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Abstract 

Global existence of a solution for the coupled Yang-Mills-Boltzmann 

system is proved, in a Bianchi type I space-time background. This 

system rules the collisional evolution of a kind of fast moving, massive 

particles with a non-Abelian charge. 

1. Introduction 

A plasma is a train of charged particles evolving at very high speed 

and under the effect of forces they create collectively. For electrons, in the 

Abelian case, these created forces are electromagnetic forces which in 

turn re-influence the movement of these particles, and when we consider 

that collisions between particles cannot be neglected, the self-sustaining 

phenomenon is governed by the Maxwell-Boltzmann system, which has 

been widely studied in the literature; see [3, 10, 11, 15, 16, 17, 19, 26, 27] 

and references therein, for the relativistic case. In this paper, we consider 

a more general plasma with particles having non-Abelian charges called 

Yang-Mills charges. In the collisionless case where the Boltzmann 

equation is replaced by the Vlasov one, some authors have already 

studied this kind of phenomenon; see [4, 5, 13, 14, 20, 21, 34] for the 

coupled system and [1, 2] for the studying of Vlasov equation in the 

presence of a Yang-Mills field. 

At the contrary of the collisionless case, which is widely studied in the 

literature, there are few results in the collision case. More recently, 

Dongo et al. have proven in [6, 7, 9] the first results for the local in time 

existence and uniqueness, for the relativistic Boltzmann equation in the 

presence of an external force that is of Yang-Mills type. They have also 

proved in [8] the first result for the coupled Yang-Mills-Boltzmann 

system, taking as background the spatially homogeneous Bianchi type I 

space-time with locally rotationally symmetry and obtained local in time 

classical solutions. The Bianchi space-times models are natural physically 

motivated cosmological models which have widely been used in literature, 

see [15, 16, 17, 24, 30] and references therein. In this paper, we extend 

the local in time result obtained in [8] to the global one. We follow the 

method used in [10, 11]. 
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We then study the relativistic Yang-Mills-Boltzmann system in a 

curved Bianchi type I space-time, which has as unknowns: The Yang-

Mills field subject to the Yang-Mills equations which derives from the 

Yang-Mills potential, and the Yang-Mills’s particles distribution function. 

We take particles in temporal gauge, we couple them with the Yang-Mills 

field as if they were a priori independent, and we assume that the Yang-

Mills current, source of the Yang-Mills field, is generated by the 

distribution function of particles, which is subject to the Boltzmann 

equation. 

The paper is organised as follows: 

In Section 2, we introduce the background space-time and unknown 

functions. 

In Section 3, we present the Yang-Mills-Boltzmann system in the 

corresponding space-time. 

In Section 4, we define some function spaces and recall the local 

existence result obtained in [8]. 

In Section 5, we establish a global existence theorem for the coupled 

system. 

2. The Background Space-Time and Unknown Functions 

In all what follows, unless otherwise specified, Greek indices range 

from 0 to 3 and Latin ones from 1 to 3. We use the Einstein summation 

convention. 

We consider the collision evolution of a kind of fast moving massive 

and charged particles in the time-oriented Bianchi type 1 space-time with 

locally rotationally symmetric in the form 

( ) ( ) ( ),2
3

2
2

22
1

22 dxdxtrdxthdtg +++−=  (1) 
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where 0>h  and 0>r  are two continuously differentiable functions of 

time .t  We assume that there exists a constant 0>C  such that 

., C
r

r
C

h

h
≤≤

ɺɺ

  (2) 

[ ]( ),,G  is a Lie algebra of a Lie group ,G  endowed with an Ad-invariant 

scalar product denoted by a dot ”,“ ⋅  which enjoys the following property: 

[ ] [ ] ,,,,,, G∈∀⋅=⋅ wvuwvuwvu   (3) 

where [ ],  stands for the Lie brackets of the Lie algebra .G  We consider 

that G  is a vector space on R  with dimension 2≥N  and 

( ) NII ,,1, …=ε  an orthonormal basis of .G  

The massive particles have the same rest mass ,0>m  normalized to 

the unity, i.e., .1=m  We denote by ( ),4
RT  the tangent bundle of 4

R  

with coordinates ( ),, βα px  where ( ) ( )0 ,p p p pβ= =  stands for the 

momentum of each particle and .3,2,1,)( == ipp i  The charged 

particles move on the mass hyperboloid ,)()( 44
RRP T⊂  whose equation 

is ( ) 1, −== βα
αβ ppgpxtP  or equivalently, using the expression (1) of ,g  

we have 

[ ( ) ( ) )] ,)()(()(1 2
1232222120 pptrpthp +++=   (4) 

the choice of 00 >p  symbolizes the fact that, naturally, particles eject 

towards the future. 

Denote by A  a Yang-Mills potential represented by a 1-form on 4
R  

which takes its values in .G  Then the Yang-Mills potential is locally 

defined as follows: ,)( µ= AA  where .,,2,1, NIAA I
I

…=ε= µµ  We 

require that A  satisfies the temporal gauge condition, which means that 
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.00 =A  (5) 

Particles evolve, under the action of their own gravitational field 

represented by the metric tensor )( αβ= gg  given by (1) that informs 

about gravitational effects, and in addition, under the action of the non-

Abelian forces generated by the Yang-Mills field ,)( αβ= FF  where αβF  

is a function from 4
R  to .G  

The Yang-Mills field is the curvature of the Yang-Mills potential. Its 

components can be written in the basic )( Iε  as ,I
IFF ε= αµαµ  where IFαµ  

are linked to potential components by: 

[ ] ,, IIII AAAAF µλλµµλλµ +∇−∇=  with [ ] ,, cbI
bc

I
AACAA µλµλ =  (6) 

where I
bcC  are structure constants of G  and ,α∇  the covariant 

derivative. 

