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Abstract

A recent 15 moments relativistic model of extended thermodynamics for
polyatomic gases is here considered; it is based on a new hierarchy of moments
that takes into account the total energy, i.e., the rest energy and the energy of
the molecular internal mode. The classical limit was there studied but only for
the equations in integral form. However, after that, these equations were
manipulated to obtain the closure up to first order with respect to equilibrium
but expressed in terms of physical variables. Therefore, it is necessary to
perform the non relativistic limit also of the resulting final closure and
compare it with the known results concerning the classical case. This goal is
realized in the present article. Another result here obtained is the expansions
of the scalar coefficients appearing in the closure as finite polynomials in L,
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where c is the light speed. The characteristic equations for determining the
wave velocities are here deducted also for the subsystems with 5 moments
(Euler equations), and with 6 or 14 moments. All the present results holds in

the non polytropic case; the polytropic case is obtained only as a subcase.
1. Introduction

To understand the scientific framework in which the present article is
inserted, let us recall that Extended Thermodynamics was formulated to
eliminate some drawbacks of Ordinary Thermodynamics, for example by
obtaining a set of field equations which is hyperbolic (in armony with the
cause and effect principle) and predicts finite wave speeds of propagation
(in armony with the Einstenian Principle according to which nothing can

propagate with a velocity greater than that of light).

An important article in this context was [1] concerning the classical
case, followed by [2] which implemented it for the relativistic case.
However, the resulting field equations contained an expression for the
energy e and the pressure p which restricted the same results only to the
case of monoatomic gases. Subsequently, Prof. Ruggeri and coworkers
found the way to implement them, for the classical case, to polyatomic
gases and produced the article [3]. One of the outstanding ideas of this
and following articles was that there exist two blocks of field equations,
namely the so-called mass block and a new one called the energy block.
The relativistic version of this work was realized in [4]. The starting point
was the Boltzmann-Chernikov equation (see Equation (4) of [4]), where

the distribution function f is supposed to depend not only on the
4-dimensional position x* and on the four-momentum p%*, but also on
the internal energy Z. Moreover, @ is the collisional term. From the

Boltzmann-Chernikov equation, the following set of field equations were

obtained:

IV =0, 0,7 =0, 9,47 = PV, (1)
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But these equations have 15 independent components; so to recover the

classical known case, it was decided to take only the traceless part of

Equation (1)g, i.e., 4A%PY = 1P ingtead of 9, AT = 1PV,

However, the fact to simply put out the trace of Equation (1) is

someway unnatural and this was confirmed in the subsequent article [6]
where more moments were considered and it was seen that in the non
relativistic limit the relativistic model predicts for the classical case field
equations with more than 2 blocks but, in any way, there is a particular

structure with which these blocks can be assembled.

Following these guidelines, the article [7] was produced in the

framework of classical thermodynamics. But, in [8], it was noted that the

factor 1+ j—— (introduced in the definitions of [4] for 7B, ABY and

mc

1 BY) is nothing more than the first two terms of the binomial Newtonian

J
formula for (1 + 2] ; moreover, 1 + has more physical meaning

mc 2

mc

because it is the total energy (i.e., Z plus the rest mass energy mc2)

normalized by dividing it by me?. So it is more convenient to replace

ool -

1+ ) in the definitions of A% "% and 1%,

with (1 +
me? me?
For this reasons the article [7] was updated in [9]. The relativistic

counterpart of this article has been published in [10]. In its Equation (8)

we find the new expressions of A*™ "% and I™"* . As a bonus, we
obtain that all the closure can be determined in terms of the energy e and

its derivatives with respect to the absolute temperature 7T or, equivalently

2
of y= Z;—CT with kg the Boltzmann constant.
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However, for length reasons some interesting further investigations
are missing in this article and also in the subsequent one [11]. So they are
here reported. They are too important; for example, in [10], the classical
limit was studied but only for the equations in integral form. However,
after that, these equations were manipulated to obtain the closure up to
first order with respect to equilibrium but expressed in terms of physical
variables. Therefore, it is necessary to perform the non relativistic limit
also of the resulting final closure and compare it with the known results
concerning the classical case. This was done in [6]; in fact, on pages 432
and 433 the classical limit was studied in the integral form and, after
that, on pages 434 and 435 it was performed for the final set of equations
by using also the equations there found at the end of page 435. The
importance of this aspect is outlined by the fact that the same
calculations are reported with more particulars in the second set of
equations on page 509 of [12] which concerned always the old approach of
[4]. Now that [4] has been updated in [10], the same considerations need
to be done for the new approach. Moreover, the new structure of [10]
allows to perform similar calculations but in an easier and more elegant
way. The new counterparts of the second set of equations on page 509 of
[12] are here reported in (13).

