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Abstract 

The viscosity solution for the inhomogeneous relativistic Vlasov equation is 

investigated. We consider this equation on a spherically symmetric 

gravitational field space-time. We rigorously prove the existence result of the 

viscosity solution using method of vanishing viscosity and uniqueness result of 

this type of solution using comparison method in details. 
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1. Introduction 

The Vlasov equation is one of the basic equation of the relativistic 

kinetic theory, where particles are fast moving without collisions. It is 

distinguished from other equations of kinetic theory by the fact that there 

is no direct interaction between particles. Solely by the field which is 

collectively generated by the motion of particles. The field which are 

taken into account depend on the physical situation being modelled. In 

gravitational physics, which is considered here, the field are described by 

the Einstein's equations. The best known applications of the Vlasov 

equation to self-gravitating systems are to stellar dynamics (see [4]). It 

can also be applied in Cosmology. In the first case, considered systems are 

galaxies or parts of galaxies where there is not too much dust or gas 

which would require a hydrodynamical treatment. Possible applications 

are to globular clurters, elliptical galaxies and the central bulge of spiral 

galaxies. In all these cases, particles are stars. In the cosmological 

situation they might be galaxies or even clusters of galaxies. The fact that 

they are modelled as particles reflects the irrelevance of their internal 

structure to the dynamics of the system as a whole. The Vlasov equation 

or the Einstein-Vlasov system has been widely studied in literature, see 

[12, 17, 18, 19, 20, 23]. One of the simplest ways to describe the universe 

is to consider the spherically symmetric gravitational field space-time 

with suitable matter models. Considering this kind of space-time 

supposes that, the metric admits an action of the group ( )3SO  by 

isometries and takes the form (3) below. The spherically symmetric 

gravitational field is one of the most important models used in relativistic 

kinetic theory. For this reason, a lot of works have been done on both the 

Vlasov equation and on the Einstein-Vlasov system, in spherically 

symmetric background, see [6, 14, 16, 21, 22]. First, we study the 

existence and uniqueness theorem for the viscosity solutions of the 

relativistic Vlasov equation on an inhomogeneous spherically symmetric 

gravitational field space-time. Note that, the primary objectives of the 
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theory of viscosity solutions applied to certain partial differential 

equations are that it allows merely continuous functions to be solutions of 

these equations. This method has already been used to solve the 

relativistic Vlasov equation, but taking as background homogeneous 

Bianchi models [2, 11]. For more details on the notion of viscosity 

solutions, see [3, 5, 7, 8, 9, 10, 13, 15]. We investigate the inhomogeneous 

case and we rigorously prove the existence and uniqueness of the 

viscosity solution in details using the method of “vanishing viscosity” 

described in [13]. The method used here is completely different from the 

method used in literature to solve the relativistic Vlasov equation in the 

spherically symmetric gravitational field space-time. 

The paper is organized as follows: 

In Section 2, we provide the formulation of the relativistic Vlasov 

equation in Cartesian coordinates, taking as background a spherically 

symmetric gravitational field space-time. 

In Section 3, we give the formulation of the relativistic Vlasov 

equation, in our geometrical background, as a Hamilton-Jacobi equation 

and we establish energy estimates.  

In Section 4, we prove existence and uniqueness theorems for the 

viscosity solution of the relativistic Vlasov equation. 

2. The Equation and the Space-Time 

In this paper, greek indices ( )…,,, λγβ  vary from 0 to 3 and latin ows 

( )…,,, lji  from 1 to 3. Unless otherwise specified, we adopt the Einstein 

summation convention .α
α

α

α
α ∑= baba  

We consider the inhomogeneous Vlasov equation of the form 

,0=
∂

∂
+

∂

∂
α

α
α

α

p

f
P

x

f
p   (1) 
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where 

.γλα
λγ

α Γ−= ppP   (2) 

The Equation (1) which governs the evolution without collisions of 

particles, with a non-zero rest mass m, is considered here on a spherically 

symmetric gravitational field. The 4-momentum of particles is denoted by 

( ) ( ),,0 ipppp == α  informs on their velocity. Their distribution 

function f  is then a function of ( ),, αα px  where ( )αα px ,  denotes the 

usual coordinates of the tangent bundle ( )4
RT  of .4

R  The collisionless 

particles then evolve in the space time ( ),,4 gR  under the action of their 

own gravitational field represented by the given metric tensor ( )αβ= gg  

that informs about gravitational effects. We consider that ( )g,4
R  is a 

spherical symmetric space-time whose symmetric metric tensor 

( )αβ= gg  is of Lorentzian signature ( )+++− ,,,  and writes 

( ) ( ) .sin 222222,2, ϕθ+θ++−= ΛΦ drdrdredteg rtrt   (3) 

where Φ  and Λ  are given class one differentiable functions which 

depend on the R∈t  and [ [∞+∈ ;0r  (where r is given by 

( ) ( ) ( ) ).232221 ji
ij xxxxxr δ=++=  

Such a metric is said to be spherically symmetric since it admits an 

action of the group ( )3SO  by isometries. 

