

one: 

( ) ( ) ,2, >αβ<βααββααβαα ++∏++=ρ= tqUhpUeUTUV  

( )γαβ
π∆

γβααβγ










∏−∆−θρ+








∆+ρθ= Uh

D

N

D

N

c
cUUU

c
A

44
212

2

402 3
4

3

4

1
 

( ) ( ) ( ),3
5

33
5

3

31

3

3

2

γ>αβ<γαβγβα +++ UtCqh
D

N
UUq

D

N

c
 

βγ
π∆

γββγ










∏+∆+∆−= h

D

N

D

N

c
UU

c
I

τ
ττ

1

4

1

4

1

44
24

 

( ) ,
112 3

52
2,1

3,1

3

3

2

>βγ<γβ −








θ

θ
+−+ tCUq

cD

N

c τ
ττ

  (2) 
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where the independent variables are ρ  (the mass density), αU  (the         

4-velocity constrained by ) γ=α
α ,2cUU  (related to the absolute 

temperature T  by  ,
2

T

mc

Bk
=γ  with Bk  the Boltzmann constant),            

∏  (the dynamic pressure), αq  (the heat flux constrained by 

) >αβ<
α

α = tUq ,0  (the deviatoric shear viscous stress tensor constrained 

by )0,0 == αβ
>αβ<

α
>αβ< gtUt  and ∆  as 15-th variable (from ( )32  it is 

evident that ( ) ).
4

.2

αβγαβγ −=∆ eqAA
c

 Moreover, we have that 

αβαβ −= gh  ,
1
2

βα+ UU
c

 the pressure p  and the energy are given by 

( )

( )

,

1

,

1,2
0

22,2
02

2

II

II
I

dJ

d
mc

J

cmneTn
nmc

p B

φ

φ







+

==
γ

=
∗

∞+

∗
∞+

∫

∫
k   (3) 

with ( )∗∗ γ= nmnm JJ ,,  and .1
2








+⋅γ=γ∗

mc

I
 

The matrices 31334 ,,,,, NNDNND ∆Π  and the scalars ijC θ,5  are 

reported in Equations ( ) ( ) ( )24242 34,32,29 −−  and (16) of [10]. Here we 

define 

2c
e

−
ρ

=�  (In view of the fact that ),lim
2

classicc
ce

�=
ρ

ρ−
∞+→  

,, 1
2

12

2
2

1 T

f

m

T
ff

Tm

T
f BB

∂

∂
+ε=

∂

ε∂
+ε=

kk
   

,, 1
2

2

23 m

T
g

T

f

m

T
ff BB kk

+ε=
∂

∂
+ε=  

.3,2 223112 g
m

T
fgg

m

T
fg BB kk

+=+=   (4) 



NON RELATIVISTIC LIMIT OF THE CLOSURE OF A …  93 

It is interesting that these quantities have finite limits for c  going to ∞+  

and they hold both in the polytropic case and in the non polytropic case. 

They allow also to rewrite the coefficients ijϑ  as finite polynomials in 

,
1
2c

 i.e., 

,
1

21,1,1
4122,021,00,0
c

f
cc

+
ε

+=ϑ
ε

+=ϑ=ϑ  

,
11

331
624123,0
c

f
c

f
c

++
ε

+=ϑ  

,
11

4
1

641
83624124,0
c

f
c

f
c

f
c

+++
ε

+=ϑ  

,
1

3
1

3,
1

4122,121,1
c

g
m

T

cm

T

cm

T BBB kkk
+=ϑ=ϑ  

,
1

6
1

12
1

6
624123,1
c

g
m

T

c
g

m

T

cm

T BBB kkk
++=ϑ  

,
1

3
1

3
61

2

4

2

3,2
c

g
m

T

cm

T BB








+








=ϑ

kk
 

,
1

10
1

30
1

30
1

10
83624124,1
c

g
m

T

c
g

m

T

c
g

m

T

cm

T BBBB kkkk
+++=ϑ  

.
1

15
1

215
1

15
821

2

61

2

4

2

4,2
c

gg
pp

c
g

pp

c

p






 +

ρ








ρ
+






 +

ρ








ρ
+








ρ
=ϑ  

(5) 

From these relations, it follows 

,
20,01,0
c

ε
=ϑ−ϑ  

,
1

2
410,01,02,0
c

f=ϑ+ϑ−ϑ  

,
1

33
620,01,02,03,0
c

f=ϑ−ϑ+ϑ−ϑ  
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,
1

464
830,01,02,03,04,0
c

f=ϑ+ϑ−ϑ+ϑ−ϑ  

,
1

3 411,1
2,1

c
g

m

TBk=ϑ−
ϑ

 