In Section 4, the particular case of a polytropic case is exploited, while
in sect. 5 the wave speeds are investigated for the subsystems with 14, 6
or 5 moments. In this way we can see how they evolve in the transition
from a subsystem to the other with an increasing number of moments, In
particular, the 6 moments model is the smallest one with dissipative
effects and can be useful to study the evolution of the universe in its first
stage when dynamic pressure dominates over all the other dissipative
components. So in the present article there are the following new original

parts:
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e The expansions of the scalar coefficients appearing in the closure as

finite polynomials in both for the non polytropic case and for the

2’
polytropic case. This is necessary for the following point and can be useful

for forthcoming articles.

e The classical limit of the closed system of 15 balance equations,

showing that it coincides with what is reported in the paper [9].
e The calculation of the wave velocities for the subsystems with 14, 6,

and 5 moments.

2. The New Closed Field of Equations and the Expansions of

the Coefficients as Powers of %
c

The closure found in [10] for the field equations (1) is the following

one:

Ve =pU% T = ecUUP + (p+ 1)1 + 20 (%gP) 4 g<oB>,

A T
APy _ (9902 4 %AJUGUBUY n [p02912 __3 N7 A— 3N_H]h(0¢l3UY)
4c

402 D4 D4
3 N3 (opsBrrv) L 3 N1 (a_v) (<aB>777)
+02D3q UU +5D3h q" +3Cst U,
1 1 N2 N™ 1
P = - AUPUT + A+ ZT1 | AP
4ctr (4027 D, Dy~

( 2 Ny 613 1
T Yo 2
¢2r D3 019 (2;

jq(BUY) _ % C5t<BY>3 , 2)
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where the independent variables are p (the mass density), U* (the
4-velocity constrained by U%U, = cz), v (related to the absolute

mc2

temperature T by vy = T
B

with kp the Boltzmann constant),

[1 (the dynamic pressure), g®* (the heat flux constrained by
q*U, = 0), t*F> (the deviatoric shear viscous stress tensor constrained

by t<°‘B>Uu =0, t<°°B>gaB =0) and A as 15-th variable (from (2)5 it is

evident that A :i2 (AO‘BY —Ag;fY)). Moreover, we have that
c

RO = - g 4 iz U®UP, the pressure p and the energy are given by
c

+oo * I
9 o J2’2(1 + 2]¢(I)dI
p= nhme _ nkgT, e = nmc2 me ) 3

“+o0
. J910(7)dZ

with J% = J. () and 7" = v-[1+—2|.
’ ’ me?

The matrices Dy, N N2, Ds, N3, Ng; and the scalars Cg, 0;; are

ij
reported in Equations (29)y_,, (32)9_4, (34)y and (16) of [10]. Here we

define
e_ .2 . : e - pc2
€= e ¢ (In view of the fact that lim,_,, ., o " €classic )s
foet kTt 0 o e kT O
re m orT 2”71 m 9T’
o s FBTE R keT
fa =t +— —=5 g1 =e+t— —,

kT kT
= f + 2B - BT 4. 4
gy =hH+ 8L 83 fo+3 82 (4)
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It is interesting that these quantities have finite limits for ¢ going to +

and they hold both in the polytropic case and in the non polytropic case.

They allow also to rewrite the coefficients ¥;; as finite polynomials in

1 ie
2
€ € 1
Bo,0 =1, Vo1 =1+, ﬂ0,2=1+2—2+f1—4,
C c c
€ 1 1
ﬂ03=1+3—+3f1—+f2—,
) 02 04 06
€ 1 1 1
13()4 =1+4—+6f1—+4f2_+f3_,
, CZ c4 CG 08
kpT kgT 1 kT 1
B - T T o B =3=— 3 -
1,1 m 2 1,2 m o2 m 51 o
_akBT 1 kgT 1 kgT 1
B T
kgT\2 1 (kgT\2 1
B9,3 =3(—j —+3(— g —,
’ m c4 m 06
_1nkBT 1 kgT 1 kgT 1 kT 1
1,4 = 10 m c2+30 m &1 c4+30 o g9 06+10_m g3 5

From these relations, it follows

€
V9,1 ~ V9,0 = >
C
9 _ 1
Bo,2 —280,1 + V00 = h >
C

1
Bo,3 = 300,2 + 30,1 = V0,0 = o>
C
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1
Bo,4 = 480,53 + 689 9 — 49,1 + Vo0 = f3
c

Yo _kgT 1
T3 VLT T s
Y8 P2 o _kpT 1
6 ‘3 ‘Thtut 82—
B4 Y3 p_ 1
10 ~ otz -V =8 s
p\(p 1 p\’(p 1
s -smny (2 (2 n) 522 m) s o
2.4 2.3 o) o T8 o) \p&rt8z)g

By using these expressions we will prove that the scalar functions

appearing in the closure be written as

_ 2 ,otB 128 L
e=pe+c’, p= mpT, Yg o =1+2 2+flc4,

c

kgT 1 kgT 1
Oy g =3 B — L giB o T
1,2 m 2 m 51 A
kpT 1 kT 1 . kgT 1
V3 =6—"——F+12—"—g —+6—"—g5—, (7)
’ m 2 ct b
1 1 L1 D45 1
1 802 flc4 pc2+pglc4
gL fi 4 fo % %gl%ﬁr%gz%
D4: C c c c
1 1 1 DL 1 . Dp 1
fl (34 fz 06 f3 08 ng 66+pg3 08
DL 1 s 1 D 1 5P 1L L 5(|P 1|
P 2 Pgl et sz b 3(p)zc4+3(p)2g1 b
2
— 2 L ’ 1 ”
_(p) c16 (D“ e D4j’ ®
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with
1
€
Dy =
fi
1
Nn + D4 =
where
1
€
N =
fi
- &1
1
€
N -
h
- &1