Trajectories ( ( ) ( ))spsxs αα ,֏  of such particles are no longer 

geodesics, but are solutions of the differential system 

.; α
α

α
α

== p
ds

dx
P

ds

dp
  (4) 

In Equation (1), all variables are expressed in Cartesian coordinates 

while the Christoffel symbols are given with spherical coordinates using 

the metric tensor (3). Then we are going to write the Vlasov equation in 

Cartesian coordinates. 
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So, let .cosand,sinsin,cossin 321 θ=ϕθ=ϕθ= rxrxrx  Setting 

gxx j
iji ,δ=  can be written as 

,2
00

ji
ij dxdxgdtgg +=  (5) 

where components 00g  and ijg  as obtained in [6]: 

( ) .0,1, 0200 =−+δ=−= ΛΦ
i

ji
ijij g

r

xx
egeg  (6) 

Using relations (5) and (6), we have the determinant of the metric g  

given by ( ) .det Λ+Φ
αβ −= eg  After computation, we have the reverse of 

( ),αβ= gg  given by 

,2001
ji

ij dxdxgdtgg +=−   (7) 

where ( ) .1,
2

00

r

xx
egeg

jiijij −+δ== Λ−Φ−  

The rest mass of particles is normalized to the unity, that is .1=m  

Actually, the collisionless uncharged particles move on the future sheet of 

the mass hyperboloid ( ) ( ),44
RR TP ⊂  whose equation is ( ) gpP xt :,  

( ) 1, −=pp  or equivalently, using expression (3) of :g  

,1: 20
,

ji
ijxt ppgepP +=

Φ
−

  (8) 

where the choice 00 >p  symbolizes the fact that particles eject towards 

the future. For the transformation of the Equation (1), we shall need 

expressions of the Christoffel symbols i
αβΓ  which are given by (see [6]) 

,
2
1

,
2
1

2000
r

xx
e

r

x j
i

t
i
j

i

r
i Λ∂−=ΓΦ∂=Γ Λ−Φ   (9) 

.
2
11

32 r

xxx

r

x

r

xx

r

e j
i

r

i
j

j
i
j

kk

kk
Φ∂+








−δ

−
=Γ

Λ−

  (10) 



F. K. MATURIN et al. 6 

3. Hamilton-Jacobi Equation and Energy Estimates 

We see that, terms 
4r

xxx j
i
k  in expressions of Christoffel symbols (10), 

imply some singularities at .0=r  To avoid these singularities and for 

some other purposes, we need some change of variables to the effect of 

having another expression of the relativistic Vlasov equation. To this end, 

we follow [22] and [14]. We then define the frame on 3
R  characterized by 

the vectors: 

( )
2

2 1
r

xx
ee

ji

dj
i
d

i
d

δ−+δ=

Λ
−

 such that .sd
j
s

i
dij eeg δ=  (11) 

Which is orthonormal with respect to the scalar product induced by αβg  

on .3
R  The index d refers to the frame while the index i is for the 

coordinates. 

Further, a dimensionless vector iv  is introduced such that 

3,2,1, == ievp i
d

di  with ( )
( )

.1
2

2

r

xpx
epv

i
ii ⋅

−+=

Λ

 (12) 

A vector in 3
R  will be parametrized not by components ip  but by 

components .iv  In terms of the dimensionless vector ,iv  components of 

the momentum 4-vector αp  read 

( )
( )

.1
2

2

r

xvx
evp

i
ii ⋅

−+=

Λ
−

 (13) 

News coordinates in this change of variables (12) have the advantage that 

by the mass-shell condition (8), we have 

.1 220 vep +=

Φ
−

  (14) 
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In the following we will use notations: 

.,1 02020 vepvv

Φ
−

=+=  (15) 

By the above change of variables, instead of ( ),,, pxt  we will use ( )vxt ,,  

as new variables. We henceforth set 

( ) ( )( ) ( ( )
( )

).1,,,,,,,,
2

2

r

xvx
evxtfvxtpxtfvxtf

⋅
−+==

Λ
−

  (16) 

To write the equation in new variables, we need derivatives of the 

distribution function that appears in the relativistic Vlasov equation (1) 

expressed in terms of new variables, which are given in following 

equalities (see [14]): 