,
1

3
2

6 621,1
2,13,1

c
g

m

TBk=ϑ+
ϑ

−
ϑ

 

,
1

210 831,12,1
3,14,1

c
g

p

ρ
=ϑ−ϑ+

ϑ
−

ϑ
 

.
1

15
1

155
821

2

61

2

3,24,2
c

gg
pp

c
g

pp






 +

ρ








ρ
+






 +

ρ








ρ
=ϑ−ϑ   (6) 

By using these expressions we will prove that the scalar functions 

appearing in the closure be written as 

,
1

21,,
4122,0

2

c
f

c
T

m
pce B +

ε
+=ϑρ=+ρ=

k
�  

,
1

3
1

3
4122,1
c

g
m

T

cm

T BB kk
+=ϑ  

,
1

6
1

12
1

6
624123,1
c

g
m

T

c
g

m

T

cm

T BBB kkk
++=ϑ   (7) 

( ) ( )
64642

86864

64642

4242

1
1

2

3
51

2

3
51

2
1

1
1

1
3

1
2

1
3

1
2

1
1

1
2

1
1

1
2

1
1

1

1
1

11
1

1

4

1

c

p

c

p

c

p

c

p

c

p

c

p

c

p

ccc

c

p

c

p

ccc

c

p

c

p

cc

ggg

ggfff

ggff

gf

D

ρρρρρ

ρρ

ρρ

ρρ

+

+

+ε

+ε

=  

,
11

42416

2









′′+′








ρ
= D

c
D

c

p
  (8) 
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with 

.

1

1

,

1

11

13
5

21

3321

221

11

4

3
5

21

2321

121

1

4

ggg

gfff

gff

gf

D

gg

gfff

gff

f

D

ε

ε

=′′

ε

ε

=′  

( ) ( )
86864

86864

64642

4242

1
219

51
13

51
3

1
2

1
1

1
3

1
2

1
3

1
2

1
1

1
2

1
1

1
2

1
1

1

1
1

11
1

1

4

1

c

p

c

p

ccc

ccccc

ccccc

cccc

gggggg

ggfff

ggff

gf

DN

+−+−−−−

+

+ε

+ε

=+

ρρ

π  

,
11

2

2

201

2

18

2
ππ









ρ
+








ρ
=








ρ
N

p

c
N

p

c

p
  (9) 

where 

( )

,

11

13
5

321

2321

121

1

1

gggg

gfff

gff

f

N

p
+−−−−

ε

ε

=

ρ

π  

( )

,

1

219
5

321

3321

221

11

2

ggggg

gfff

gff

gf

N

p
+−−−−

ε

ε

=

ρ

π  
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( ) ( )

( ) ( ) ( )




 +++

+

+ε

+ε

=

ρρρρρρ

ρρρρρ

ρρ

ρρ

∆

86864

64642

64642

4242

1
21

1
1

2

3
51

3
1

2
1

1

1
1

2

3
51

2

3
51

2
1

1
1

1
2

1
1

1
2

1
1

1

1
1

11
1

11

c

p

c

pp

c

p

c

p

c

p

c

p

c

p

c

p

c

p

c

p

c

p

c

p

ccc

c

p

c

p

cc

gggggg

ggg

ggff

gf

N  

,
11

2

3

181

3

16

∆∆








ρ
+








ρ
= N

p

c
N

p

c
 (10) 

where 

( ) ( )

,
1

1

,
1

11

213
5

321

13
5

21

221

11

2

13
5

321

3
5

21

121

1

1

ggggg

ggg

gff

gf

N

gggg

gg

gff

f

N

pp
+

ε

ε

=

+

ε

ε

=

ρ

∆

ρ

∆  

( )[ ] ( ) ,
1

92,
1

9
10213

2

338

2
12

2

3
c

ggg
m

T
DN

c
gg

m

T
D BB −








=−−








=

kk
 

(11) 

,
1

1
1

45
5

218

4

331 







+








+

γ
=

c
g

cm

T
DN Bk  

.
1

21

2

44

1
1

1
21

1
1

5

c

c

B

c

B

g

gg
m

T
g

m

T

C
+









++








++

=

kk

   (12) 
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2.1. Proof of (7)-(12) 

The expressions (7), (12) are easy consequences of (5). 

• To make easier the proof of Equation (8), let us introduce the matrix 

























−

−

=

1000

0100

0210

0111

M  from which it follows 

MDMD T
44 =  

( )

.