The 2-form F  verifies Bianchi identities 

,0ˆˆˆ =∇+∇+∇ αλµµαλλµα FFF  (7) 

and the relation 

,0ˆˆ =∇∇ αβ
βα F   (8) 

where α∇̂  is the gauge covariant derivative defined by 

[ ]..,ˆ
ααα +∇=∇ A   (9) 

The Yang-Mills field ),( 0
ij

i FFF =  is subject to the Yang-Mills system. 

Taking into account the temporal gauge (5) and relation (6), we have 

.,,00 jiAACFFA c
j

b
i

I
bc

I
ijii =/==∂  (10) 
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We also suppose that, the non-Abelian charge q  of Yang-Mills particles 

takes its values in an orbit of ,G  which is a sphere ϑ  whose equation is: 

( ) ,: 22
eqqq ==⋅ϑ  (11) 

where ⋅  stands for the norm deduced from the scalar product of .G  The 

relation (11) allows to express the Nq  component of q  as a function of 

( ) , 1, 2, , 1.Iq q I N= = −ɶ …  

We denote by f the unknown distribution function which measures 

the probability density of the presence of particles in the plasma. f is a 

function defined on ( ) G×4
RT  and will be subject to the Boltzmann 

equation. Using relations (4), (11) and the fact that we are studying an 

homogeneous phenomenon, we obtain that the distribution function of 

Yang-Mills particles is definitely a function of independent variables 

( ) ( ), , , , .i It p q t p q= ɶ  Then, ( ) 3 1, , , , , .Nf f t p q t p q −= ∈ ∈ ∈ɶ ɶR R R  

According to relations (4) and (11), the phase space of such Yang-Mills 

particles is in fact the subset ϑ×= xt,PP  of ( ) .4
G×RT  Trajectories of 

particles satisfy the following differential system: 

,,, cbI
bc

I

qApC
ds

dq
Fqppp

ds

dp
p

ds

dx
α

αα
β

βµλα
λµ

α
α

α

−=⋅+Γ−==   

(12) 

where α
λµΓ  are the Christoffel symbols of the Levi-Civita connection 

associated to ,g  which are computed using (1) and give: 









=Γ

=Γ=Γ=Γ=Γ=Γ=Γ

α
λµ .otherwise0

,,,, 0
11

0
33

0
11

3
30

2
20

1
10 rrhh

r

r

h

h
ɺɺɺɺ

 (13) 

The last equation in (12), called Wong’s equation, expresses the fact that 

the covariant derivative of gauge of q  along a trajectory is null. 
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The charged particles also create a current ( )β= JJ  (locally) called 

the Yang-Mills current. Recall that βJ  in the Bianchi type 1 space-time 

that we consider is a function from R  to ,G  such that ( ) ,,
I

IJtJ ε= ββ  

where 

( ) ( ) ,,,1,,,
3

, NIqptfqptJ qp
II

…=ωω= β

ϑ×

β ∫R   (14) 

in which 
0

321
2

p

dpdpdp
hrp =ω  and qω  stands for the canonical volume 

element of .ϑ  

3. The Yang-Mills-Boltzmann System 

On its general form, the Yang-Mills-Boltzmann (YMB) system is 

written as: 

,ˆ βαβ
α =∇ JF   (15) 

( ),, fffLY L=  (16) 

where (15) represent the Yang-Mills (YM) system, and the expression (14) 

shows that, the Yang-Mills current is generated by the distribution 

function of particles. System (16) is the Boltzmann equation, where YL                 

is the Lie derivative of f with respect to the vector field 

( )cbI
bc qApCFqppppY α

αα
β

βµλα
λµ

α −⋅+Γ−= ,,  given by the differential 

system (12) and ( )ff ,L  is the collision operator, presented in Subsection 

3.2. 
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3.1. Initial data for the Yang-Mills system 

The Cauchy’s data for the YMB system are given as follows: 

For the Yang-Mills potential ,A  we consider a given element a of G  

such that .0 aA t ==  Locally, ( ).iaa =  For the magnetic part of the Yang-

Mills field F  denoted ,ijF  we consider a given element Φ  of G  such that 

( ),0 ijtijF Φ==  where ( ) ijij ΦΦ=Φ .  and ia  will be linked by 

[ ] [ ].,, jijiijjiij aaaaaa =+∇−∇=Φ  (17) 

For the electrical part ( )iF 0  of the Yang-Mills field ,F  we consider a 

given element E  of G  such that ,0
0 i

t
i EF ==  where ( ).iEE =  

For the distribution function of Yang-Mills particles ,f  we consider 

+→− RP:0f  such that .00 ff
t

==  

3.2. The Boltzmann equation in f 

After some computations, the Boltzmann equation in f for the Yang-

Mills charged particles in the Bianchi type 1 space-time can be written as 

follows: 

