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Abstract 

A common method for solving a Sudoku puzzle is the use of elimination 

techniques. At each step one tries to find a specific pattern and eliminates a 

value in the candidate list. We describe the solution of a Sudoku puzzle as a 

disparate selection of a set-valued mapping and define critical sets and 

elimination points for this model. Some of the known techniques can be 

understood as the search for critical sets and elimination points. Our approach 

unifies these solution techniques and provides a general elimination process. 

1. Introduction 

We consider a partially prepopulated Sudoku puzzle and examine 

solution strategies for completing this puzzle. A common strategy is the 

use of elimination techniques and the definition of specific patterns (e.g., 

naked pair, X-wing, ...) which results in a reduction of the candidate list. 
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An introductory article to Sudoku puzzles had been published by 

Delahaye [3]. An overview on solution techniques for Sudoku puzzles can 

be found in Davis [2] and Maji et al. [8].  

We describe the solution of a Sudoku puzzle as a disparate selection 

of a set-valued mapping and introduce formal definitions of some 

patterns. We use definitions of critical sets and elimination points in [5] 

and show, that some of the patterns describe critical sets and elimination 

points. 

Let P be the set of cells of the Sudoku grid with the prepopulated 

values. Let xp  be the prepopulated value in cell .Px ∈  For each 

unpopulated cell x  (not in P) there exists a “candidate list” xL  

containing the possible values. A typical strategy to solve a Sudoku 

puzzle consists of a series of elimination steps reducing the size of the 

candidate list until xL  consists of a single value. 

We set up a mathematical model by { }9,,1 …=9N  and define the 

Sudoku grid by .99 NN ×=X  We define a set of edges by  

{ } xxXxxE ′=/⊂′= ,{  and xx ′,  are in the same row or 

xx ′,  are in the same column or 

xx ′,  are in the same block}. 

The pair ( )EX ,  denotes a simple graph with vertex set X  and edge 

set .E  We define 9N=Y  and a set-valued mapping YXF 2: →−  by  

( )






∈

∈

=

.if,

,if,

PXxL

Pxp

xF

x

x

\

 

Finally, in this section we collect some basic terms and notations. In a 

Sudoku puzzle the grid X  is divided into rows, columns and blocks. We 

use the notation racb (where )9N∈ba,  to denote the cell in row a and 
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column b of a Sudoku grid. A unit of a Sudoku puzzle is a subset XU ⊂  

such that U  is a row or a column or a block of the Sudoku grid. The         

9 blocks of a Sudoku grid are depicted, e.g., in Figure 2. 

In a graph ( ),, EX  the points Xxx ∈′,  are called adjacent if 

{ } Exx ∈′,  and a subset of X  is called independent if any two elements 

of this subset are not adjacent. In a Sudoku grid two cells xx ′,  are called 

adjacent if x  and x ′  are in the same row, same column or same block. 

The symbol �  denotes the number of elements (cardinality) of a finite 

set. The expression YX ×  denotes the cartesian product of X  and .Y  

For a given set XW ⊂  we define ( ) ( ).xFWF
Wx∪ ∈

=  The restriction of 

F  on a subset XW ⊂  is denoted by .WF  The graph of F  is defined by 

( ) {( ) ( )}., xFyYXyxFG ∈×∈=  A selection for F  is a point-valued 

mapping YXs →−:  such that ( ) ( )xFxs ∈  for each .Xx ∈  We identify 

a selection s of F  with the set-valued mapping ( ) ( ){ } ., XxxsxF ∈=′  An 

introduction to set-valued mappings can be found in Berge [1]. 

2. Main Definitions 

The main idea of this paper is based on the concept of disparate 

points, disparate sets and disparate selections introduced in [5]. 

Definition 2.1. The points ( ) ( ) YXyxyx ×∈′′,,,  are called 

disparate if ( ) ( )yxyx ′′=/ ,,  and yy ′=  implies { } ., Exx ∈/′  

Definition 2.2. A set YXA ×⊂  is called disparate if any two points 

,,, aaAaa ′=/∈′  are disparate. 

Definition 2.3. A point-valued mapping YXs →−:  is called to be 

disparate if the graph ( )sG  of s is a disparate set. 
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The completion of a Sudoku puzzle can be identified with a disparate 

selection of .F  The term disparate reflects the dependencies within a 

Sudoku puzzle. All cells in a row, a column and a block are related by 

edges. Disparate means the corresponding values have to be different, 

i.e., each value appears only once. 

We recall some definitions from [5] and define the complement set, 

the complement mapping, critical sets and elimination points. 