52

43

6432

3

232

2

91,1361,131,1

0,01,00,01,0

33102,03,04,02,03,00,01,02,0

0,01,0

2,13,16
1

2,03,00,01,02,00,01,0

2,13
1

0,01,02,00,01,00,0

3,22,13,12,1

2,13,14,1

ϑϑϑϑ

ϑϑϑ

ϑ+−ϑ−ϑ

ϑ+ϑ−ϑ−ϑ+

+−ϑ+ϑ−ϑϑ−ϑϑ+ϑ−ϑ

ϑ−ϑ+

ϑ−ϑϑ−ϑϑ+ϑ−ϑϑ−ϑ

ϑϑ+ϑ−ϑϑ−ϑϑ

=  

By substituting here ( ) 9,7,6,15  and ( ) 716 −  we obtain (8). 

• Let us consider now .πN  In particular, we have 

.

9

5

1066331,1

104,03,02,0

3,16
1

3,02,01,0

2,13
1

2,01,00,0

4

4,23,24,13,13,12,12,1

4,1

ϑ−ϑϑϑϑϑϑ

ϑ
π

−−−ϑ

ϑϑϑ

ϑϑϑϑ

ϑϑϑϑ

=+ DN  
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With the above used matrix ,M  this determinant becomes 

( ) MDNMDN T
44 +=+ ππ  

( )

.

5

43

6432

3

232

2

91,12,11021,163

2

31,1

0,01,00,01,0

33102,03,04,02,03,00,01,02,0

0,01,0

2,13,16
1

2,03,00,01,02,00,01,0

2,13
1

0,01,02,00,01,00,0

4,23,24,13,13,12,12,1

2,13,14,1

ϑ−ϑϑϑϑϑϑ

ϑϑϑ

ϑ+ϑ−−ϑ−−−ϑ

ϑ+ϑ−ϑ−ϑ+

+−ϑ+ϑ−ϑϑ−ϑϑ+ϑ−ϑ

ϑ−ϑ+

ϑ−ϑϑ−ϑϑ+ϑ−ϑϑ−ϑ

ϑϑ+ϑ−ϑϑ−ϑϑ

=
 

By using here the decompositions (5) and (6) we obtain (9). 

• Let us consider now ∆N  by using the above matrix M  and we see 

that 

MNN ∆∆

−

−
=

1100

0100

0011

0001

 

( )
.

2

52

2332

2

9

5

1,12,13,12
1

4,110
1

1,1361,13

91,1361,131,1

2,13,16
1

0,01,02,03,00,01,02,00,01,0

2,13
1

0,01,02,00,01,00,0

3,24,22,13,12,1

3,22,13,12,1

ϑ−ϑϑϑϑ

ϑϑϑϑ

ϑ−ϑ+ϑ−ϑϑ+−ϑ−

ϑ+−ϑ−ϑ

ϑ−ϑϑ−ϑ+ϑ−ϑϑ+ϑ−ϑϑ−ϑ

ϑϑ+ϑ−ϑϑ−ϑϑ

=  

By using here the decompositions (5) and (6) we obtain (10). 
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• Let us continue with .3D  We see that 

.
963

3

10

31

13

01

1,12,13,12
3

1,12,1

1,12,11,1

33
θ+θ−θθ−θ

θ−θθ

=
−

−

= DD  

By using here ( )65  and ( ) 6,56  we obtain ( ) .11 1  

• Let us consider now .2 33 DN −  We see that 

10

31

3213

01

2

3,14,110
9

2,13,12
1

2,11,1

33

−

θ−θθ−θ

θθ

−

=− DN  

.
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3

1,12,13,12
9

4,110
9

1,12,13,12
1

1,12,11,1

θ−θ+θ−θθ+θ−θ

θ−θθ

=  

By using here ( )65  and ( ) 7,6,56  we obtain ( ) .11 2  

• Let us finish with 31N  

23,12
15

4,222,13,2

2,11,1

331 1
3

1
55

5
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T
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TDN
BB θ−θθ−θ

θθ

=
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− kk  
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,

1
1

1
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1
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3

2,12

c
g

cm

T

cm

T

B

B

+








θ

=
k

k

 

where in the last step we have used Equations (5); the result proves 

( ) .11 3  

3. The Non Relativistic Limit of the Final Equations 

In [10, 11], the classical limit of the field equations was considered 

but only for the equations in the integral form. However, after that, these 

equations were manipulated to obtain the closure up to first order with 



S. PENNISI 100 

respect to equilibrium but expressed in terms of physical variables. 