( ),,
1
0

ff
pq

f
Q

p

f
P

t

f
I

I

i

i
L=

∂

∂
+

∂

∂
+

∂

∂
  (18) 

where 













 ⋅
−⋅−Γ−=

0
0

02
p

Fqgp
FqpP

ij
iij

iii
i

i  and .
0

HL
i

I
LH

i
I qAC

p

p
Q −=  

(19) 

The collision operator 

We recall that, there are several representations of the collision 

operator. However, it should be noted that, each representation depends 

on particles in presence; precisely, the position, the speed (the 
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momentum) and the internal state (charge) of them. In the case of 

chargeless particles, one of the frequently used representation of the 

collision operator is provided by Glassey in [29]. Here, we note that, our 

Boltzmann equation model takes into account in addition to the position 

and the speed of particles, their internal state represented by the non-

Abelian charge .q  In this context, the form of the collision operator is 

more complex and generalizes that of the chargeless particles; see ([35]) 

and references therein. 

We write L  as the difference between the gain term +
L  and the loss 

term :−
L  

( ) ( ) ( ) ( ), , , , , , , ,f g t p q t p q t p q+ −= −ɶ ɶ ɶL L L  

where 

( )
( )

( ɶ ) ( ɶ )
3 2 20

det
, , , ,

Nq
S S

g
f g dp w f p q g p q dwd

p
−∗

+
∗ ∗ ∗

×ϑ ×
∗

′ ′′ ′= σ θ∫ ∫ɶR

L  

( )
( )

( ) ( )
3 2 20

det
, , , ,

Nq
S S

g
f g dp w f p q g p q dwd

p
−∗

−
∗ ∗ ∗

×ϑ ×
∗

= σ θ∫ ∫ɶ ɶ ɶ

R

L  

in which 

• 2S  is the unit sphere of 3 ,R  whose element is denoted ;dw  

• 2NS −  is the unit sphere of 1 ,N −
R  whose element is denoted ,θ  and 

dθ  his volume element; 

• ( ) 2 4det ,g h r=  is the Bianchi type 1 space-time; 

• ( ɶ ɶ ), , , , , , ,p q p q p q p q∗ ∗ ∗ ∗
′ ′′ ′σ = σ ɶ ɶ  is a positive regular function 

called the collision kernel or the cross-section of the collision which 

measures the effects of interactions between particles and determines 

their nature, on which we require the following assumptions: 
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( )

( ɶ ɶ )

( ɶ ɶ )

( )

( )

( )

1

1 1 1 1

2 2 2 2

1 2 1 21

( , ) ( )

1
( , )

0, 0 ,

, , , , , , ,

, , , , , , ,

,H :

(1 ) , 0 3,

0 3,

(1 ) , 1 3,

l
p q L

p q

C C

p q p q p q p q

p q p q p q p q

C p p q q

p L m

l m

p L m

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∞

Ω×

β − β ∞

∃ > ≤ σ ≤

 ′ ′′ ′σ


′ ′′ ′ − σ

 − + −

 + ∂ σ ∈ Ω ≤ β ≤ +



≤ +



+ ∂ σ ∈ Ω × Ω × ≤ β ≤ +

ɶ

ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ�

�

S

S

 

where 133 , −+ ×=Ω∈β Nm
RRN  and .22 −×= NSSS  Note that 

assumptions ( )1H  are closed to the N−µ  regularity introduced by 

Choquet-Bruhat and Bancel in [31, 32], and have been used in [10, 30, 33, 

34]. Also note that, ( )
ɶ ɶ

1 1 1 1 ,p q p q p q p q
t e

′ ′′ ′
∗ ∗ ∗ ∗− − − − − − − −

σ =
ɶ ɶ

k  where ( )tk  

is a continuous function of ,t  is a simple example of collision kernel 

satisfying assumptions ( ).H1  

3.3. The Yang-Mills system in F 

The Yang-Mills system (15) is a system of 4 equations for the 6 

unknowns ( ),,0
ij

i FFF =  where iF 0  and ijF  stands for the electrical 

and the magnetic components of the Yang-Mills field, respectively. iF 0  

and ijF  are raised or lowered through the metric tensor ,g  e.g., 

.ij
jbiaij FggF =  

Proposition 1. We suppose that, [ ] ( )3 0, , , .i I
i qa E q f t p q p

×ϑ
= − ω∫ ɶ

R
 

Then the Yang-Mills system (15) in temporal gauge is equivalent to: 

[ ]

[ ] [ ]








+−=

=+Γ+

.,,

,,

00

0
0

0

jiij
ij

iji
j

il
l

i

FAFA
dt

dF

JFAF
dt

dF

  (20) 
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Proof. See [8].  � 

3.4. The Yang-Mills-Boltzmann system in ( )fFA ,,  

Now, solving the first partial differential equation (18) in f is 

equivalent to solve its associated characteristic system: 

( )
.

