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Abstract 

The aim of this article is to give a clear analyze of local and global stability and 

periodicity of the solutions of the following quadratic rational difference 

equation: 
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where the initial conditions 1−U  and 0U  are nonzero real numbers and the 

coefficients α,,,, dcba  and β  are positive. Also, we confirm our theoretical 

results numerically by using MATLAB software. 

1. Introduction 

This research study objectives to focus on the stability, periodicity 

and other behaviours of the following rational difference equation: 
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where 1−U  and 0U  are real numbers and the coefficients α,,,, dcba  

and β  are positive. 

The qualitative study of nonlinear rational difference equations has 

been constantly growing for the latest years. In fact, no one can deny that 

these equations play a great role in modelling a huge numbers of real life 

phenomena such as in engineering, biology, physics, etc. Recently, there 

are many scholars and researchers have focused on describing these kind 

of equations such as on their stability, periodicity and boundedness 

character which need to be investigated in depth. Moreover, a big number 

of papers has been published in this area. For instance, in [1], Elabbasy et 

al. explored the periodicity and stability of the following fractional 

difference equation: 
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Almatrafi et al. ([2]) investigated the behaviours of the following rational 

difference equation: 

.
2

11
2

2
11

2

1

−−

−−
+

γ+β+α

++
+=

nnnn

nnnn
nn

xxxx

dxxcxbx
axx  

In [3], authors studied the stability character and obtained the periodicity 

of the solution of 
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The properties of the following recursive equation: 
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were described by Alayachi et al. [4]. 

Bektesevic et al. ([5]) highlighted on explaining three cases of the 

following fractional difference equation: 
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In [6], they analysed some behaviours of the following equation: 
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The stability and periodicity of the following equation: 
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have been considered in [7]. 

Almatrafi et al. ([8]) explored some results of 
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Amleh in [9] investigated some special cases of 
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The dynamical behaviours of the following difference equation: 
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has considered by Alshareef et al. in [10]. 

Also, in [11], they studied the stability, periodicity and others of the 

following equation: 
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For more related papers on this scope can be seen in [12-29]. 

2. Local Stability of Equation (1) 

The local stability of Equation (1) is pointedly discussed in this part. 

Firstly, the equilibrium point of Equation (1) is given by 
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which gives that 

( ) ( ) ( ).dcbUa ++−β+α=β+α  

Then the unique equilibrium point is 
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Now, we obtain partial derivatives of ( ):, yxf  
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So, by evaluating these at U  yields 
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The linearized Equation (1) about U  we have 
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Theorem 2.1. The equilibrium point of Equation (1) is locally 

asymptotically stable if 

( ) ( ).dcb ++<β+α  

Proof. The sufficient condition for the asymptotic stability of the 

difference equation is 
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Which means here, Equation (1) is asymptotically stable if 
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Thus,  

( ) ( ) ( ).2
dcb ++β+α<β+α  

Hence, 

( ) ( ).dcb ++<β+α  

This complete the required. 

3. Periodicity of the Solution 

The objective here is to examine the periodic solutions of Equation (1). 

The next theorem will confirm that Equation (1) has a periodic solutions 

of period two under needful condition. 

Theorem 3.1. Equation (1) has a periodic two solution if 
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Proof. We presume that there occurs a period two solution 
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of Equation (1). It can be notice from Equation (1) that 
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Dividing Equation (3) by 2h  and Equation (4) by 2
k  gives 
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Now, let .,1,0, R∈±=/= nnnh k  Then from Equations (5) and (6), we 

have 
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Since ,knh =  easily from Equations (9) and (10) get that 
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This completes the proof. 

4. Global Attractivity Results 

Our task of this part is to explore and determine the global stability of 

Equation (1) under needful conditions. Here, the investigation of global 

stability will be presented in four cases in order to be increasing or 

decreasing function ( )yxf ,  in x  and .y  

Case (1): 

Theorem 4.1. Let ( )yxf ,  be increasing in x  and .y  Then the 

equilibrium point U  of Equation (1) is a global attractor if ( ) .0=/β+αa  

Proof. Assume that ( )yxf ,  is increasing in x  and y  and let ( )Tt,  

be a solution of the following system: 
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Subtracting Equation (12) from Equation (11) leads to 

( ) ( ) .0=−β+α Tta  

If ( ) ,0=/β+αa  then we have 

.tT =  

Then, the equilibrium point of Equation (1) is a global attractor. 