Therefore, it is necessary to perform the non relativistic limit also of the 

resulting final closure and compare it with the known results concerning 

the classical case. This was done in [6] which concerned the old set of 

balance equations; in fact, on pages 432 and 433 the classical limit was 

studied in the integral form and, after that, on pages 434 and 435 it was 

performed for the final set of equations by using also the equations there 

found at the end of page 435. The importance of this aspect is outlined by 

the fact that the same calculations are reported with more particulars in 

the second set of equations on page 509 of [12] which concerned always 

the old approach of [4]. Now that [4] has been updated in [10], the same 

considerations need to be done for the new approach and this is the 

subject of the present section. In the present new model this non 

relativistic limit becomes easier, thanks to the results of the previous 

section. 

To do this non relativistic limit we need some ingredients, i.e., the 

following particular limits (here we use 12
20

1102
0
1 3, θρ=ρθ= cAA  in 

order to have the same notation of [4]) 

( ) ,2,2lim,lim 1
2440

1
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.1lim
1
4

12

4 D

N
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D

N
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ππ

+∞→
=










+   (13) 
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Let us begin noting that ( )313  is a direct consequence of ( )14  and ( ) ;5 3  

after that, ( ) 2,113  are its consequences. Similarly, ( )513  is a direct 

consequence of ( )54  if we take into account that 11
2 θρ= cp  according to 

( ) ;5 6  after that, ( )413  is its consequence. The Equation ( )713  comes from 

( ) 2,111  and ( )613  is its consequence. The Equation ( )813  is a consequence 

of ( ) .11 3,1  The Equation ( )1013  is a consequence of (12) and ( ) .4 5  After 

that, it implies ( ) .13 9  

From (8)-(10), it follows that 

( ) ,lim,lim 1

2

4
18

4

2

4
16 ππ

+∞→+∞→








ρ
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
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ρ
= N

p
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,lim 1

3
16 ∆∆
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







ρ
= N

p
Nc

c
 

and these results imply ( ) .13 12,10  Finally, ( )1113  is a consequence of 

( ) .13 12   

Now we use these ingredients to calculate the non relativistic limit of 

the field equations (47) of [10] which are expressed in terms of the 

material derivative (we don’t report them here for the sake of brevity). In 

particular, we calculate the non relativistic limits of ( ) ( )21 47,47  with 

( )347,i=δ  minus ( )147  multiplied by ( )4
2 47,c  with ( )547,ij=δθ  

minus ( )247  multiplied by 2c  (with ),i=δ  the sum of ( )647  plus ( )347  

multiplied by 22c−  and ( )147  multiplied by ;4c  by using the above 

particular limits, we find that the limits of these linear combination of the 

field equations are 
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Obviously, we can substitute here 3211 ,,, gggf  from Equation (4) and 

π∆
11

1
4 ,, NND  from Equations ( ) ( )22 9,8  and ( ) ;10 2  the Equations (14) are 

equivalent to (53) of [9], where there is a change of notation which here I 

don't consider necessary because it makes the results apparently more 

complicated, without gaining elegance.  
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In (14), fɺ  or 
dt

df
 denote the material derivative of ,f  i.e., 

.fvf
dt

df
f i

i
t ∂+∂==ɺ  

4. The Polytropic Case 

In this case the measure ( )Iφ  has the form ( ) a
II =φ  with 

2

5−
=
D

a  (see Equation (12) of [4]), for example, 5=D  for diatomic 

gases, while the monoatomic gases can be obtained in the limit for D  

going to 3. 

So in the polytropic case we have 
m

TD Bk

2
=ε  (see Equation (9) of [4] 

which doesn't change in the new model because the expression of αβ
.eqT  

remains the same). So (4) becomes  

,
22 ρ

==ε
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TD Bk  
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and the determinants in Equations (8)-(12) become 
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The above results are useful to have the closure of the field equations for 

these particular gases. Regarding the limits in Equation (13), they 

become 
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We can evaluate also the non relativistic limit of the field equations, i.e., 

(14) for this particular case of polytropic gases; I avoid to write them for 

the sake of brevity, but we note that their subsystem with 14 fields gives 

Equations (68) of [4]. 