,
11
0

ds

ff
p

df

Q

dq

P

dpdt
I

I

i

i

====

L

 (21) 

Considering expression (21), (20), (19) and (10), the Yang-Mills-

Boltzmann system then takes the following equivalent form: 

( )

( )

[ ]

[ ] [ ]


























==

=

+−=

++Γ−=

=

−=

⋅
−⋅+Γ−=

.,,2,1;3,2,1,with

,

,,,

,,

,
,

,

,2

:

0

00

0
0

0

0

0

0
0

0

NIji

F
dt

dA

FAFA
dt

dF

JFAF
dt

dF

p

ff

dt

df

qAC
p

p

dt

dq

p

Fqgp
Fqp

dt

dp

i
i

jiij
ij

iji
j

il
l

i

cb
i

I
bc

iI

ij
iij

iii
i

i

…

L

I   (22) 

We remark that, 0, , , ,i
ijp q f F Fɶ  and iA  are now independent variables 

for the differential system (I). 
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4. Function Spaces and Local Solution for the Coupled  

Yang-Mills-Boltzmann System 

4.1. Function spaces 

The function space for the distribution function f is: 

Definition 1. Let N∈> lT ,0  and +∈ Rd  be given. We set  

.13 −×=Ω N
RR  

(1) ( ) { ( ) ( ) ( ) },,1,: 2
~, lLupu
qp

dl
d

≤βΩ∈∂+→−Ω=Ω ββ+
RE  endowed 

with the norm ( ) ( ) ( ) ( )2,0
max 1 .l

d

d
p ql L

u p u
+ β β

Ω ≤ β ≤ Ω
= + ∂

ɶE
 

(2) ( ) { [ ]0, ; : 0, ,l
d T u T uΩ = × Ω −→E R  continuous; ( ) ( ), . ,l

du t ∈ ΩE  

[ ]}0, ,t T∀ ∈  endowed with the norm ( )0, ; 00
sup maxl

d
T lt T

u Ω ≤ β ≤≤ ≤
=

E
 

( ) ( ) ( )
( )2,1 , .d

p q L
p u t

+ β β

Ω
+ ∂ ⋅

ɶ
 

(3) ( ) { ( ) ( ) }, 0, ;0, ; 0, ; , ,l
d

l l
d d TT u T uδ ΩΩ = ∈ Ω ≤ δ

E
E E  for .0>δ  

Endowed with the distance induced by the norm ( ) ( )Ω⋅ δΩ ;,0, ,;,0 Tl
dTl

d
E

E
 

is a complete metric subspace of ( ).;,0 ΩTl
d
E  

Remark 1. We choose as in [6, 7], 3+= ml  and 
2

4+
=

N
d  and we 

have ( ) ( ).13 ΩΩ+
b

m
d

C�E  

The framework in which we will refer for the determination of the 

components ij
i FF ,0  and iA  for the Yang-Mills system is ,N

R  whose 

norm is denoted ⋅  (or ).N
R

⋅  
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Let [ ]TI ,0=  a real interval, we set 

( ) { },continuous,:, vIvIC NN
RR →−=  (23) 

where ( )NIC R,  is a Banach space for the norm { }.,sup1 Itvv ∈=  

The frameworks in which we will refer for the determination of p  and qɶ  

are respectively, 3
R  and 1 ,N −

R  whose norm is ⋅  (or )3 1, .N −⋅ ⋅
R R

 We 

set: 

( ) {3 3, : ,C I p I p= −→R R  continuous},  

and 

( ) {1 1, : ,N NC I q I q− −= −→ɶ ɶR R  continuous}, 

where ( )3,C I R  and ( )1, NC I −
R  are Banach spaces for norms 

1 supp =  { },p t I∈  and { }1 sup , ,q q t I= ∈ɶ ɶ  respectively. 

4.1.1. Local existence of the solution for the coupled YMB system 

To prove the local existence of the solution for the system ( ) ,I  we 

consider the Banach space 

( ) ,333313 NNNm
d

N
RRRERRK ×××Ω××= +−  

endowed with the norm 

( ) ( )3
0 0, , , , , .m

d

i i
ij i iijp q f F F A p q f F F A+ Ω= + + + + +ɶ ɶ

K E
 

(24) 

We provide the following Cartesian product: 

( )) ( )Nm
d

N ICICICIC 3313 ,,(),(),( RERR ×Ω×× +−  

  ( ) ( ),,, 33 NN ICIC RR ××  



NGUELEMO KENFACK ABEL et al. 76 

with the norm 

( )0 0
1 1 1 1 1 1 1, , , , , ,i i

ij i iij
p q f F F A p q f F F A= + + + + +ɶ ɶ  

(25) 

where 

{ ( )}.sup 3
,1 Ω

∈
+
δ

= m
d

ff
It

E
 

We apply to the system ( )I  the standard theory of the first order 

differential systems. Therefore, we recall some useful energy estimates. 

Let ,0>T  we consider the application defined by 

[ ] KK →−×TG ,0:   (26) 

( ) ( ),,, XtGXt ֏  where ( )0, , , , ,i
ij iX p q F F A= ɶ  

in which G  is the vector function 

( ) ( ) ( ),,,,,,,, 654321 XtGGGGGGXtG =   (27) 

defined by the right hand side of system (22). 