f
fa

81

f
fa

- 82

f
fa

- 82

fi 1 1 € f
fo 81 3 h fo
, D =
f3 82 h fa f3
82 3 1 81 82
oAk e
f1cL4 f2(%6 817182
fzc% fgc% 82 ¢t 83
ot —mt -3Reg )i
57 - el 302
P N 20\p
h 1
fa &1
f3 82 ,
— 83 _%(%‘*‘gl)
h 81
fo 82
f3 83
gy -2la )

95

81
82
83

81

oot
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96
1 1 P11 P, 1
1 802 fl oA Pc2+Pg1 oA
1 1 1 Py 1 Py 1
N € h o f2 )G b 81T T 82
i sef1ys(efe o
p 2 Pglc‘* pg206 3%/ 4T85 gch
P, 1 P 1 P 1 5(ef|(p 1, (2 1
P80 826 838 g(;)z[(3+g1)c—6+(;g1 +gz)c—8]
3 3
1 (p) ALl (p) A
=— 2| NA 4 L1NS, (0
016 p 018
where
1 ¢ f 1 1 & f &1
e h f &1 e h [ 82
A A
Nl = 5 ) N2 = 5 )
I & & 3 1 & & 3 81
g1 82 &3 %(%"'gl) 81 82 83 %(%éﬁ +g2)
T2 1 2
Dy = ("8 | ey - el 5 205 = o 8L ) (g - ) -
c c
(11)
5 kgTY* 1 1
N31 ——D3+45(7j _8 1+ 1 CBE
1+ B—T+2g L 425 g gy | L
m ct ct
C5 = . (12)
1+g %
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2.1. Proof of (7)-(12)

The expressions (7), (12) are easy consequences of (5).

e To make easier the proof of Equation (8), let us introduce the matrix

1 -1 1 0
0 1 -2 0
M = from which it follows
0 0 1 0
0 0 0 1

Dy = |M"|DyM]|

B0,0 B,1 ~Bo,0 Bo,2 =201 +B0,0 01
V91 =00 Bo2=2001+090 Vp3-3002 %(’31,3 ~20; )
+ 3‘6071 —‘6070
B V4 Y3 Y
Bo2 =201 +000  Vo,3-3002 Vo4 —4003+6%02 5 -5+ 3
+ 3’60,1 —’60,0 - 41(}0,1 + 130,0
) B3 09 V2,3
D11 - Y1 5 25t 5=~
By substituting here (5); 7 9 and (6);_; we obtain (8).
o Let us consider now N™. In particular, we have
B9,0 Bo,1 B0, 2 1010
Bo,1 Bo,2 Bo,3 08
Nn + D4 =
4
B2 Bo,3 Do, 4 10
9 By,2 Y2 O3 V1,3 Y14 509,3-02,4
L1773 3 6 6 1 9
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With the above used matrix M, this determinant becomes

N™+ Dy =|M"|(N™ + Dy)| M|

90 91 -0, Bp,2 =200 + V0,0 010
89,1 =000 Bo,2 =200 +g V9,3 -300,2 %(131,3 -20; 5)
+ 313071 —‘ﬁ()’o
- B4 s Duo
Bp2—2001+000  Vp3—30gp2 Bo4—4003+6002 G55 t—3
+3130’1 —‘ﬁo’o —4150’1 +150’0
B2 2019 Y3 %3 V14 V9,309 4
LR 576 Y o5 Petty S

By using here the decompositions (5) and (6) we obtain (9).

e Let us consider now N2 by using the above matrix M and we see

that
1 0 0 0
-1 1 0 0
N* = NA|M|
0 0 1 0
0 0 -1 1
B9,0 B,1 00,0 V0,2 =200,1 +B9,0 109

Bo,1 =Bo,0 Vo,2=200,1 +00,0 Vo33V 2+3001 Y90 %(’31,3 ~29; 5)

) 9,3 By,9 Vg3
By —5 Y11 & 25 t01 55—
Yy,2 1,3 1,2 1 1 V9,4—509 3
=5 Y1 250 504503 t0 2 -0 g

By using here the decompositions (5) and (6) we obtain (10).
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e Let us continue with Ds. We see that

1 -3 011 01,2 =301

01,9 -361 1 20,3-66,2+96;;

0 1
By using here (5)g and (6); g we obtain (11);.

o Let us consider now N3 — 2 D3. We see that

1 0 61,1 01,2 1 -3
Ny - 2D, =
-3 1 |5 61,3 — 262 5014 -36; 3/ [0 1
01,1 01,2 =361
10,5-260; 5 +326;; 201, -926,5+96;5-96;
By using here (5)g and (6); g 7 we obtain (11),.
o Let us finish with Ng;
5 011 6,2
N33 ——Ds = kpT 1 kgT 1
B 15 kB
! 5023 _5761’20_2 3024 -5 — —O 35
kT 1
B~ = 01,2
- kpTY? 1 1.0
45| SBZ ) 2 (14 g —
0 (f2E] Saem )

where in the last step we have used Equations (5); the result proves
11);.