5. Wave Equations for the Subsystems 

In [11], the wave equations for the 15-moment model was written and 

studied. It was found that the corresponding characteristic equations can 

be written by simply taking the derivatives with respect to Aδλ  of the 

quantity 
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and equating them to zero. The expressions of the tensors in the right 

hand side are reported in [9]; moreover, 

ααα η+ξ=ϕ
c

u
 with .1,0,1 −=ηη=ηξ=ξξ α

α
α

α
α

α   (17) 

In this way the speeds of wave propagation u  are found; someone may 

not like that the eigenvectors are written in terms of the Lagrange 

multipliers .Aδλ  But this isn’t a problem because, after having written 

the characteristic equations, we can do the following change of variables: 

( ) ( ),, EE
EE ββββ δλ−δλ+δλ=δλδλ−δλ+δλ=δλ  
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2 
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  (18) 

(Equations (26) and (40) of [4] have been used), while ,, E
E ββ δλ−δλδλ−δλ  

νµδλ  can be deduced from Equation (36) of [10] and they read 

,21 ∆δ+δ=δλ−δλ π aaE  

( ) ,321 ββπββ δ+∆δ+δ=δλ−δλ q
E bUbb  

( ) ( ) ( )γββγπγβπβγ δα+∆δβ+δα+∆δβ+δα=δλ qUhUU 32211 2  

.2 4 >βγ<δα+ t   (19) 

In this way the characteristic equations transform in those we would 

obtain by starting directly with the field equations (1), (2) expressed in 

terms of the physical variables, i.e., 
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where the last 5 equations are present because we are dealing with 

variables constrained by 

.0,0,0, 332 ==== >αβ<
αβ
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α
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α
α thtUqUcUU  

Now the matrix of the coefficients of the differentials must have a 

determinant equal to zero and this equation gives the wave speeds. What 

we have said lets us understand that the determinant obtained by 

starting from Equations (20) is equal to that obtained in terms of the 

Lagrange multipliers multiplied on the right by the determinant of the 

linear transformation (19) and on the left by its transposite. 

But now we want to find the wave speeds for the subsystems with 14, 

6 and 5 moments which were not treated in [11]. 

5.1. Wave speeds for the subsystem with 14 moments 

This study is easy in terms of the Lagrange multipliers. In fact, this 

subsystem can be obtained from that with 15 moments by putting 

,νν µµ ∑=λ  where νµ∑  is a traceless tensor. So Equation (17) becomes 
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and the characteristic equations are 
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Here the expressions of the tensors in the left hand sides are reported in 

[10]. For the sake of simplicity, we calculate also the coefficients of the 

differentials in the reference frame where αU  and αϕ  have the 

components ( )0,0,0,cU ≡α  and ( );0,0,, 10 ϕϕ≡ϕα  in any case, we 

can at the end express again all the results in covariant form replacing 

0ϕ  and ( )21ϕ  with α
αϕ=ϕ U

c

1
0  and ( ) .

2
1

αβ
βαϕϕ=ϕ h  

• We note that a first eigenvalue is 

,00 =ϕ  i.e., ,

γ
γ

α
α

ξ

η
=

U

U
cu  i.e., ,0=u  (23) 

where the last expression holds when .
1

γγ =ξ U
c

 

In fact, we firstly note that 01 =/ϕ  under the hypothesis that the 2 

time-like vectors γξ  and γU  are oriented both towards the future or both 

towards the past. After that, if ,00 =ϕ  Equation ( ) ,22 1  the components 

0, 1, 2, 3 of Equation ( )222  and the components 00, 01, 02, 03, 12, 13, 22, 

33, 23 of Equation ( )322  give a system whose solution is 

0,0,0,0 1312011 =∑δ=∑δ=∑δ=δλ  and the remaining unknowns 

are linked only by 
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( ) 00
2

3,23,102,11,1 626 ∑δϑ+ϑ+δλϑ+δλϑ cc  

 ( ) ,04 3322
2

3,2 =∑δ+∑δϑ− c  

( ) 00
2

4,24,103,12,1 63510 ∑δϑ+ϑ+δλϑ+δλϑ cc  

 ( ) ,04 3322
2

4,2 =∑δ+∑δϑ− c  

,025,025 304,233,2204,223,2 =δλϑ+δλϑ=δλϑ+δλϑ cc   (24) 

where we have taken into account of .33220011 ∑δ−∑δ−∑δ=∑δ  We 

note that these equations are a little different from the corresponding 

ones in the 15 moments model, as reported in Equation (38) of [11]. Also 

the conclusions are a little different because in the 15 moments model 

this eigenvalue has multiplicity 7, while here we have 10 free unknowns 

linked by 4 equations and the eigenvalue (23) has multiplicity 6. 