Definition 2.4. The complement set of a point YXa ×∈  is defined 

by  

{ }( ) aYXbacompl ×∈= {  and b are disparate}. 

We introduce the complement mapping { } Y
yx xXF 2:, →−\  of F  

depending on ( ) ( )FGyx ∈,  by ( ) ( ) ( ){ }( )yxcomplzFzF yx ,, ∩=  for each 

{ } yxFxXz ,.\∈  is a submapping of { }( ).xXF \  

The complement set and complement mapping (and also critical sets) 

are defined in a simplified manner compared to [5], but this is sufficient 

for our purposes. 

Definition 2.5. A nonempty set XW ⊂  is called a critical set of F if 

there exists ( ) ( ) YWXyx ×∈ \,  such that there does not exist a 

disparate set (( ) )WyxFGA ,⊂  with .WA �� ≥  

In [5], generalized and t-critical sets had been introduced. The 

description of Definition 2.5 is equivalent to t-critical sets and each 

critical set is a generalized critical set (see [5, Lemma 12.3]). Also in [5], 

the relation of generalized critical sets to disparate selections had been 

shown and a method for the calculation of a disparate selection had been 

provided. 
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The consideration of critical sets is a useful tool in the proof of the 

marriage theorem, originally proved by Hall [6]. This theorem had been 

reproved by Halmos and Vaughan [7] using critical sets in the sense of   

[5, Lemma 14.2]. 

Closely related to critical sets are elimination points which are the 

basis for a reduction of the candidate list. 

Definition 2.6. Let XW ⊂  be a critical set of .F  The elimination 

points of W  are defined by ( ) {( ) ( ( ) )WXF FGyxWlime \∈= ,  there does 

not exist a disparate set (( ) )WyxFGA ,⊂  with }.WA �� ≥  

The motivation for considering critical sets and elimination points is 

the following necessary condition of a disparate selection of .F  

Theorem 2.7. Let s be a disparate selection of ,F  let XW ⊂  be a 

critical set of F  and let ( )( ) ( ).,. WlimexsxWXx F∈/∈ \  

Proof. Define a disparate set ( ) ( )YWsGA ×= ∩  with .WA �� =  By 

definition of the complement mapping and since ( )sG  is disparate, 

(( ( ) ) ),, WxsxFGA ⊂  i.e., ( )( ) ( )., Wlimexsx F∈/   � 

A possible elimination technique for a given value y in the candidate 

list of cell x, (i.e., ( ) ( ))FGyx ∈,  is the search for a critical set XW ⊂  of 

F  such that ( ) ( )., Wlimeyx F∈  According to Theorem 2.7, the point 

( )yx,  cannot be a solution point of the Sudoku puzzle, i.e., we can 

eliminate the value y in the candidate list of cell x. 

In this paper, we show that several known elimination techniques for 

Sudoku puzzles are of the type described in Theorem 2.7. An elimination 

technique called “Unique Solution Constraints” described by Davis         

[2, Section 8] is not covered by our approach. 
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Combining the calculation methods of [5] and the results in this paper 

provide a general algorithm for solving Sudoku puzzles which considers 

the known patterns as part of the algorithm. 

3. Naked and Hidden Tight Sets 

Naked and hidden tight sets are known in the literature as naked and 

hidden singles, pairs, ... . We adopt here an expression of Schrijver [9] and 

subsume these definitions under the term tight set. 

Definition 3.1. Let XU ⊂  be a unit. A subset UM ⊂  is called a 

naked tight set if UMM =//=/ ,0  and ( ) .MMF �� =  

This definition includes naked singles ( ),1=M�  pairs ( ),2=M�  

triplets ( ),3=M�  quads ( ) .,4 …=M�  

 

Figure 1. Naked pair, Davis [2, Figure 4]. 

Example 3.2. We depict row 1 of a Sudoku grid in Figure 1. The cells 

r1c2 and r1c8 form a naked tight set with 2=M�  (naked pair) and the 

values ( ) { }.7,2=MF  

Naked tight sets describe a critical set of .F  

Lemma 3.3. Let XU ⊂  be a unit and let UM ⊂  be a naked tight 

set. MW =  is a critical set of F  and ( ) ( )Wlimeyx F∈,  for each 

MUx \∈  and ( ).MFy ∈  

Proof. Let MUx \∈  and ( ).MFy ∈  This implies ( ) { }) =yMF \�  

1−M�  and each disparate set (( ) )WyxFGA ,⊂  satisfies .1−≤ WA ��  
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This shows MW =  is a critical set of ,F  since MU \  and ( )MF  are 

nonempty and ( ) ( )Wlimeyx F∈,  for each MUx \∈  and ( ).MFy ∈   � 

Example 3.4. Using Lemma 3.3 the cells {r1c2, r1c8} in Figure 1 form 

a critical set of F and (r1c3, 2), (r1c9, 2), (r1c9, 7) Flime∈ ({r1c2, r1c8}), 

i.e., we can eliminate the value 2 from the candidate list in cell r1c3 and 

we can eliminate the values 2, 7 from the candidate list in cell r1c9. 