4.1.2. Energy estimates 

Definition 2. Let ( )0, , , , , , 1, 2.i
ij iX p q f F F A= ∈ =ɶ K
k k

k k k k k k  In 

the sequel, we set 

( )31 2 1 2 1 2 1 2: m
d

X X p p q q f f + Ω− ≡ − + − + −ɶ ɶɶ
K E

 

10 0 2 1 2
1 2 .i i

ij i iij
F F F F A A+ − + − + −  

Proposition 2. Let ( )0, , , , , , 1, 2,i
ij iX p q f F F A= ∈ =ɶ K
k k

k k k k k k  then 

( ) ( )1 2 1 2, , , 1, , 6;l lG t X G t X C X X l− ≤ − = …Kk   (28) 

( ) ( )1 2 7 1 2, , ,G t X G t X C X X− ≤ − K   (29) 
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where 

( )

( ( ) ( ) ) ( )
( )

( )( ) ( ) [ ( )]

( ) ( )
























+++++=

=

+++=

+++Θ+Θ+=

+++=

++





 ++=

++





 ++++=

ΩΩ

ΩΩΩ

++

+++

,

,

,

,1

,422

,15

,152

6543217

6

10
2

20
15

21
114

2
2213

12
2

20
11

33

333

CCCCCCC

gC

AFCgAFCgC

AFggCffeC

frhCffCC

AeCg
h

r

r

h
ACeC

gegggF
h

r

r

h
gFeCC

ii

i
j

jjj
i

ii

jij
jjii

i
ii

i

jjiijjii
ij

iii

m
d

m
d

m
d

m
d

m
d

EE

E
EE

 

(30) 

and ( ) ( )
0

0 1 .
i jj ii

ijCt Ct
e F e g g F

p e e
C

+
Θ = + −  

Proof. See [8].  � 

4.1.3. Local existence result 

In order to state the local existence theorem, we first recall this useful 

theorem. 

Theorem 1. Let ( )0 0
0 0 0 0

0
0 0, , , , , ,t ti

t t t ij it
t p q f F F A≥ ∈ɶ K  be given, with 

0
0

0 , ti
ijt

F F  and 0t
i

A  satisfying constraints (17) and the hypothesis of 

Proposition 1. Then 

(1) There exists a real number 0η ≥  such that the differential system 

( )I  has a unique solution ( )0, , , , , ,i
ij ip q f F F Aɶ  defined in [ ]η+00 , tt  

with values in ,K  satisfying 

( ) ( ) ( )0 0
0 0 0 0

0 0
0, , , , , , , , , , .t ti i

ij i t t t ij it
p q f F F A t p q f F F A=ɶ ɶ  (31) 
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Moreover, f  satisfies the relation: 

( ) ( ).3
0

3 ΩΩ ++ ≤ m
d

m
d

tff
EE

 (32) 

(2) The Yang-Mills-Boltzmann system (18)-(15) has a unique solution 

( )fAF ,,  on [ ]η+00 , tt  such that ( ) ( ) ( );,,,,,,
0

00
0

0
0

0
t

t
i

t
ij

i
tiij

i fAFFtfAFF =  

with 

( ) ( ).3
0

3 ΩΩ ++ ≤ m
d

m
d

tff
EE

 (33) 

Proof. See [8]. We recall that, the proof of inequalities (32) and (33) is 

similar to the one obtained in [30].  

� 

We end by stating the following local existence theorem which is a 

particular case of Theorem 1. 

Theorem 2. Let ( ) ( )3 1 3
0 0 0 ,, , , , ,N m i N

d ij ip q f E a− +
δ∈ × ∈ Ω Φ ∈R R Eɶ R  

be given, with ,i
ijE Φ  and ia  satisfying constraints (17) and the hypothesis 

of Proposition 1. Then, there exists a real number 0T >  such that 

(1) The differential system ( )I  has a unique solution ( )0, , , ,i
ij ip q F F Aɶ  

defined on [ ]T,0  with values in K  such that 

( ) ( ) ( )0
0 0 0, , , , , 0 , , , , , .i i

ij i ij ip q f F F A p q f E a= Φɶ ɶ  (34) 

Moreover, f  satisfies the relation 

( ) ( ).33 0 ΩΩ ++ ≤ m
d

m
d

ff
EE

 (35) 

(2) The Yang-Mills-Boltzmann system (18)-(15) has a unique solution 

( )fAF ,,  on [ ]T,0  satisfying 

( ) ( ) ( ).,,,0,,, 0
0 faEfAFF iij

i
iij

i Φ=  
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5. Global Existence of the Solution for the Coupled  

Yang-Mills-Boltzmann System 

5.1. The method 

Let 0>T  a real number, denote by [ [T,0  the maximal existence domain 

of the solution of the system ( )I  denote here by 0, , , , ,i
ij ip q f F F A

 
 
 
 

� � ��� �

ɶ  

and given by Theorem 2, with the initial data ( )0 0 0, , , , , .i
ij ip q f E aΦ ∈ Kɶ  

Our goal is to prove that .T = +∞  

• If ,∞+=T  the problem is solved; 

• If ,∞+<T  we are going to show that, the solution 0, , , , ,i
ij ip q f F F A

 
 
 
 

� � ��� �

ɶ  

can be extended belong ,T  which contradicts the maximality of .T  The 

strategy is as follows: Let [ ].,00 Tt ∈  We show that, there exists a    

strictly positive number 0>η  independent of ,0t  such that the system 

(I) on [ ]η+00 , tt  with the initial data 0 0
0 0 0

0, , , ,t ti
t t ij it

p q F F A
 
 
 
 

�� �� �

ɶ  at ,0tt =  

has a unique solution ( )0, , , , ,i
ij ip q f F F Aɶ  on [ ]., 00 η+tt  Then by 

taking 0t  such that ,
20
η

+< tT  we can extend the solution 

0, , , ,i
ij ip q F F A

 
 
 
 