• For the other eigenvalues we have 00 =/ϕ  and we define 

,,,,, 501
2

400
2

31201 XcXcXcXcX =∑δ=∑δ=δλ=δλ=δλ  

( ) ,,,, 312
2

220
2

1263322
2 YcYcYcXc =∑δ=∑δ=δλ=∑δ+∑δ  

,,,, 423
2

313
2

230
2

13 YcZcZcZc =∑δ=∑δ=∑δ=δλ  

( ) .43322
2 Zc =∑δ−∑δ  

It follows that .6411

2 XXc −=δ∑  With this notation Equation (21) can 

be written as 

kkkkkk

k

k
ZZbYYbXXaK

cm hh

h

hh

h

hh

h

E
B ∑∑∑

===

++=δ
ϕρ

−

3

1

3

1

6

1,0

 

( ) ( ) ,
15

1

15

4 2
44,2

2
44,2 ZY ϑ+ϑ+  
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with 

,
3

1
,,, 2,12,014

0

1
1,1131,0120,011 ϑ+ϑ=

ϕ

ϕ
ϑ=ϑ=ϑ= aaaa  

,
3

1
,,0,

3

2

0

1
2,1232,02216

0

1
2,115 ϕ

ϕ
ϑ=ϑ==

ϕ

ϕ
ϑ= aaaa  

,
3

1
,0,

3

1
,

6

1
2,13326

0

1
3,1253,13,024 ϑ==

ϕ

ϕ
ϑ=ϑ+ϑ= aaaa  

,
3

2
,

3

1
,

6

1

0

1
3,2363,135

0

1
3,23,134 ϕ

ϕ
ϑ−=ϑ=

ϕ

ϕ






 ϑ+ϑ= aaa  

,
15

2
,

5

2

5

1
,

5

2
4,246

0

1
4,24,1454,24,044 ϑ−=

ϕ

ϕ






 ϑ+ϑ=ϑ+ϑ= aaa  

,
5

1
,

15

4
,

5

2
4,266

0

1
4,2564,155 ϑ=

ϕ

ϕ
ϑ−=ϑ= aaa  

while k,hb  are the same of the 15 moments model as reported on page 18 

of [11]. From these results, it follows that the equations to determine 

eigenvalues and eigenvectors are 

.0,0,0,0,0 44

6

1

3

1

6

1

===== ∑∑∑
===

ZYZbYbXb hhh kk

k

kk

k

kk

k

  (25) 

The last 4 of these equations are the same of the 15 moments model as 

reported Equation ( ) 4239 −  of [11]. So we have that the 2 eigenvalues with 

multiplicity 2 in Equation (40) of [11] are eigenvalues with multiplicity 2 

also for the 14 moments model; they are the solutions of 

.0

5

65

4

0
5

4
2

5

4

5

6

2

4,13,1

3,12,1

4,2

2

0

1

4,23,2

4,24,13,1

3,23,12,1

=
ϑϑ

ϑϑ

ϑ+







ϕ

ϕ

ϑϑ

ϑϑϑ

ϑϑϑ

 

(26) 
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The remaining eigenvalues are the solutions of ,0, =kha  i.e., 

(

)

( (

) )

(

)

.0

5

1

15

4

15

2

3

2
00

5

2
15

4

5

2

5

1

3

1

3

1

3

2

5

2
15

2

5

1

5

2

6

1

6

1

3

1

3

2

3

1

6

1

3

1

3

1

0
3

1

6

1

3

1

0
3

2

3

1

4,2
0

1
4,24,2

0

1
3,2

0

1
4,2

0

1
4,24,14,13,1

0

1
3,1

0

1
2,1

0

1
4,2

0

1
3,2

4,24,14,24,03,13,13,02,12,0

0

1
3,2

0

1
3,23,13,12,1

0

1
2,1

0

1
1,1

0

1
3,13,13,0

0

1
2,12,01,0

0

1
2,12,12,0

0

1
1,11,00,0

=

ϑ
ϕ

ϕ
ϑ−ϑ−

ϕ

ϕ
ϑ−

ϕ

ϕ
ϑ+

ϕ

ϕ
ϑ−ϑϑϑ

ϕ

ϕ
ϑ

ϕ

ϕ
ϑ

ϕ

ϕ
ϑ+ϕ

ϕ
ϑ+

ϑ−ϑϑ+ϑϑϑ+ϑϑ+ϑ

ϕ

ϕ
ϑ+

ϕ

ϕ
ϑ−ϑϑϑ

ϕ

ϕ
ϑ

ϕ

ϕ
ϑ

ϕ

ϕ
ϑϑ+ϑ

ϕ

ϕ
ϑϑϑ

ϕ

ϕ
ϑϑ+ϑ

ϕ

ϕ
ϑϑϑ

 

(27) 