,
2
1

2
020










∂

∂
δΛ∂+

∂

∂
=

∂

∂
Φ

−

i

ij

jt
v

f

r

xvx

t

f
ve

t

f
p

k

k   (17) 

,








∂

∂
γ+

∂

∂
=

∂

∂
l

l
ii

i

i

i

v

f

x

f
p

x

f
p  (18) 

where 

( ) ( )
2

2
2

2
3

11
2
1 2

r

xv
e

r

xv
e

r

vx
xxe

l

i

j

j
l
i

nj

nji
l

r
l
i

k

k

k

kk
k δ−+δδ−+δδΛ∂=γ

ΛΛ
−Λ

 

 ( ) ,
22

22

r

vx

r

xx
ee

mn

mn

l

i δδ−+

ΛΛ
− k

k   (19) 

and 

( )( ) ( )( )k
k

k

k
ppppp

p

f
ppppp ji

j
ji

j
i

i

ji
j

ji
j

i Γ+Γ+Γ=
∂

∂
Γ+Γ+Γ 2222 0

0
20

00
0

0
20

00  

( ) .1
2

2














δ−+δ

∂

∂
×

Λ

r

xx
e

v

f j

i
j
ij

k

k  

(20) 
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When we insert (17), (18) and (20) into the relativistic Vlasov equation 

(1), after some rearrangements and dividing the resulting equation by 0p  

given by (15), we obtain 

,0=
∂

∂
+

∂

∂
+

∂

∂
i

i

i

i

v

f

x

f

t

f
BA   (21) 

where 

( ) ,1
2

2
0

2














δ−+=

Λ
−

Φ

r

vxx
ev

v

e li

l
ii

k

kA   (22) 

( )
( )

.
22

1
2

0
2

2

0
2

2

r

vxx
v

r

x
evxvxv

r

e

v

e li

l
t

i
riil

l
i

k

k
kk

k δ
Λ∂

−
Φ∂

−−δ
−

=
Λ−Φ

Φ Λ
−

B  

(23) 

One observe that the unknown function is still denoted by f  instead of .f  

Assumption 1. The following assumptions used in [22] have been 

adopted: 

(A1) We suppose that the function Λ  is positive and independent of ,t  

the function Φ  is independent of r  and that there exists a constant 

0>C  such that 

[ [∞+∈∀≤Φ∂≤Λ∂ ,0,, rCC tr  and [ [.;0 Tt ∈  (24) 

(A2) The distribution function is spherically symmetric, i.e., f  is 

assumed to be invariant under simultaneous rotations of x  and .v  As a 

consequence, a direct calculation leads to the following condition: 

( ) ( ) .
i

iil
li

iil
l

x

f
vxvxx

v

f
xvxvv

∂

∂
−δ=

∂

∂
−δ kk

k
kk

k   (25) 
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Now, using Assumption (A2), the relativistic Vlasov equation (21) 

reduces to 

( )

.0
22 2

0
0

2
22 =

∂

∂












δ

Λ∂
+

Φ∂
−

∂

∂
+

∂

∂
Λ−ΦΛ−

Φ

i

li

l
t

i
r

i

i

v

f

r

vxx
v

r

x
e

x

f
ve

v

e

t

f k

k   

(26) 

Afterwards, using Assumption (A1), we have 

.02
0

2
=

∂

∂
+

∂

∂ Λ−

Φ

i

i

x

f
ve

v

e

t

f
  (27) 

Now we consider the Hamiltonian, that is the function H  defined by 

the second term of the relativistic Vlasov equation (27) as follows: 

.2
0

2

i

i

x

f
ve

v

e
H

∂

∂
=

Λ−

Φ

 (28) 

Setting 
ii

x

f
u

∂

∂
=  and 

ii
v

f
w

∂

∂
=  in the relation (28), the Hamiltonian H  

can be rewritten as a function 

[ ] 3333;0: RRRR ××××TH →− ;R  

( ) ( ),,,,,,,,, wuvxtHwuvxt ֏  

where ( ) ( )., ii wwuu ==  

The relativistic Vlasov equation (1), in the spherical symmetric space-

time has been transformed into the following Hamilton-Jacobi equation: 

( ) ( ) ,0,,,,,, =+ wuvxtHvxtft   (29) 

where H  is given by (28). 
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Let us assume that a Lipschitz continuous and bounded function 

33
0 : RR ×f →− R  and a real number 0>T  are given and consider the 

following Cauchy problem: 

( ) ( ) [ ]

( ) ( )






×=

××=+

.in,,,0

,;0in0,,,,,,

33
0

33

RR

RR

vxfvxf

TwuvxtHvxtft
  (30) 

Our goal in the sequel, will be to prove that the Cauchy problem (30) has 

a unique viscosity solution ([ ] ).;0 33
RR ××∈ TCf  

Firstly, let us state the following propositions. 