Case (2): 

Theorem 4.2. Let ( )yxf ,  be decreasing in x  and .y  Then the 

equilibrium point U  of Equation (1) is a global attractor if ( ) .0=/β+αa  

Proof. Suppose that ( )yxf ,  is decreasing in x  and y  and let ( )Tt,  

be a solution of the following system: 
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Subtracting Equation (14) from Equation (13) implies that 

( ) ( ) ( ) .0,0 =/β+α=−β+α aTta  
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Thus 

.tT =  

It gives that U  is a global attractor of Equation (1). 

Case (3): 

Theorem 4.3. Let ( )yxf ,  be increasing in x  and decreasing in .y  

Then the equilibrium point U  of Equation (1) is a global attractor if 

0, <α+α< adb  and ( ) .0<β+αa   

Proof. Suppose that ( )yxf ,  is increasing in x  and decreasing in y  

and let ( )Tt,  be a solution of the following system: 
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Subtracting Equation (16) from Equation (15) gives that 

( ) ( ) ( ) ( ) ( ),2222223322 tTdTtbtTTtaTtaTtd −+−+−β+−α=−  

which implies that 

( ) [( ) ( ) ( ) ( ) ] .022 =β+α−+α−+−+α− tTaTtaTtbdTt  

Hence, if 0, <α+α< adb  and ( ) ,0<β+αa  then we have 

.tT =  

Therefore, the equilibrium point of Equation (1) is a global attractor. 
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Case (4): 

Theorem 4.4. Let ( )yxf ,  be decreasing in x  and increasing in .y  

Then the equilibrium point U  of Equation (1) is a global attractor if 

.bd +β<  

Proof. Suppose that ( )yxf ,  is decreasing in x  and increasing in y  

and let ( )Tt,  be a solution of the following system: 
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Subtracting Equation (18) from Equation (17) gives that 

( ) ( ) ( ) ( ) ( ),2222223322 TtdtTbTttTatTaTt −+−+−β+−α=−β  

which implies that 

( ) [( ) ( ) ( ) ( ) ] .022 =β+α++α++−+β− tTaTtaTtdbTt  

Hence, if ,bd +β<  gives 

.tT =  

Thus, U  is a global attractor of Equation (1). 
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5. Numerical Solutions 

This part will give some numerical examples to verify our results in 

this article which provide different types of solutions as well as periodic of 

solutions of Equation (1). 

Example 5.1. Let ,5.0,8.0,05.0,5,4 01 ====−=− cbaUU  

.25.1and,2.0,5.0 =β=α=d  Then this example demonstrates the local 

stability behaviour of Equation (1). 

 

Figure 1. Local stability of Equation (1). 

Example 5.2. Suppose that ,3.0,05.0,6,3 01 −===−=− baUU  

.1and,10,5.0,9.0 =β=α−=−= dc  This figure gives the behaviour 

of the solution of Equation (1). 
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Figure 2. Solution behaviour of Equation (1). 

Example 5.3. This example illustrates the behaviour of our problem 

under ,5,1.0,3,6.0,01.0,10,10 01 =α−=====−=− dcbaUU  and 

.01.0=β  

 

Figure 3. Dynamics of Equation (1). 
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Example 5.4. Figure 4. shows the stability of the solution of 

Equation (1) when we assume that ,5.0,01.0,3,3 01 ===−=− baUU  

.01.0and,5,1.0,4 =β=α−== dc  

 

Figure 4. Stability of Equation (1) under ,01.0,3,3 01 ==−=− aUU  

.01.0and,5,1.0,4,5.0 =β=α−=== dcb  

Example 5.5. Here, we present the plot of the solution when we have 

these values ,10,5.0,9,3.1,01.0,5.3,1.0 01 =α======− dcbaUU  

and .1=β  
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Figure 5. Plot of Equation (1). 

Example 5.6. This example confirm the periodicity of the solution of 

Equation (1) when qUdcba ==β=α==== −1,1,15,5.1,5.0,01.0  

.2.3and,1.0 0 === pU  
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Figure 6. Periodicity of Equation (1). 
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