� � �� �

ɶ  to [ ],
2

,0 0
η

+t  which contains strictly [ ],,0 T  and 

this contradicts the maximality of .T  For sake of simplicity, we will look 

for the number η  such that, .10 <η<  
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In what follows, we take ( )Ω∈ +
δ
3

,0
m
d

f E  which means ( ) .30 δ≤Ω+m
d

f
E

 

Since [ [,,00 Tt ∈  by the inequality (35), we have 

( )
( )

( ) .3
3

00 δ≤≤ Ω
Ω

+

+

m
dm

d

ftf
E

E

�

  (36) 

We deduce from (35), using (36) that, any solution of the Boltzmann 

equation on [ ]η+00 , tt  such that ( ) ( ),00

�

tftf =  satisfies 

( ) ( ) [ ].,, 003 η+∈δ≤Ω+ ttttf m
d
E

  (37) 

We set for 0>R  and [ ]TI ,00 =  a real interval 

{ }.,3 RvvX N
R ≤∈= R  (38) 

Endowed by the distance induced by the norm RX,⋅  is a complete 

metric space. 

( ) { ( ) ( ) }.,,,, 000 ItXtvICvXIC R
N

R ∈∀∈∈= R   (39) 

Endowed with the norm ( )RXIC ,, 01⋅  is a complete metric space. 

5.2. Resolution 

Let [ ] 0,,00 >η∈ Tt  and 0, , , , ,i
ij ip q f F F A

 
 
 
 

ɶ
�� � � ��  be a given element in 

([ ] ) ([ ] ) ([ ] ) ( ([ ,;,,,,, 000
3

,
1

00
3

00 tCttttCttC m
d

N ×Ωη+×η+×η+ +
δ

−
ERR  

] )) .; 3
0 RXt η+  
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Starting from the system (I), we build the following system, in which 

we fixed variables carrying :”“ �  

( )

0
1

0
2

0
3

0
0

4

0
5

, , , , , , ,

, , , , , , ,

, , , , , , ,

2I :

, , , , , , ,

, , , , , ,

i
i

ij i

I
i

ij i

i
ij i

i
i

ij i

ij i
ij

dp
G t p q f F F A

dt

dq
G t p q f F F A

dt

df
G t p q f F F A

dt

dF
G t p q f F F A

dt

dF
G t p q f F F

dt

 
 =
 
 

 
 =
 
 

 
 =
 
 

 
=  

 

=

ɶ

ɶ

ɶ

ɶ

ɶ

�� � � � �

�� � � ��

�� � � ��

� � � � ��

�� � ��

0
6

,

, , , , , , ,

i

ii
ij i

A

dA
G t p q f F F A

dt





















  
  

   

  
  =

   

ɶ

�

�� � � ��

 

where 

0 0
1 0 0

, , , , , , 2 ,
j ii

iji i i i
ij i i

p g q F
G t p q f F F A p q F

p

  ⋅
  = − Γ + ⋅ −
 
 

ɶ

��
� �� � � � � �  (40) 

0
2 0

, , , , , , ,
i

i I b c
ij i bc i

p
G t p q f F F A C A q

p

 
  = −
 
 

ɶ

�
�� � �� �� �   (41) 

( )

( )

0
3

0

, , ,
, , , , , , ,i

ij i

f f p q
G t p q f F F A

p p

 
  =
 
 

ɶ
ɶ

L
���� � � ��

�

 (42) 
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[ ]0 0
4 0, , , , , , , ,i l i ij

ij i l j iG t p q f F F A F A F J
 

= − Γ + + 
 

ɶ
� �� � � � �� ��   (43) 

[ ] [ ]0
5 0 0, , , , , , , , ,i

ij i j i i jG t p q f F F A A F A F
 
  = − +
 
 

ɶ
�� � � �� � � ��   (44) 

0
6 0, , , , , , ,i

ij i iG t p q f F F A F
 
  =
 
 

ɶ
�� � � � � ��   (45) 

in which 

( )
3

, , .i i I
p qJ p q f t p q

×ϑ
= ω ω∫

�� � �

R
 

Proposition 3. Let [ ] 10,,00 <η<∈ Tt  and 0, , , , ,i
ij ip q f F F A

 
 
 
 

ɶ
�� � � ��  

([ ] )3
0 0, ;C t t∈ + η ×R ([ ] ) ([ ] ) ( ([ ,;,,, 000

3
,

1
00 tCttttC m

d
N ×Ωη+×η+ +

δ
−

ER  

] ))30 ; RXt η+  given. Then, the differential system (2I) has a unique solution 

( ) ( [ ] )0 3
0 0, , , , , , ,i

ij ip q f F F A C t t∈ + η ×ɶ R ([ ] ) ([ ,,, 0
1

00 tttC N ×η+ −
R  

] ( )) ( ([ ] ))300
3

,0 ;,; R
m
d

XttCt η+×Ωη+ +
δ

E  such that 

( ) ( ) 0 0
0 0 0 0

0 0
0, , , , , , , , , , .t ti i

ij i t t t ij it
p q f F F A t p q f F F A

 
 =
 
 

�� ��� �

ɶ ɶ  

Proof. (1) We consider the equation in p  associated to system (2I). 