Proposition 1. The following functions 2
00

,
1

,
Φ

e
vv

vi

 are bounded. 

Proof. Firstly, the expression (15) of 0v  shows the boundeness of 
0v

vi

 

and .
1
0v

 More precisely, we have 

1
0

≤
v

vi

 and .1
1
0

≤
v

  (31) 

• Secondly, the integration of relation (24) yields 

,2
1

2
CT

eCe ≤

Φ

 (32) 

which shows the boundness of .2
Φ

e   � 

Proposition 2. Let 0>T  and 0>R  two given reals numbers, the 

Hamiltonian H  

[ ] 3333;0: RRRR ××××TH →− ;R  

( ) ( )wuvxtHwuvxt ,,,,,,,, ֏  

defined by (28) satisfies following properties: 
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(i) H  is continuous on [ ] 3333;0 RRRR ××××T  and uniformly 

continuous on [ ]0; ,R R R RT × × × ×B B B B  where RB  is the sphere of 

center 30
R

 and radius ;R  

(ii) H  is Lipschitz continuous with respect to ( ), , ;t x v  

(iii) H  is Lipschitz continuous with respect to ( );, wu  

(iv) There exists one modulus RM  such that  

( ) ( )′′′′′− wuvxtHwuvxtH ,,,,,,,,  

( ),′′′′′ −+−+−+−+−≤ wwuuvvxxttM R  

( ) ( ) [ ] ,;0,,,,,,,,, 3333
RRRR ××××∈∀ ′′′′′ Twuvxtwuvxt  where  

., Ruu ≤′  

Proof. Let 0>T  given 

(i) ( )wuvxtH ,,,,  given by (28) is evidently defined and continuous 

in ( )wuvxt ,,,,  since .10
�v  

(ii) Let ( ) 33, RR ×∈wu  be fixed and ( ) ( ) [ ] 3;0,,;,, R×∈′′′ Tvxtvxt  

.3
R×  

Using relation (28) of ,H  we obtain 

( ) ( )
( )

( ) 












−

′

′







=−

′Λ−
Φ

′′′
00

2 2,,,,,,,,
v

v

v

v
eewuvxtHwuvxtH

ii

 

( ) ( )

.22
0

2
0

222
i

ii

uee
v

v
eeee

v

v
xx





















−+














−+

Φ′Φ
−−−

Φ ′Λ′ΛΛ

  (33) 
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Now we have 

( )

( )

( )

( )
( ) ( )

( )

( )
( )vv

vv

v
vv

v
vv

vv

v

v

v

v

v
i

ii
iii

−′
′

′
≤−′+−′

′

′
=−

′

′

000
00

0000
1

 

( ) ;
1
0

ii
vv

v
−′+  

From the inequality of finite increments, we obtain following inequalities 

in which y  is an element on the segment [ ]xx ′,  and 1t  is also an element 

between t  and .t′  

( ) ( ) ( )
( )

,
2
1 222 ′

−−−
−

∂

Λ∂
−≤−

ΛΛ′Λ

xx
r

y

r

y
eee

yxx

 

and 

( ) ( ) ( )

( ) .
2
1

1
2
1

22 ′−Φ∂≤−

ΦΦ′Φ

ttteee t

ttt

 

We then deduce, using Proposition 1 and Assumption (A1), that 

( )

( )
,2

00
vv

v

v

v

v ii

−′≤−
′

′
 (34) 

.22 xxCee ′−≤−
ΛΛ′ −−

 (35) 

.
2

22 tt
C

ee −′≤−

ΦΦ′

  (36) 

Previous inequalities in (33) yield: 

( ) ( ) ( ),,,,,,,,, vvxxttKwuvxtHwuvxtH −+−+−≤− ′′′′′′   

(37) 

with ( ) .
2

22
1 u

C
CeCK

CT









++=  
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(iii) Let ( ) [ ] 33,0,, RR ××∈ Tvxt  be fixed and ( ) ( ) 3,,, R∈′′ wuwu  

.3
R×  Using relation (28) of ,H  we have 

( ) ( ) ( ).,,,,,,,, 2
0

2
ii

i

uuee
v

v
wuvxtHwuvxtH ′−=−

Φ
−

′′
Λ

  (38) 

Using Proposition 1, we obtain from the relation (38), the following 

inequality: 

( ) ( ) ( ),,,,,,,,, ′′′′ −+−′≤− wwuuKwuvxtHwuvxtH   (39) 

with .2
1

CT

eCK =′  

(iv) Let ( ) ( ) [ ] ,;0,,,,,,,,, 3333
RRRR ××××∈′′′′′ Twuvxtwuvxt  

we obtain from relations (37) and (39) the following inequality: 