Hidden tight sets are the complement of naked tight sets and we can 

transfer our result on naked tight sets to hidden tight sets. 

Definition 3.5. Let XU ⊂  be a unit. A subset UM ⊂  is called a 

hidden tight set if UMM =//=/ ,0  and ( ( )) .MMUF �� =\\9N  

This definition includes hidden singles ( ),1=M�  pairs ( ),2=M�  

triplets ( ),3=M�  quads ( ) .,4 …=M�  

We derive a critical set of F  from a hidden tight set. 

Lemma 3.6. Let U  be a unit and let UM ⊂  be a hidden tight set. 

MUW \=  is a critical set of F  and ( ) ( )Wlimeyx F∈,  for each Mx ∈  

and ( ).MUFy \∈  

Proof. We obtain ( ) ( ( )) =−=−= MUMUFMUF ����� \\\ 99 NN  

( ),MU\�  i.e., MU \  is a naked tight set and we can apply Lemma 3.3.  

� 

Please note, usually a Sudoku puzzle is (uniquely) solvable and in this 

case ( ).UF=9N  

4. Locked Candidates 

The tight sets in Section 3 are all contained in a single unit. In the 

remaining sections we consider patterns which are contained in more 

than one unit. 
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Definition 4.1. Let 2121 ,, UUXUU =/⊂  be units. A value 

( )21 UUFy ∩∈  is called a locked candidate of 1U  and 2U  if 

( ).21 UUFy \∈/  

We number the 9 blocks of a Sudoku grid from 1 to 9 row-wise from 

left to right and the rows from top to bottom. 

 

Figure 2. Locked candidate, Davis [2, Figure 3]. 

Example 4.2. The value 2 in Figure 2 is a locked candidate of block 

16 U=  and row .6 2U=  

From a locked candidate we derive a critical set of .F  

Lemma 4.3. Let ,,, 2121 UUXUU =/⊂  be units and let y be a locked 

candidate of 1U  and 12. UWU =  is a critical set of F and 

( ) ( )Wlimeyx F∈,  for each ( ) ( ).12
1 UUyFx \∩

−∈  
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Proof. Let 12 UUx \∈  and let (( ) )WyxFGA ,⊂  be a disparate set. 

There does not exist a point 21 UUz \∈  such that ( ) ,, Ayz ∈  since y is a 

locked candidate. There does not exist a point 21 UUz ∩∈  such that 

( ) Ayz ∈,  by definition of the complement mapping. This shows 

,8 1 WUA ��� =<≤  i.e., 1UW =  is a critical set of ,F  since 12 UU \  is 

nonempty and ( ) ( )Wlimeyx F∈,  for each ( ) ( ).12
1 UUyFx \∩

−∈   � 

Example 4.4. Using Lemma 4.3, block 16 U=  in Figure 2 is a critical 

set of F  and (r6c1, 4), (r6c5, 2) ( ),1Ulime F∈  i.e., we can eliminate the 

value 4 from the candidate list in cell r6c1 and the value 2 from the 

candidate list in cell r6c5. 

5. K-Wings 

In the literature k-wings are known as X-wings ( ),2=k  swordfish 

( ),3=k  jellyfish ( ),4=k  and squirmbag ( ).5=k  We subsume these 

definitions under the term k-wing. 

Definition 5.1. A tuple ( ),,,,,,, 11 yCCRR kk ……  where ,82 ≤≤ k  

kRR ,,1 …  are rows, kCC ,,1 …  are columns and Yy ∈  is called a row   

k-wing if kRR ,,1 …  are distinct, kCC ,,1 …  are distinct and ( )xFy ∈/  for 

each .
11 iiii
CRx ∪∪

kk

==
∈ \  

This definition describes row k-wings. Analoguously it is possible to 

define column k-wings. In this case ( )xFy ∈/  for each 

.
11 iiii
RCx ∪∪

kk

==
∈ \  In order to keep the description simple we deal 

here only with row k-wings. An analoguous result as in Lemma 5.3 holds 

for column k-wings. 
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Figure 3. 2-wing, Davis [2, Figure 7, left]. 