It is easy to prove that this equation depends on 
0

1

ϕ

ϕ
 only through 

( )

2

2

2

0

1 c
U

h

γ
γ

βα
αβ

ϕ

ϕϕ
=








ϕ

ϕ
 (which is equal to 

2








v

c
 if )αα ξ= cU  and it is a 

second degree equation in .
2

0

1








ϕ

ϕ
 In fact, by applying well known 

properties of the determinants, we can see that this equation can be 

written as 
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(

)

( (

) )

(

)

.0

5

1

15

4

15

2

3

2
00

5

2

15

4

5

2

5

1

3

1

3

1

3

2

5

2
15

2
5

1

5

2

6

1

6

1

3

1

3

2

3

1

6

1

3

1

3

1

0
3

1
6

1

3

1

0
3

2

3

1

4,24,24,23,2

2

0

1
4,2

2

0

1
4,24,14,13,1

2

0

1
3,1

2

0

1
2,1

4,23,2

4,24,14,24,03,13,13,02,12,0

2

0

1
3,2

2

0

1
3,23,13,12,1

2

0

1
2,1

2

0

1
1,1

3,13,13,02,12,01,0

2,12,12,01,11,00,0

=

ϑϑ−ϑ−ϑ−









ϕ

ϕ
ϑ+









ϕ

ϕ
ϑ−ϑϑϑ








ϕ

ϕ
ϑ








ϕ

ϕ
ϑ

ϑ+ϑ+

ϑ−ϑϑ+ϑϑϑ+ϑϑ+ϑ









ϕ

ϕ
ϑ+









ϕ

ϕ
ϑ−ϑϑϑ








ϕ

ϕ
ϑ








ϕ

ϕ
ϑ

ϑϑ+ϑϑϑϑ

ϑϑ+ϑϑϑϑ

 

(28) 

So it gives 4 independent eigenvectors; other 6 come from (23), other 4 

come from (26). The total is 14, as expected. 

5.2. Wave speeds for the subsystem with 6 moments 

This is a subsystem of that with 15 moments when ;
4

1
∑=λ µµ νν

g    

so Equation (21) becomes 

( ) ( )
 ∑δλδ+δλδλ+δλϕ−=δ µ

αµ
µ

αµα
α ν

ν
gATV

m
K

EEE
B

E 2

1
2

2

k
 

( ) ( ) ( ) .
16

1

2

1 2


∑δ+∑δδλ+λδλ+ µβγ

αβγµ
βµ

αβµ
δβ

αβδ
ν

ν

ν

ν
ggAgAA

EEE
 

(29) 
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• We note that a first eigenvalue is 

.00 =ϕ  (30) 

In fact, if ,00 =ϕ  we find that the independent variables are linked only 

by 

( ) ,010824,0 2
3,23,102,11,11 =∑δϑ−ϑ+δλϑ+δλϑ=δλ cc  (31) 

Consequently, the eigenvalue (30) has multiplicity 4. 

• For the other eigenvalues we have 00 =/ϕ  and we define ,1X=δλ  

.,,,, 13124
2

3120 ZcYcXcXcXc =δλ=δλ=∑δ=δλ=δλ   

With this notation (29) can be written as 

( ) ( )[ ],
3

1 2
1

2
12,1

4

1,0

ZYXXaK
cm hh

h

E
B +ϑ+=δ
ϕρ

− ∑
=

kk

k

k
 

with 

( ),
4

1
,,, 2,12,014

0

1
1,1131,0120,011 ϑ−ϑ=

ϕ

ϕ
ϑ=ϑ=ϑ= aaaa  

( ) ,
3

1
,2

8

1
,

3

1
, 2,1333,13,024

0

1
2,1232,022 ϑ=ϑ−ϑ=

ϕ

ϕ
ϑ=ϑ= aaaa  

.
5

3

16

1
,

12

5

24

1
4,24,14,044

0

1
3,23,134 






 ϑ+ϑ−ϑ=

ϕ

ϕ






 ϑ−ϑ= aa  

From these results, it follows that the equations to determine eigenvalues 

and eigenvectors are 

.0,0,0 11

4

1

===∑
=

ZYXah kk

k

 (32) 
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Then the other 2 eigenvalues are the solutions of the equation 

( )

( )

(

)

( ) ( ) (

)

(

)