( ) ( )′′′′′− wuvxtHwuvxtH ,,,,,,,,  

( ),′′′′′ −+−+−+−+−′′≤ wwuuvvxxttK   (40) 

with KMKKK R ′′=′+=′′ .  is a modulus. This ends the proof of our 

proposition.  � 

4. Existence and Uniqueness Theorems 

In this section, we will show the existence and uniqueness theorems 

of our problem (30). Thus, we use in the sequel the method of vanishing 

viscosity given in [13]. The approach is to consider first the following 

approximate problem of (30): 

( ) ( ) [ ]

( )







×=

××=∆ε−+

ε=ε

εεεε

.in

,;0in0,,,,

33
00

33

RR

RR

ff

TfwuvxtHf

t

t
 (41) 
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(41) is an initial-value problem for a quasi-linear parabolic PDE, which 

turns out to have smooth solutions (see [13], paragraph 10). ε∆ε f  in (41) is 

the term which regularizes the Hamilton-Jacobi equation. Thus we hope 

that as ε →− ,0  the solution εf  of (40) will converge to a weak solution of 

(30). Then we suppose that 33
0 : RR ×f →− R  is a Lipschitz continuous 

and bounded function and 0>T  a real number are given. We have the 

following result: 

Lemma 1. Let Ω  be a compact subset of [ ] .;0 33
RR ××T  Let 

Ω:f →− R  be a continuous function such that there exists 

( ) ϕ−Ω∈ϕ fC ,,1
R  has a strict local maximum at ( ).,, 000 vxt  

If ( )nf  is a sequence of functions which uniformly converge to ,f  then 

there exists a sequence of points ( )
N∈nnnn vxt ,,  such that 

( ) ( )

( ) ( )

( )











ϕ−

→−

→−

+∞→−

.,,,

,,,,

,,,,

000

000

rangesomeatnallforvxtatimummaxlocalahasf

vxtfvxtf

vxtvxt

nnnn

n
nnnn

nnn

 

Proof. Let Ω  be a compact subset of [ ] ,;0 33
RR ××T  f be a 

continuous function on Ω  such that there exists ( )R,1 Ω∈ϕ C  such that 

ϕ−f  has a strict local maximum at ( ).,, 000 vxt  We assume that ( )nnf  is 

a sequence of functions which uniformly converges to f and we show that 

there exists a sequence of points ( )
N∈nnnn vxt ,,  such that 

( ) ( )

( ) ( )

( )











ϕ−

→−

→−

+∞→−

.rangesomeatallfor,,,atmaximumlocalahas

,,,,

,,,,

000

000

nvxtf

vxtfvxtf

vxtvxt

nnnn

n
nnnn

nnn
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As ϕ−f  has a strict local maximum at ( ),,, 000 vxt  for 
n

1
=ρ  enough 

small we can find ρε  such that if 

( ) ( ) ,,,,, 000 ρ≤− vxtvxt  

then 

( ) ( ) ( ) ( ).,,,,,,,, 000000 vxtvxtfvxtvxtf ϕ−<ε+ϕ− ρ   (42) 

Since ( )nnf  is uniformly convergent to ,f  then there exists N∈ρN  such 

that 

( ) ( ) .
4

,, ρ
ρ

ε
≤−Ω∈∀>∀ zfzfzNn n  (43) 

Thus we can write 

( ) ( ) ( ) ( ) .
4

,,,,,,,
4

,, 000000
ρρ ε

+≤≤
ε

− vxtfvxtfvxtfvxtf nn  (44) 

Now relations (42) and (44), yield to the inequality: 

( ) ( ) ( ) ( ).,,,,
2

,,,, 000000 vxtvxtfvxtvxtf nn ϕ−≤
ε

+ϕ−
ρ   (45) 

ϕ−nf  is then bounded, hence there exists ( )nnn vxt ,,  such that ϕ−nf  

has a maximum at ( )nnn vxt ,,  on ( )( )ρ,,, 000 vxtB  at some range 

.ρ> NN   

In the other hand, when n →− ,∞+  we have ρ →− 0  and then we 

deduce that 

( )nnn vxt ,, →− ( ).,, 000 vxt   (46) 

Since ( )nnf  uniformly converges to ,f  then we have  

( )nnnn vxtf ,, →− ( ).,, 000 vxtf   (47) 

So, relations (45), (46) and (47) conclude the proof.  � 
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Theorem 1 (Existence). Let ( )
N∈nnu  be a non negative sequence of 

reals which converges to ( ) N∈nun
f;0  a smooth sequence of functions, 

solutions of (41) for .nu=ε  

(i) There exists a sub-sequence of ( ) ,N∈nun
f  denoted by ( ) N∈nun

f  and 

a function f  such that 
∞+→−

→−
n
u ff

n
 for the infinite norm on all compact; 

(ii) f  is a viscosity solution of problem (30). 