Example 5.2. In the rows 3 and 8 in Figure 3 the value 3 appears 

only in the columns 2 and 7. The rows 3 and 8, columns 2 and 7 with the 

value 3 form a row 2-wing in this Sudoku puzzle. 

From a k-wing pattern we derive a critical set of .F  

Lemma 5.3. Let ( )yCCRR ,,,,,, 11 kk ……  be a row k-wing, 

ii
RW ∪

k

1=
=  is a critical set of F  and ( ) ( )Wlimeyx F∈,  for each 

( ) ( ).
11

1
iiii

RCyFx ∪∪
kk

==

−
∈ \∩  

Proof. Let .
11 iiii
RCx ∪∪

kk

==
∈ \  Suppose there exists a disparate 

set (( ) )WyxFGA ,⊂  such that .WA �� ≥  
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Let .1 k≤≤ i  Any disparate set in ( )
iRFG  contains at most 9 

elements. We obtain 

( ) ( ( )) ( ( )) ,9919

,1

≤=−≤⋅−−=

=
=/

ij
j

ij

RR FGAFGAAW ∩∩ ���� ∪
k

k  

i.e., ( ( )) .9=
iRFGA ∩�  All points in iR  are adjacent, i.e., there exists 

ii Rx ∈  such that ( ) ( ).,
iRi FGAyx ∩∈  In particular, ( )ixFy ∈  and 

using Definition 5.1, .
1 iii Cx ∪
k

=
∈  

The set ( ){ }yxii
,

1∪
k

=
 is disparate, since all points are contained in ,A  

i.e., ix  and jx  are not adjacent for .,,,1, jiji =/= k…  There exists 

{ }k,,10 …∈i  such that 
0i

Cx ∈  and there exists { }k,,11 …∈i  such that 

.
01 ii Cx ∈  Consequently, 

1i
x  and x  are adjacent, i.e., ( )yxi ,

1
 and ( )yx,  

are not disparate. This contradicts with ( ) (( ) )Wyxi FGAyx ,,
1

⊂∈  and 

the definition of the complement mapping.  

iiii
RC ∪∪

kk

11 ==
\  is nonempty, since ,8≤k  and this shows that W  is 

a critical set of .F  It also shows that ( ) ( )Wlimeyx F∈,  for each 

( ) ( ).
11

1
iiii

RCyFx ∪∪
kk

==

−
∈ \∩   � 

Example 5.4. Let 1R  be row 3, 2R  be row 8, 1C  be column 2, 2C  be 

column 7 and 3=y  in Figure 3. Using Lemma 5.3, 21 RR ∪  forms a 

critical set of F and (r6c7, 3) ( ),21 RRlime F ∪∈  i.e., we can eliminate 

the value 3 from the candidate list in cell r6c7. 

 

 



THOMAS FISCHER 82 

6. XY-Wings 

Another strategy to eliminate values from the candidate list are      

XY-wings. 

Definition 6.1. A tuple ( ) 33
321321 ,,,,, YXyyyxxx ×∈  is called 

an XY-wing if 321 ,, xxx  are distinct, 321 ,, yyy  are distinct, 21 , xx  are 

adjacent, 31 , xx  are adjacent, ( ) { } ( ) { },,,, 312211 yyxFyyxF ==  and 

( ) { }., 323 yyxF =  

 

Figure 4. XY-wing, Davis [2, Figure 11]. 

Example 6.2. The tuple (r4c8, r4c1, r6c7, 8, 9, 3) in Figure 4 is an 

XY-wing. We observe the cells r6c1, r6c2, and r4c7 are adjacent to r4c1 

and r6c7 and contain the value 3 in their candidate list. 

An XY-wing describes a critical set of F. 

Lemma 6.3. Let Xxxx ∈321 ,,  be distinct points such that 21 , xx  

are adjacent and 31 , xx  are adjacent. There exists { }321 ,, xxxXx \∈  

such that 2, xx  are adjacent and 3, xx  are adjacent. 
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Proof. We distinguish several cases. 

Case 1: There exists a unit XU ⊂  such that .,, 321 Uxxx ∈   

We can choose any { }321 ,, xxxUx \∈  and obtain the desired 

properties. 

Case 2: There does not exist a unit XU ⊂  such that .,, 321 Uxxx ∈   

There exist units XU ⊂2  and XU ⊂3  such that 221 , Uxx ∈  and 

331 , Uxx ∈  and .32 UU =/  

Case 2(a): 2U  or 3U  is a block.  

This implies ( ) ,332 =UU ∩�  since .321 UUx ∩∈  Using Case 2 

( ) { } 0,, 32132 /=/xxxUU \∩  and we can find ( ) { }32132 ,, xxxUUx \∩∈  

with the desired properties. 