,0

5

3

16

1

12

5

24

1
2

8

1

4

1

12

5

24

1

3

1

3

1

2
8

1

3

1

4

1

4,2

4,14,0

0

1
3,2

3,13,13,02,12,0

0

1
3,2

3,12,1
0

1
2,1

0

1
1,1

3,13,0
0

1
2,12,01,0

2,12,0
0

1
1,11,00,0

=

ϑ+

ϑ−ϑ

ϕ

ϕ
ϑ−

ϑϑ−ϑϑ−ϑ

ϕ

ϕ
ϑ−

ϑϑ
ϕ

ϕ
ϑ

ϕ

ϕ
ϑ

ϑ−ϑ
ϕ

ϕ
ϑϑϑ

ϑ−ϑ
ϕ

ϕ
ϑϑϑ

 

that is, 

( )

( )

( )

( ) ( ) ( ) (

)4,2

4,14,03,23,13,13,02,12,0

3,23,12,11,1

3,13,02,12,01,0

2,12,01,11,00,0

2

0

1

5

3

16

1

12

5

24

1
2

8

1

4

1

12

5

24

1
0

3

1

2
8

1

3

1

4

1

ϑ+

ϑ−ϑϑ−ϑϑ−ϑϑ−ϑ

ϑ−ϑϑϑ

ϑ−ϑϑϑϑ

ϑ−ϑϑϑϑ









ϕ

ϕ  

( )

( )

( ) ( ) ( )

.0

5

3

16

1
2

8

1

4

1

2
8

1

4

1

3

1

4,24,14,03,13,02,12,0

3,13,02,01,0

2,12,01,00,0

2,1 =

ϑ+ϑ−ϑϑ−ϑϑ−ϑ

ϑ−ϑϑϑ

ϑ−ϑϑϑ

ϑ+  

(33) 

So it gives 2 independent eigenvectors, other 4 come from (30). The total 

is 6, as expected. 
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5.3. Wave speeds for the subsystem with 5 moments, i.e., Euler’s 

equations 

This is a subsystem of that with 6 moments when .0=∑  Equation 

(29) now becomes 

( )[ ].2
2

δβ
αβδ

µ
αµα

α δλδλ+δλδλ+δλϕ−=δ
EEE

B
E ATV

m
K

k
  (34) 

• We note that a first eigenvalue is 

00 =ϕ  with multiplicity 3. (35) 

In fact, if ,00 =ϕ  we find that the independent variables are linked only 

by 

,03,0 02,11,11 =δλϑ+δλϑ=δλ c  (36) 

• For the other eigenvalues, we have 00 =/ϕ  and we define ,1X=δλ  

.,,, 13123120 ZcYcXcXc =δλ=δλ=δλ=δλ  

With this notation (29) can be written as 

( ) ( )[ ],
3

1 2
1

2
12,1

3

1,0

ZYXXaK
cm hh

h

E
B +ϑ+=δ
ϕρ

− ∑
=

kk

k

k
 

with 

,,,, 2,022
0

1
1,1131,0120,011 ϑ=

ϕ

ϕ
ϑ=ϑ=ϑ= aaaa  

.
3

1
,

3

1
2,133

0

1
2,123 ϑ=

ϕ

ϕ
ϑ= aa  

From these results, it follows that the equations to determine eigenvalues 

and eigenvectors are 

.0,0,0 11

3

1

===∑
=

ZYXah kk

k

 (37) 
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Then the other 2 eigenvalues are the solutions of the equation 

,0

3

1

3

1

3

1

2,1
0

1
2,1

0

1
1,1

0

1
2,12,01,0

0

1
1,11,00,0

=

ϑ
ϕ

ϕ
ϑ

ϕ

ϕ
ϑ

ϕ

ϕ
ϑϑϑ

ϕ

ϕ
ϑϑϑ

 

i.e., 

.0
3

1

0
3

1

3

1

2,01,0

1,00,0

2,1

2,11,1

2,12,01,0

1,11,00,0

2

0

1 =
ϑϑ

ϑϑ

ϑ+

ϑϑ

ϑϑϑ

ϑϑϑ









ϕ

ϕ
 

(38) 

The corresponding 2 independent eigenvectors, plus the other 3 which 

come from (35) gives 5 independent eigenvectors, as expected. 

Conclusion 

The scalar functions, appearing in the closure of the new 15 moments 

model, have been expressed as polynomials of finite degree of the variable 

;
1
2c

 by using them it was easier to do the non relativistic limit of the 

final field equations expressed in terms of the physical variables. This 

proves that the manipulations, performed to the equations expressed in 

integral form, did’t change the result to recover the known equations for 

the classical case. The expressions of the above scalar functions have been 

found also for the easier case of polytropic gases. The wave equations for 

the subsystems with 14, 6, or 5 moments have been studied; this shows 

how they evolve from the 15 moments model to its subsystems. 
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