3. The Non Relativistic Limit of the Final Equations

In [10, 11], the classical limit of the field equations was considered
but only for the equations in the integral form. However, after that, these
equations were manipulated to obtain the closure up to first order with
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respect to equilibrium but expressed in terms of physical variables.
Therefore, it is necessary to perform the non relativistic limit also of the
resulting final closure and compare it with the known results concerning
the classical case. This was done in [6] which concerned the old set of
balance equations; in fact, on pages 432 and 433 the classical limit was
studied in the integral form and, after that, on pages 434 and 435 it was
performed for the final set of equations by using also the equations there
found at the end of page 435. The importance of this aspect is outlined by
the fact that the same calculations are reported with more particulars in
the second set of equations on page 509 of [12] which concerned always
the old approach of [4]. Now that [4] has been updated in [10], the same
considerations need to be done for the new approach and this is the
subject of the present section. In the present new model this non
relativistic limit becomes easier, thanks to the results of the previous

section.
To do this non relativistic limit we need some ingredients, i.e., the
following particular limits (here we use Alo = pBpa, 3A101 = p02912 in

order to have the same notation of [4])

lim A =p, lim (A -p)c® = 2pe, Ac* +pc* —2ec® = pfy,
C—>too Cc—>+oo

; 0 0 2 . N, N 9
cl—1>11[rloo Ap =p, (A; - p)e” = p(f +§), CETN—DS’ =2, (—Ds - )c

_ 2

= 83" 8182 glgé, lim ]}])31 = 5 : (ﬁ) , lim Cy5 =1,

g2 —(g1) ot L3 gy —(g1)" \P c—>+oo

A A x

lim (C5 1) = e+ 22 lim 2= 2 AL g N2y
c—>+oo p e Dy D}L c—+e0 Dy

T T
him [N 12 = D (13)
c—>+oo| Dy Dzll
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Let us begin noting that (13); is a direct consequence of (4); and (5)5;
after that, (13)1’2 are its consequences. Similarly, (13); is a direct
consequence of (4); if we take into account that p = p c? 6,7 according to
(5)g; after that, (13), is its consequence. The Equation (13); comes from
(1 1)1’2 and (13)g is its consequence. The Equation (13)g is a consequence
of (11); 3. The Equation (13);, is a consequence of (12) and (4);. After

that, it implies (13)g.

From (8)-(10), it follows that

2 2
lim D, = (%) D, lim ¢'(N®+D,)= (ﬁ) NF,

C—>+oo C—>+oo

3
lim ON® = (Ej N,

c—+oo P

and these results imply (13);g 9. Finally, (13);; is a consequence of
(13);4-

Now we use these ingredients to calculate the non relativistic limit of
the field equations (47) of [10] which are expressed in terms of the
material derivative (we don’t report them here for the sake of brevity). In

particular, we calculate the non relativistic limits of (47),, (47); with
8 =i, (47); minus (47); multiplied by c?, (47), with 80 = ij, (47)5
minus (47), multiplied by ¢? (with 8 = i), the sum of (47)g plus (47)5

multiplied by - 2¢? and (47); multiplied by ¢*; by using the above

particular limits, we find that the limits of these linear combination of the

field equations are
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P+ pakvk =0,

pv’ +9;(p + )+ 0,t<M> =0,

D0+ (e p s Wt + 24" + 900t =0,

(p+1)8; + <97 + (p + 1) [5,0,0" + 200

2
1
e (2) (Sijaqu + 29(iqj))+ t<ij>akvk + 20,00t ) >
89 — (gl) p

A
- _1[_N_1£A N n]aij RS
T

vi(pe+p +n)+qi +t<il>z}l + a{p(wﬁ)—

P
2p \,<ki> 1 PV ok i in ok
+ak[(e+—)t }+ 1+—2(—) (g"9v" +q'ov")
P gs —(g1)" \P

2

1 1

+ —2(2) qkaivk = —:qi,
82 _(gl) P

A T
Nipy_ DN
4D} P D}

d 1. .. 5 1 N{ p NT
L o)+ A -2gl; + 00F ) pfy + 2122 P A2 g
dt 1 4 1) (k ) 1 4 Dgi p D}i

+ ak[—g?’ — 81 g22 q") + 2(8 +2—p)t<kl>akvl = —%A. (14)
g2 — (81) P i

Obviously, we can substitute here fi, g1, g9, g3 from Equation (4) and

Dzlp NlA, N7 from Equations (8),, (9), and (10),; the Equations (14) are

equivalent to (53) of [9], where there is a change of notation which here I
don't consider necessary because it makes the results apparently more

complicated, without gaining elegance.
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df

In (14), f or —- denote the material derivative of f, i.e.,

dt
f=9=as iy
4. The Polytropic Case

In this case the measure ¢(Z) has the form ¢Z)=Z% with

a= D-5 (see Equation (12) of [4]), for example, D =5 for diatomic

gases, while the monoatomic gases can be obtained in the limit for D

going to 3.