1G
�  given by (40) is a continuous function of time. We deduce from (28) 

that 

( ) ( )0 0
1 1 1 2, , , , , , , , , , , ,i i

ij i ij iG t p q f F F A G t p q f F F A−ɶ ɶ
� �� �� � � �� �� �  

( )1 1 2 ,C p p≤ −   (46) 
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where using (30), we have 

0
1 2 5 1 .i ii ii jj ii jj

ij
h r

C C e F g F g g eg g
r h

 = + + + + + + 
 

� �  

For [ [,, 00 η+∈ ttt  we have ,10 +≤η+≤ Ttt  we use assumptions on 

the metric to increase 5 1 ,ii h r
g

r h
 + + 
 

 and ii jjg g  by a constant 

dependent on 0 0,r h  and .T  Furthermore, since 0 ,i
ijF F

� �  and iA
�  belong 

to ([ ] ),;, 00 RXTttC +  we finally show that 

( ).,,,, 0011 eTRrhCC ′≤   (47) 

By (46) and (47), 1G
�  is globally Lipschitzian with respect to ,p  and the 

local existence and the uniqueness of a solution p  for the equation in p  

such that ( ) ( )0 0p t p t=
�

 is guaranteed by the standard theory of first order 

differential system. 

Following the same way as in Lemma 1 in [8], on [ ] [ [,,0,, 00 η∈+ tttt  

we have 

( ) ( ) ( )0 0
0 0

1
1 .

jj ii
t tCt Ct

g g
p t t p t e eR e

C

+
+ ≤ + −�  

Since [ ]0 0, ,t T∈  we have 

( ) ( )
( )

( )0 0
0

1 , ,
0 1 .Ct CtC h r T

p t p e eR e
C

+
≤ + −�  

Then 

( ) ( ) ( ) ( )( ) ( )( )2 1 2 1
0 0 00 1 1 , , ,C T C TeR

p t t p e e C h r T
C

+ ++ ≤ + − +  (48) 

which show that, every solution p  of system (2I) satisfying ( ) ( )0 0p t p t=
�

 

and defined in [ ]η+00 , tt  is uniformly bounded. 
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(2) For the equation in qɶ  of system (2I), the function 2G
�  given by (40) 

is continuous in t. We deduce from (28) that 

( ) ( )0 0
2 1 2 2, , , , , , , , , , , ,i i

ij i ij iG t p q f F F A G t p q f F F A−ɶ ɶ
� �� �� �� �� �� �  

( )2 1 2 ,C q q≤ −ɶ ɶ   (49) 

where using (30), we have 

( )2 5 1 .ii
i i

h r
C Ce A Cg e A

r h
 = + + + + 
 

� �  

We show using the same arguments as before that ( ),,,,, 0022 eTRrhCC ′≤  

so that (49) becomes 

( ) ( )0 0
2 1 2 2, , , , , , , , , , , ,i i

ij i ij iG t p q f F F A G t p q f F F A−ɶ ɶ
� �� �� �� �� �� �  

( )2 1 2 .C q q′≤ −ɶ ɶ  

which means that 2G  is globally Lipschitzian with respect to .qɶ  Hence 

the existence of a unique solution qɶ  such that ( ) ( )0 0 .q t q t=
�

ɶ ɶ  

(3) We show like in [6, 7, 9] that, the equation in f  associated to 

system (2I), admits a unique solution ([ ] )Ωη+∈ +
δ

;, 00
3

, ttf m
d
E  such that 

( ) ( ).00 tftf
�

=  

(4) We consider respectively equations in ,,0
ij

i FF  and iA  of system 

(2I). 4 5,G G
� �  and 6G

�  are continuous functions of time. We deduce from 

(28) that 

( ) ( )0 0
4 1 4 2, , , , , , , , , , , , ,i i

ij i ij iG t p q f F F A G t p q f F F A−ɶ ɶ
� �� � � �� �� �� �  

  ( )0 0
4 1 2 ,i iC F F≤ −  
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( ) ( )0 1 0 2
5 4, , , , , , , , , , , ,i i

ij i ij iG t p q f F F A G t p q f F F A−ɶ ɶ
� �� �� � � �� �� �  

 ( )1 2
5 ,ij ijC F F≤ −  

( ) ( )0 1 0 2
6 6 2, , , , , , , , , , , ,i i

ij i ij iG t p q f F F A G t p q f F F A−ɶ ɶ
� �� �� � � �� �� �  

   ( )1 2
6 ,i iC A A≤ −  

and using (30), we have 

( ) ( ) [ ( ) ]3 3
1 2

4 1 0 0 1

0 0
5

6

1 ,

,

,

m m
d d

ii jj
ij j

i j
ii j jj i

ii

C e f f C g g F A

C Cg F A Cg F A

C g

+ +Ω Ω

  
 = + Θ + Θ + + + 
  



       = + + +        



=



E E

� �� �

� �� �  

where 0Θ  is given by the left hand side of the inequality (48). Given the fact 

that, [ ]( )3 0
, 0 0, ; , ,m i

d ijf t t F F+
δ∈ + η ΩE

�� �  and iA�  belong to ( [ ];, 00 η+ttC  

)RX  and the boundedness of the metric components, we show that 

( ) .6,5,4,,,,, 00 =′≤ kkk eTRrhCC  Which imply that 4 5, ,G G
� �  and 6G

�  

are globally Lipschitzian. Hence the existence of solutions 0 , ,i
ijF F  and 

,iA  respectively for the last three equation of system (2I) such as 

( ) ( ) ( ) ( ) ( ) ( ),,, 00000
0

0
0 tAtAtFtFtFtF iiijij

ii
���

===  

which completes the proof of the Proposition 3.  � 
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Now consider the set 