Proof. (i) Let ( ) nun
f  be a smooth sequence of real-value functions of 

(41), Ω  be a compact subset of [ [ .;0 33
RR ××T  Thus 

nufn ,N∈∀  be a 

uniformly continuous function on ,Ω  hence ( ) nun
f  is a uniformly 

equicontinuous family of functions and bounded. Then by Arzela-Ascoli 

theorem, there exists a subsequence ( ) ( ) nuju njn
ff ⊂  and a continuous 

function ,f  such that 

( ) ju
jn

f →− f  uniformly on .Ω  

(ii) First of all, we show that f  is a viscosity subsolution. We will then 

suppose that ϕ−f  has a strict local maximum at ( ).,, 000 vxt  Consider 

first that ϕ  is a class two differentiable function. 

Applying the previous lemma in (( ))ε
××+

,0 33
RRR

B  which is compact, 

there exists ( )nnn vxt ,,  such that 

( ) ( ) ( ) ( )

( )






ϕ−

→−→−
+∞→−

.rangesomeatallfor,,,atmaximumlocalahas

,,,,,,,,, 000000

nvxtf

vxtfvxtfvxtvxt

nnnu

n
nnnunnn

n

n
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Thus 

 ( ) ( ) ( )nnnuxnnntnnnut vxtfvxtvxtf
nn

,,,,,,, ∂ϕ∂=∂  

( ) ( ) ( ),,,,,,,, nnnvnnnuvnnnx vxtvvtfvxt
n

ϕ∂=∂ϕ∂=  

(48) 

and 

( ) ( ).,,,, nnnnnnu vxtvxtf
n

ϕ∆≤∆  (49) 

Since 
nuf  is solution of (41) then (48) and (49) yield 

( ) +ϕ nnnt vxt ,, ( ) ( ), , , , , , .n n n x v n n n nH t x v u w u t x vϕ ≤ ∆ϕ  (50) 

Now, passing to the limit as n →− ∞+  in inequality (50), we have 

( ) ( ), , , , , , 0,t n n n n n n x vt x v H t x v u wϕϕ + ≤   (51) 

since nu →− 0  as n →− .∞+  

Now, by the continuity of H  given by (i) of the Proposition 2, we 

obtain the fact that f  is a viscosity subsolution of (30). 

For ϕ  a class one differentiable function, we rather consider a 

sequence ( )
N∈ϕ nn  of class two differentiable functions which uniformly 

converges to ϕ  on all compact and the sequence of their derivatives also 

converges uniformly on all compact to the derivative of .ϕ  Thus using the 

same previous restriction and the previous lemma, we have 

( ) ( ) ( ), , , , , , 0.n n n n n n n x vt
t x v H t x v u w′ ′ ′ ′ ′ ′ϕ + ≤  

When n →− ,∞+  the uniform convergence and the property (i) of 

Proposition 2 give the result. 

(ii) To show that f  is a super-viscosity solution, we use the same 

previous argument with reverse inequalities (49) and (50). 
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(iii), (i) and (ii) show that f  is the viscosity solution of (30).  � 

Theorem 2. If H  in (28) verifies estimations of the Proposition 2, 

then the problem (30) has one and only one uniformly continuous and 

bounded viscosity solution on [ ] .;0 33
RR ××T  

Proof. We suppose that there exists two viscosity solutions f  and f  

of problem (30), uniformly continuous and bounded on [ ] ,;0 33
RR ××T  

with the same initial condition .0f  

We take f  as viscosity sub-solution and f  as viscosity supersolution 

who have same initial data.  

We are interested in the 
[ ]

( ) .max
33;0

Mff
T

=−
×× RR

 By absurd, we 

suppose that .0>M  

Let ( ) ] [ ,1,0, 2∈αε  we set : ( ) ( ) [ ] ,;0,,,,, 33
RR ××∈′′′∀ Tvxtvxt  

( ) ( ) ( )vxtfvxtfvvxxtt ′′′−=′′′Φε ,,,,,,,,,  

( ) 






 ′−+−+−
ε

− ′′ 222

2
1

ttxxvv  

( ) ( ).2222
ttvvxx ′+α−′++′+ε−   (52) 

We choose in inequality (52) 

( ) ( ) [ ] ,;0,,,, 33
RR ××∈′′′= Tvxtvxt  

and we can fixed α  and ε  too small such that 

[ ]
{ ( ) ( ) ( )} .