D kgT

So in the polytropic case we have € = > (see Equation (9) of [4]

which doesn't change in the new model because the expression of Teoé?

remains the same). So (4) becomes

c-DkT _Dp
2 m 2p’

p 8 ’
f3=(

2 3
_(pY (D+2)(D+4) _(p) D+2)(D+4)(D+6)
gz_(pj 4 8 (pj 8 ’

2 >

o s

)4 D(D +2)(D +4)(D +6)

pD+2
16 » 81 0




104 S. PENNISI

and the determinants in Equations (8)-(12) become

1 D D(D+2) )
2 4
D D(D +2) D(D+2)(D+4) D+2
oo 2 4 8 2 y
171D +2) D(D +2)(D +4) D(D+2)(D+4)(D +6) (D+2)(D+4)
4 8 16 4
1 D+2 (D+2)(D+4) 5
2 4 3
X(£)6:(£)6D(D+2)(D—3)
p p 6 ’
1 D D(D+2) D+2
2 4 2
D D(D+2) D(D+2)(D+4) (D+2)(D+4)
o 2 4 8 4 o
4 D(D+2) D(D+2)(D+4) D(D+2)(D+4)(D+6) (D+2)(D+4)(D+6)
4 8 16 8
1 D+2 (D+2)(D+4) 5D+2
2 4 3 2

1 D D(D+2) 1
2 4

D D(D +2) D(D+2)(D+4) D+2

NT = 2 4 8 2
1 D(D+2) D(D+2)(D+4) DD+2)(D+4)(D+6) (D+2)(D+4)

4 8 16 4

D+2 (D+2)(D+4) (D+2)(D+4)(D+6) 5

T2 T 4 - 8 “0+4)

y (%)7 __DWD+ 2)(11)2_ 3)(D + 4) (§j7
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1 D D(D+2) D+2
2 4 2
D D(D+2) D(D+2)(D+4) (D+2)(D+4)
Nio| 2 4 8 4
27ID(D+2) D(D+2)(D+4) D[D+2)(D+4)(D+6) (D+2)(D+4)(D+86)
4 8 16 8
_D+2 (D+2)(D+4)  (D+2)(D+4)(D+6) _5(D+2)(D+6)
2 4 8 9 4
% (2)8 -1 D(D + 2)2 (D+6)(D+ 9)(2)8
p) 36 p)’
1 g D(D4+ 2) 1
D D(D + 2) D(D +2)(D +4) D+2
NA_| 2 4 8 2 |,
1 1 D+2 (D+2)(D+4) 5
2 4 3
D+2 (D+2)(D+4) (D +2)(D+4)(D +6) 5
2 4 8 gD+
X(E)f’ :_(D+2)(D—3)(£j5.
p 3 p
1 D D(D +2) D+2
2 4 2
D D(D +2) D(D +2)(D + 4)
Np - 5 —a — s D+2 y
L D;z (D+ZL(D+4) %(D+2)
D+2 D+2)(D+4) (D +2)(D+4)(D +6) 5
5 1 3 E(D+2)(D+6)
x (2)6 - - L (D+2?26D- 12)(3]6
p) 12 p)’
4 5
Dy :%(D+2)(§j cig N, - 2D, :g(D+2)(D+4)(§j C%
Ng, = 45 ‘1 1+(D+2)2 21
31 = o C_S +(D + )30—2 )
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D+4£+(D+2)(D+6)(£)2i
1 2 p 4 p) 2
C5—1=—
c2 1+D+2£i
2 p 2

The above results are useful to have the closure of the field equations for

these particular gases. Regarding the limits in Equation (13), they

become

lim A =p, lim (A - p)c? = 2pe,
Cc—>+oo C—>+oo

2
A10c4 + pc4 — 2ec? = p——D(D +2) ,

p 4

2

lim A = p, (A% —p)e2 =22 D*+2 5 Ns o
Cc—>+o0 p 2 e+ Dy
N3 ) 2 p
23 9|2 =(D+4)2,
(D3 p
. N31 _ 10 . _ . 2 _ p
A D T Dz m G =1 lim (G —1)e” = 50D+ 4),
. N& 2 .. N7 . [N™ 2 pD+4
Im —=-=, 1 =-1, 1 1 == . @1
Cl—>H°1° D4 D ’ C—1>I}—100 D4 ’ C—l)IEOO( D4 - jc p 2 ( 5)

We can evaluate also the non relativistic limit of the field equations, i.e.,
(14) for this particular case of polytropic gases; I avoid to write them for
the sake of brevity, but we note that their subsystem with 14 fields gives
Equations (68) of [4].