Case 2(b): 2U  and 3U  are no blocks. 

One of 2U  and 3U  is a row and the other one is a column, since 

.321 UUx ∩∈  There exists ( )32 UUXx ∪\∈  such that 2, xx  are 

adjacent and 3, xx  are adjacent.  � 

Lemma 6.4. Let ( ) 33
321321 ,,,,, YXyyyxxx ×∈  be an XY-wing. 

{ }321 ,, xxxW =  is a critical set of F and ( ) ( )Wlimeyx F∈3,  for each 

{ }321 ,, xxxXx \∈  adjacent to 2x  and .3x  

Proof. Let { }321 ,, xxxXx \∈  such that 2, xx  are adjacent and 3, xx  

are adjacent. Suppose there exists a disparate set (( ) )WyxFGA
3,⊂  

such that .WA �� ≥  This implies {( ) ( ) ( ),,,,,, 122111 yxyxyxA ⊂  

( )}23 , yx  and .3≥A�  A simple consideration shows that such a 

disparate set A does not exist and this yields a contradiction. 

By Lemma 6.3, there exists { }321 ,, xxxXx \∈  such that 2, xx  are 

adjacent and 3, xx  are adjacent, i.e., W  is a critical set of F  and 

( ) ( )Wlimeyx F∈3,  for each { }321 ,, xxxXx \∈  adjacent to 2x  and .3x  

� 
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Example 6.5. Using Lemma 6.4, the cells W = {r4c8, r4c1, r6c7} in 

Figure 4 form a critical set of F and (r6c1, 3), (r6c2, 3), (r4c7, 3) 

( ),Wlime F∈  i.e., we can eliminate the value 3 from the candidate lists in 

the cells r6c1, r6c2, and r4c7. 

7. Nishio Sets 

Nishio sets had been introduced by Eppstein [4] on the basis of a 

Sudoku strategy proposed by the japanese author Tetsuya Nishio who 

published several books on Sudoku. We define Nishio sets in the sense of 

Eppstein [4] and show the relation between Nishio sets and critical sets. 

The inverse image of F is defined by ( ) { ( )}xFyXxyF ∈∈=−1  for 

each .Yy ∈   

Definition 7.1. The Nishio set of a value Yy ∈  is defined by  

( ) { ( ) VyFVyNishio 1−
⊂= ∪  is an independent set and }.9=V�  

 

Figure 5. Nishio set, Eppstein [4, modification of Figure 1]. 
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Example 7.2. The candidate list in cell r9c5 of Figure 5 contains the 

value 7. It is not possible to find an independent set V in the Sudoku grid 

with 9=V�  such that V contains r3c4, r6c8 and r9c5 and 7 is in the 

candidate list of all cells in .V  We recall the arguments of Eppstein [4]. If 

this was possible, this would force a 7 in these cells: r5c6, r4c1, r2c3, r1c7 

and r9c9, but row 9 already contains a 7 in column 5. This shows 

( ),759 Nishiocr ∈/  i.e., ( ) .7 XNishio =/  

We define the projected level sets of YXA ×⊂  and Yy ∈  by 

{ ( ) }., AyxXxAy ∈∈=  This definition guarantees .qYq
AA �� ∑ ∈

=  If 

A is a disparate set, the projected level sets yA  are independent and 

9≤yA�  for each .Yy ∈  

From a Nishio set we derive a critical set of .F  

Lemma 7.3. Let { }xXWYy \=∈ .  is a critical set of F and 

( ) ( )Wlimeyx F∈,  for each ( ) ( ).1 yNishioyFx \−∈  

Proof. Let ( ) ( )yNishioyFx \1−∈  and set { }.xXW \=  Suppose 

there exists a disparate set (( ) )WyxFGA ,⊂  such that .WA �� ≥  By 

definition of the complement mapping ( ){ }yxA ,∪  is a disparate set, i.e., 

{ }xAy ∪  is an independent set. 

Using { } ( )yFxAy
1−⊂∪  and ( ) { }( ) ,8, ≤∈/ xAyNishiox y ∪�  i.e., 

.7≤yA�  We obtain 

( { }) ,7998780

,

=⋅+≤+=≤== ∑
=/∈

q

yqYq

y AAAWxX ����� \  

and this is a contradiction. This shows { }xXW \=  is a critical set of F 

and ( ) ( )., Wlimeyx F∈   � 
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Example 7.4. Using Lemma 7.3, the cells { }59crX \  in Figure 5 form 

a critical set of F and ( ) { }( ),597,59 crXlimecr F \∈  i.e., we can eliminate 

the value 7 from the candidate list in cell r9c5. 
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