2
22,,,,sup 22

;0 33

M
vxtvxtfvxtf

T

≥+ε−α−−
×× RR

 

Since ∞−→Φε  when ∞+→′′ vvxx ,,,  then the supremum of εΦ  

is reached at a certain point ( ).,,,,, εεεεεε ′′′ vvxxtt  
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In other side, we have 

 ( ) ( ) ( )2222,,,, εεεεεεεεεε ′++′+ε−′′′− vvxxvxtfvxtf  

 ( ) ( ) ,0
1 222
2

≥+α−′−+′−+′−
ε

− εεεεεεεε ttttxxvv  

hence 

( ) ( ) ( ) ( )2222,,,, εεεεεεεεεεεε ′++′+ε++α+≥′′′− vvxxttvxtfvxtf  

( ).1 222
2 εεεεεε ′−+′−+′−

ε
+ ttxxvv  

Since f  and f  are bounded, the above inequality yield 

( )t tε ε+ ≥ + α +R R ( )2222
εεεε ′++′+ε+ vvxx  

( ),1 222
2 εεεεεε ′−+′−+′−

ε
+ ttxxvv   (53) 

with R  and R  are respectively, bounded constants of f  and .f  

We obtain 

,2,2,2 RRR ε≤′−ε≤′−ε≤′− εεεεεε vvxxtt  (54) 

with { }max ; .=R R R  

Since f  is uniform continuous on [ [ ,;0 33
RR ××T  then we introduce 

the modulus of continuity of f  whose expression is given by 

( ) ( ) ( ) ,,,,,sup
,,

vxtfvxtflm
lvvlxxltt

f
′′′−=

≤′−≤′−≤′−
 

which ( )lmf →− 0  when l →− 0  or simply ( ) .00 =fm  
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Furthermore, we obtain after substitutions 

( )������ vvxxtt
M

,,,,,
2

′′′Φ≤  

( ) ( )εεεεεε ′′′−≤ vxtfvxtf ,,,,  

( ) ( ) ( ) ( )εεεεεεεεε −+−≤ vxfvxfvxfvxtf ,,0,,0,,0,,  

( ) ( ) ( ) ( )εεεεεεεεεεε ′′′−+−+ vxtfvxtfvxtfvxf ,,,,,,,,0  

( ) ( ) ( ).0 lmlmlm fff +++≤  

Finally, we obtain 

( ) ( ) ( ).2
2

Rε++≤ fff mlmlm
M

 

In particular, if ,ε= tl  we have 

( ) ( ) ( ).2
2

Rε++≤ εε fff mtmtm
M

 

Moreover, if ,0=εt  we get 0=M  when ε  tends to ,0  what is absurd. 

So there exists 0>ν  such that .ν≥εt  Similarly, following the same 

method as before with the variable ( ),,, εεε ′′′ vxt  it is shown that there 

exists 0>ν  such that .ν≥′εt   

Next, we see that ( )εεε vxt ,,  is one maximum point of 

( ) ( ) ( ),,,,,,, 1 vxtvxtfvxt εϕ−=Θ  

where 

( ) ( ) ( )( )222
2

1 1
,,,, εεεεεεε ′−+′−+′−

ε
+′′′=ϕ ttxxvvvxtfvxt  

( ) ( ).2222
εεε ′+α+′++′+ε+ ttvvxx  (55) 
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( )vxt ,,Θ  is class 1
C  and thus ( )εεε vxt ,,  is one maximum point of 

( ) ( ) ( ).,,,,,,1 vxtvxtfpxt Θ−=ϕε  f  is a viscosity subsolution of (30) and 

( ) [ ] ,;0,, 33
RR ××∈εεε Tvxt  thus we obtain 

( ) ( ) ( ),
2

,,
2

1
εεεεεε ′−

ε
+α=ϕ ttvxtt  

( ) ( ) ( ) ,2
2

,,
2

1
εεεεεεε ε+′−

ε
=ϕ∇ xxxvxtx  

( ) ( ) ( ) ,2
2

,,
2

1
εεεεεεε ε+′−

ε
=ϕ∇ vvvvxtv  

thus 

( ( ) ( ) ) .0,,,, 11
1

≤ϕ∇ϕ∇+
∂

ϕ∂
εεεεε

ε

ε
vxvxtH

t
 (56) 

Finally, 

( ) ( )



′−

ε
+′−

ε
+α εεεεεεε xxvxtHtt

22
2

,,,
2

 

( ) .02
2

,2
2

≤



ε+′−

ε
ε+ εεεε vvvx   (57) 