5. Wave Equations for the Subsystems

In [11], the wave equations for the 15-moment model was written and
studied. It was found that the corresponding characteristic equations can

be written by simply taking the derivatives with respect to oA 4 of the

quantity
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5K = _% P [VE (L) + 2TE 08N, + 2A 5 SASM,,,,

+ A%BSSXBSM; + ZA%BWMBSMW + AgBWV&‘BY&‘W]’ (16)

and equating them to zero. The expressions of the tensors in the right

hand side are reported in [9]; moreover,

Py = %&oc + Mg, with aoc&a =1, &omoc =0, nomOC =-1 17

In this way the speeds of wave propagation u are found; someone may
not like that the eigenvectors are written in terms of the Lagrange

multipliers A 4. But this isn’t a problem because, after having written

the characteristic equations, we can do the following change of variables:
S\ = 8hg + (BN — A f), dhg = 87»% + (87»5 -oAg),

- __kp e E_§Up
with S = =2 8 + e 5T, S = 8( £ (18)

(Equations (26) and (40) of [4] have been used), while S\ — oA, 87»3 -k ,

A, can be deduced from Equation (36) of [10] and they read

V8%
Sh -8k = a1, + asdA,
Shg — SAf = (by8y + bydA)Up + byl g,
Shpy = (015 + B1SAURUy + (ctgdy + B2dA) gy + 203U 334,y

+ 2(X4St<BY>. (19)

In this way the characteristic equations transform in those we would
obtain by starting directly with the field equations (1), (2) expressed in

terms of the physical variables, i.e.,
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0 8(pU%) = 0, (paﬁ[% U*UP + phﬂ + %{haﬁsn + 32 U%5qP) + 5t<°43>} -0,
C C
0o SpBosUUPUY + pc?6,,h *BUY)|

1 roriBrry 3 N° N™ ), (aprry)
+ 0,8 1 UUPUsA + | - N sa — 3 Y 5x |n(eby
* {404 4c? Dy D,

¥ 3 N3 UlepyBsg)+ §&h(0655q¥) + 3C5U(065t(<l37>3 )} -0,
¢ Ds 5 Ds

UgdU® = 0, Uydq® = 0, Uyt~ = 0, hogdt**F>s = 0, (20)

where the last 5 equations are present because we are dealing with
variables constrained by

UgU® = ¢%, Uyq® =0, Ugt™™3 =0, hegt=*3 = 0.

Now the matrix of the coefficients of the differentials must have a
determinant equal to zero and this equation gives the wave speeds. What
we have said lets us understand that the determinant obtained by
starting from Equations (20) is equal to that obtained in terms of the
Lagrange multipliers multiplied on the right by the determinant of the
linear transformation (19) and on the left by its transposite.

But now we want to find the wave speeds for the subsystems with 14,
6 and 5 moments which were not treated in [11].

5.1. Wave speeds for the subsystem with 14 moments

This study is easy in terms of the Lagrange multipliers. In fact, this
subsystem can be obtained from that with 15 moments by putting
My = Xy, where 2, is a traceless tensor. So Equation (17) becomes

3y = -0, V3 (60)2 + 2T oadn, + 245505 5,

+ APOSGEL; + 24P WIS T, +AEPTI sy 5T,

@1
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and the characteristic equations are

0aVESL + TN, + ASH55,, ] = 0,
0o [TPon + A%, + AT 5y |0,
0a A% 75N + AP 1+ A%PRsy |20, 22)

Here the expressions of the tensors in the left hand sides are reported in

[10]. For the sake of simplicity, we calculate also the coefficients of the

differentials in the reference frame where U® and ¢% have the

components U% = (c, 0, 0, 0) and ¢, = (9g, ¢, 0, 0); in any case, we

can at the end express again all the results in covariant form replacing

. 1
9o and (¢1)” with @ = Uy and (91)* = gqph®.

e We note that a first eigenvalue is

o
¢y = 0, i.e.,uchno‘,i.e.,uz , (23)
0 Y

U&Y

where the last expression holds when E-‘Y = %Uy.

In fact, we firstly note that ¢; # 0 under the hypothesis that the 2
time-like vectors ‘37 and U, are oriented both towards the future or both
towards the past. After that, if ¢y, = 0, Equation (22);, the components
0, 1, 2, 3 of Equation (22), and the components 00, 01, 02, 03, 12, 13, 22,
33, 23 of Equation (22); give a system whose solution is
oA =0,02p; =0,8219 =0,08%213 =0 and the remaining unknowns

are linked only by
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6'61)187\, + 261,2C87\,0 + ('61)3 + 662,3 )028 ZOO
— 462,3(}2(5 222 + 8233) = 0,
100y 98 + 59y 58 + (301 4 + 609 4)c28 Zgo

- 4192,4(}2(5 222 + 8233) =0,
5132’357\,2 + 2132,4057\,20 =0, 5‘62387&3 + 2132,4057\,30 =0, (24)

where we have taken into account of 8217 =325y — 8299 — 0233. We

note that these equations are a little different from the corresponding
ones in the 15 moments model, as reported in Equation (38) of [11]. Also
the conclusions are a little different because in the 15 moments model
this eigenvalue has multiplicity 7, while here we have 10 free unknowns
linked by 4 equations and the eigenvalue (23) has multiplicity 6.

e For the other eigenvalues we have ¢; # 0 and we define

Sh = Xy, cdhg = Xy, ¢8N = X3, 28309 = X4, 28301 = X,
*(8%9p + 8%33) = X, cdhy = V1, ¢?8Tgg = Yo, ¢*3 515 = V3,
g = Zy, 28X 50 = Zg, 28313 = Zg, 28395 = Yy,

*(8%9s — 8%33) = Zy.

It follows that 028211 = X, — Xg. With this notation Equation (21) can

be written as

6 3 3

k

- mpfq) 8Kp = D amXpXp + ) bu¥aYe + D buiZnZy
0 h k=1 h=1 h=1

4 2 1 2
+ gﬁz,4(Y4) +Eﬁz,4(z4) ,
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with

_ _ _ 01 _ 1
a1 = V9,0, @2 = Vg1, M3 = 131,1%, a1y =V 2 +§191,2,

2 0
a5 = §191,2(p—0, a16 =0, agg =09, g3 =

1
3

0o,

(0]

1 1 0 1
agy = Vo 3 +gﬁl,3, ags = gﬁﬁﬁ, age =0, asg3 = 5191,2,

1 1 1 2 0
=[=0 3+ -, == g, =—=109 g —,
a3q (6 1,3 2,3)(pO ass 3 VL3 a3p 3 V2.3 %0
2 1 2 [} 2
ag4 = Vo 4 +gﬁz,4, Qy5 = (561,4 +g192,4)—(p(1) T V9.4,
2 4 (071 1
a55 5 VL4 a56 15 2.4 . Qg6 5 V2,4

while by, j, are the same of the 15 moments model as reported on page 18

of [11]. From these results, it follows that the equations to determine

eigenvalues and eigenvectors are

6 3 6

D b Xp =0, Y by =0, D byZp =0, Yy =0, Zy=0. (25)
k=1 k=1 k=1

The last 4 of these equations are the same of the 15 moments model as
reported Equation (39),_, of [11]. So we have that the 2 eigenvalues with

multiplicity 2 in Equation (40) of [11] are eigenvalues with multiplicity 2

also for the 14 moments model; they are the solutions of

01,2 01,3 299 3
5 4 2 L) Y13
B 3 =V = P e = SO 6 = 0.
’ 5 7 5 7 9o SR gﬁl 4
4 , ,
2’82’3 3192’4 0

(26)
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The remaining eigenvalues are the solutions of |ah,k| =0, ie.,

¢ 1 2 ¢
B O V1 Vg o +=0 V2 0
0,0 0,1 11, 02%g%2 gl
1, 9 1 1 P
Y91 Yo 2 3 1,2 %0 Yg 3+ 3 Y13 3 Y13 = 0
LY 1.9 1 1 1 2 ol
Moy 32, 3V2 (5 ﬂl’fp 313 3720
+0g.3) -
%3 Po
=0.
1 1 2 1 2
Vo230 Voz+gdis (gﬂ1,3 Bo,4 +5 02,4 (gﬂl,z; —15 V2.4
Nal 2 [0}
+093) 1
2305 502a)
2 (031 1 (031 1 1 2 4 Nl
=0 O O =9 -
302 3V18% 3013 (52 1,4 . 5014 15 V2.4 o
2 1
+ 5192,4 )(PO
2 1 2 4 9 1
0 0 37237, 15 V2.4 150247 5024

@7

It is easy to prove that this equation depends on hil

only through
)

2 poB 2
(ﬂ) _ 2 %a® 2 (which is equal to (ﬁ) if U% = cE%) and it is a
®o (U'o, )2 v

second degree equation in (&

2
o j . In fact, by applying well known
0

properties of the determinants, we can see that this equation can be
written as
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1 2
Y90 Vo1 Y11 Y9 2 +§‘31,2 gﬂm 0
) ) 113 ) +lﬁ 113 0
0,1 0,2 3 1,2 0,3 6 1,3 3 1,3
2 2 2
LN 1 LN 1s 1 1 _2 "
191,1[(‘)0) 3191,2[(‘)0) 3012 (6‘31,3 ) 3013 3923 %0
+‘32,3)((%))
1 1 1 2 1 2 =0
Bo2+302 Boz+ipdis (gﬂLs Bo,4+5 024 (561,4 ~15 024
+923) +%‘324)
20 (@) Ly (o} Lo 1y 25 _4g (o
302l ) 30, 3013 5014 5 14 "7 24| 5,
2 (Plj
+=0 )(—
5024 4,
2 4
0 0 —3623 15 V24 —ﬁﬁu 51924
(28)

So it gives 4 independent eigenvectors; other 6 come from (23), other 4

come from (26). The total is 14, as expected.
5.2. Wave speeds for the subsystem with 6 moments

This is a subsystem of that with 15 moments when XW, = ig“” >

so Equation (21) becomes

K = 00 [Vg(axﬂ + 2T, +5 (AP gy, )AS T

1 14 1 v
+ APOEAgNs + E(A;;iﬁM 8, )N T + E(Agﬁw gmgw,)(sz)ﬂ.

(29)
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e We note that a first eigenvalue is

9o = 0. (30)

In fact, if ¢¢ = 0, we find that the independent variables are linked only
by

Sy = 0, 240; 18) + 80y 9cdhg + (01,3 — 1009 3)c?8 X = 0, (31)
Consequently, the eigenvalue (30) has multiplicity 4.
e For the other eigenvalues we have ¢y # 0 and we define oA = X,
dhg = Xy, A = X3, 28 = X, ¢dhy = V7, ¢Bhg = Z;.