Using the same skills, ( )εεε ′′′ vxt ,,  is one minimum point of 

( ) ( ) ( ),,,,,,, 2 vxtvxtfvxt ′′′ϕ+′′′=′′′ ε∑  

with 

( ) ( ) ( )( )222
2

2 1
,,,, ttxxvvvxtfvxt −+′−+′−

ε
−=′′′ϕ εεεεεεε  

( ) ( ),2222
εεε ′+α−′++′+ε− ttvvxx  

thus we see that ( )εεε ′′′ vxt ,,  is a one minimum point of ( ) =′′′ϕε vxt ,,2  

( ) ( ).,,,, vxtfvxt ′′′−′′′∑  f  is a viscosity super-solution of (30) and 

( ) [ ] ,;0,, 33
RR ××∈′′′ εεε Tvxt  we obtain 
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( ) ( ) ( ),
2

,,
2

2 ttvxtt −′
ε

+α−=′′′′ϕ εεεεε  

( ) ( ) ( ) ,2
2

,,
2

2
εεεεεε′ ′ε−′−

ε
=′′′ϕ∇ xxxvxtx  

( ) ( ) ( ) ,2
2

,,
2

2
εεεεεε′ ′ε−′−

ε
=′′′ϕ∇ vvvvxtv  

thus 

( ( ) ( ) ) .0,,,, 22
2

≥ϕ∇ϕ∇′′′+
′∂

ϕ∂
′′εεε

ε

ε
vxvxtH

t
  (58) 

Finally, 

( )εε ′−
ε

+α− tt
2
2

 

( ) ( ) .02
2

,2
2

,,,
22

≥







′ε−′−

ε
′ε−′−

ε
′′′+ εεεεεεεεε vvvxxxvxtH   

(59) 

When we subtract inequality (59) of inequality (57), we have 

( ) ( ) 







ε+′−

ε
′ε+′−

ε
′′′≤α εεεεεεεεε vvvxxxvxtH 2

2
,2

2
,,,2

22
 

( ) ( ) .2
2

,2
2

,,,
22 








′ε−′−

ε
′ε−′−

ε
− εεεεεεεεε vvvxxxvxtH  

In addition, 

( ( ) ( ) )εεεεεεεεε ε+′−
ε

ε+′−
ε

′′′≤α vvvxxxvxtH 2
2

,2
2

,,,2
22

 

( ( ) ( ) )εεεεεεεεε ε+′−
ε

ε+′−
ε

− vvvxxxvxtH 2
2

,2
2

,,,
22

 

( ( ) ( ) )εεεεεεεεε ε+′−
ε

ε+′−
ε

+ vvvxxxvxtH 2
2

,2
2

,,,
22

 

( ( ) ( ) ).2
2

,2
2

,,,
22 εεεεεεεεε ′ε−′−

ε
′ε−′−

ε
− vvvxxxvxtH  
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Using Proposition 2, we obtain 

( ) ( )













+++′++′+ε≤α εεεε 2

222 2
1

2
1

C
CeCvvxxeC

CTCT

 

( ),2
2
2 εεεεεεεεε −′+′−+′−








′ε+′−

ε
× vvxxttxxx   (60) 

so 

( ) ( )













+++′++′+ε≤α εεεε 2

22 2
1

2
1

C
CeCvvxxeC

CTCT

 

( ),
1
2 εεεεεεεεε −′+′−+′−








′ε+′−

ε
× vvxxttxxx   (61) 

and using (54), we easily obtain .0=α  

This is absurd because 0>α  hence ,0≤M  thus .ff ≤  

Reverse inequality can be proof of the same way, just reverse the role 

in f  and ,f   so .ff =   � 

Theorem 3 (Uniqueness). Let 33
0 :,0 RR ×> fT →− R  be given 

(1) The Cauchy problem (30) 

( ) ( ) [ ]

( ) ( )






×=

××=+

,,,,0

,,00,,,,,,

33
0

33

RR

RR

invxfvxf

TinwuvxtHvxtft
 

has one unique continuous viscosity solution. 
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(2) The relativistic Vlasov equation (1) in spherical symmetric space-

time, admits a unique continuous viscosity solution ( )vxtff ,,=  in 

[ [ 33,0 RR ××∞+  which satisfies the initial condition ( ) ( )vxfvxf ,,,0 0=  

in .33
RR ×  

Proof. (1) Let 0≥R  and consider two continuous viscosity solutions 

f  and g  of problem (30) on (( ) ) ,,0
0

33
≥××+ R

RB
RRR

 where they are 

uniformly continuous and bounded, next apply the previous theorem. 

(2) The conclusion comes naturally from the equivalence between the 

relativistic Vlasov equation with the initial condition ( ) ( )vxfvxf ,,,0 0=  

in 33
RR ×  and the Cauchy problem (30).  � 
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