With this notation (29) can be written as

4
kB 1 2 2
0Ky = E an Xp X, + =% o|(Y7)" +(Z1)7],
mpegy E s hkShak T+ g 1,2[ 1 1 ]
with
=9 =0 =% _(Pl =l(’8 -0 )
a1l 0,0, @12 0,1> @13 1,1 0 14 4 V0,2 1,2 )
1 ¢ 1 1
age = Vg 9, Qg3 = §ﬂ1,2_q)(1)’ Qg4 =§(2190,3 -013), ass =§191,2,

1 5 () 1 3
agy = (ﬂﬂl,?) —ﬁﬂz,g)é, Qyy = E(ﬁo,zx —gﬂl,zx + 192,4)-

From these results, it follows that the equations to determine eigenvalues

and eigenvectors are

Clthk = 0, Yl = 0, Zl = 0. (32)

M-

>~
Il
—_
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Then the other 2 eigenvalues are the solutions of the equation

1
Yo,0 Yo,1 1‘)1,1%1) Z(l‘)o,z -V12)
1 1
Yo7 B,2 gﬂl,z%; 5(2130,3 -0y,3)
il 1 ¢ 1 (ifﬁ 3
V11— 02— 3012 24 b =0,
(o) 3 9o 5
~ 29y 5) L
12 ’ [0N))
1 1 1 1 3
Z(ﬁOQ ﬁlZ) §(2ﬁ0,3_ﬂl,3) (241313 E(ﬂoA_gﬂlA
_5 LN
12 132,3)(po +0g.4)
that is,
1
Bo,0 Bo,1 Y1 Z(ﬁo,z -dy,9)
1 1
Yo,1 9,2 3012 5(2150,3 -1 3)
2
o 1 1 5
[‘Po] U1 3012 0 (570 ~15%2:3)
1 1 1 5 1 3
2(60,2—151,2) §(260,3—§1,3) (ﬂﬂl,S_ﬁﬁz,S) 16(150,4 5014
+09.4)
1
B9,0 B,1 Z(ﬁoz -dy,9)
1 1 _
+302 Bo,1 Yo, 9 §(2ﬁ0,3 -d13) =0.
1 1 1 3
— (%9 o — O — (2089 3 -0 — (Vg4 ——=% 4+
4( 0,2~ 01,2) 8( 0,3~ 01,3) 16( 0,4 =514 2.4)
(33)

So it gives 2 independent eigenvectors, other 4 come from (30). The total

1s 6, as expected.
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5.3. Wave speeds for the subsystem with 5 moments, i.e., Euler’s

equations

This is a subsystem of that with 6 moments when > = 0. Equation

(29) now becomes

8Ky = _% 0o Ve (1) + 2T 5\BN,, + Agﬁszsxﬁsxa]. (34)

e We note that a first eigenvalue is
©g = 0 with multiplicity 3. (35)

In fact, if ¢y = 0, we find that the independent variables are linked only
by

87&1 =0, 3131’18% + 61,208}"0 =0, (36)

o For the other eigenvalues, we have @5 # 0 and we define oA = Xj,

CS)&O = Xz, CS)&]_ = X3, 087&2 = Y17 CS}\.3 = Zl'

With this notation (29) can be written as

3
kB 1 2 2

- 0Ky = a,. X X + =% Y,)" +(Z ,
mpegg OKE hzkzl nkXn X + 3 1,2[( 1)+ ( 1)]

with

_ _ _ P1 _
a1 = Bg,0, @12 = V9,1, @13 = V11 %0 agg = Vo, 2,

1 (0]] 1
Qgg = =0y 9 —, Q33 = =0 9.
23 3 1,2 9 33 3 1,2
From these results, it follows that the equations to determine eigenvalues

and eigenvectors are

N

athk = 0, Yl = 0, Zl =0. (37)
k=1
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Then the other 2 eigenvalues are the solutions of the equation

sl
(V) O —
0,0 0,1 115,
1 Ol
[V [V — O 9 — =0,
0,1 0,2 325
3l 1 3l 1
O Y o9 — O
L1, 525y 3 V12
le.,
B, 0 99,1 V1,1
2 9,0 1
¢ 1 1 , ,
(ﬁj Bo,1 B, 2 5131,2 +§191,2 = 0.
1 1 Yo, 2
B 3012 0

(38)

The corresponding 2 independent eigenvectors, plus the other 3 which

come from (35) gives 5 independent eigenvectors, as expected.
Conclusion

The scalar functions, appearing in the closure of the new 15 moments

model, have been expressed as polynomials of finite degree of the variable

- by using them it was easier to do the non relativistic limit of the
c

final field equations expressed in terms of the physical variables. This
proves that the manipulations, performed to the equations expressed in
integral form, did’t change the result to recover the known equations for
the classical case. The expressions of the above scalar functions have been
found also for the easier case of polytropic gases. The wave equations for
the subsystems with 14, 6, or 5 moments have been studied; this shows

how they evolve from the 15 moments model to its subsystems.
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