([ ] ) ([ ] )1
00

3
00 ,,,, −

η η+×η+= NttCttC RRY  

([ ] ) ( ([ ] )) ,;,;, 3
0000

3
, R

m
d

XttCtt η+×Ωη+× +
δ

E  

it is a complete metric subspace of the Banach space 

([ ] ) ([ ] ) ([ ] )Ωη+×η+×η+ +− ;,,,,, 00
31

00
3

00 ttttCttC m
d

N
ERR  

( ([ ] )) .,, 33
00

NttC Rη+×  

Let the application 

( )0 0: ; , , , , , , , , , , ,i i
ij i ij ip q f F F A p q f F F Aη η

 
 −→
 
 

ɶ ɶ֏Y Y
�� � � ��

χ   (51) 

where ( )0, , , , ,i
ij ip q f F F Aɶ  is the solution of the system (2I) such that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
0 0 0 0 0 0 0, , , , , , , , , , .i i

ij i ij ip q f F F A t p t q t f t F t F t A t
 
 =
 
 

ɶ ɶ
�� � � ��  

χ  is well defined according to the Proposition 3. 

Proposition 4. Let [ ].,00 Tt ∈  There is a real number ] [,1,0∈η  

independent of ,0t  such that the system (I) admits a unique solution 

( )0, , , , ,i
ij ip q f F F A η∈ɶ Y  such that 

( ) ( ) 0 0
0 0 0

0 0
0, , , , , , , , , .t ti i

ij i t t ij it
p q f F F A t p q F F A

 
 =
 
 

� ��� �

ɶ ɶ   (52) 

Proof. We will prove that, there exists a number ] [,1,0∈η  

independent of ,0t  such that, the map χ  defined by (51) is a contraction 

of the complete metric space ηY  defined by (50), which will then have a 

unique fixed point ( )0, , , , ,i
ij ip q f F F Aɶ  solution of the system (I) with 

the initial data (52) at 0 .t t=  
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The differential system (2I) is equivalent to the integral system 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

0

0

0

0

0
0 0 1

0
0 0 2

0
0 0 3

0 0
0 0 4

, , , , , , ,

, , , , , , ,

, , , , , , ,

3I :

t t
i i i

ij i
t

t t
I I i

ij i
t

t t
i

ij i
t

t t
i i

t

p t t p t G p q f F F A d

q t t q t G p q f F F A d

f t t f t G p q f F F A d

F t t F t G

+

+

+

+

 
 + = +
 
 

 
 + = +
 
 

 
 + = +
 
 

+ = +

∫

∫

∫

∫

ɶ

ɶ

ɶ

�� � � � ��

�� � � ���

�� � �� ��

��

τ τ

τ τ

τ τ

( ) ( )

( ) ( )

[ [

0

0

0

0

0

0
0 0 5

0
0 0 6

, , , , , , ,

, , , , , , ,

, , , , , , ,

0, .

i
ij i

t t
i

ij ij ij i
t

t t
i

i i ij i
t

p q f F F A d

F t t F t G p q f F F A d

A t t A t G p q f F F A d

t

+

+
















  
  
  



 
 + = +
   




 
 + = +
   




∈ η

∫

∫

ɶ

ɶ

ɶ

� � � ��

�� � �� ��

�� � � �� �

τ τ

τ τ

τ τ

 

Let 0, , , , , , 1, 2.i
ij ip q f F F A η

 
  ∈ =
 
 

ɶ Y
� �� � �� k k
kk k k

k  According to the Proposition 6, 

they exist ( )0, , , , , , 1, 2i
ij ip q f F F A =ɶ
k k

k k k k k  solutions of the system ( )3I .  

We are writing the system ( )3I  for 1=k  and 2=k  then, making the 

difference, we get 

( ) ( )
0

0

0 1 1
1 2 0 1 1 1 1 1, , , , , ,

t t
i i i

ij i
t

p p t t G p q f F F A
+   

 − + =
   

∫ ɶ
�� �� � �

τ  

0 2 2
1 2 2 2 2, , , , , , ,i

ij iG p q f F F A d
 
 −
  

ɶ
�� �� � �

τ τ   (53) 
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( ) ( )
0

0

0 1 1
1 2 0 2 1 1 11, , , , , ,

t t
I I i

ij i
t

q q t t G p q f F F A
+   

 − + =
   

∫ ɶ
�� �� ��

τ  

0 2 2
2 2 2 2, , , , , , ,i

ij iG p q f F F A d
 
 −
  

ɶ
�� �� ��

τ τ   (54) 

( ) ( )
0

0

0 1 1
1 2 0 3 1 11 1, , , , , ,

t t
i

ij i
t

f f t t G p q f F F A
+
  

 
− + =  

 
  

∫ ɶ
�� �� ��

τ  

0 2 2
3 2 2 22, , , , , , ,i

ij iG p q f F F A d


  −  
 



ɶ
�� �� ��

τ τ   (55) 

( ) ( )
0

0

0 0 0 1 1
1 2 0 4 1 11 1, , , , , ,

t t
i i i

ij i
t

F F t t G p q f F F A
+
  

 
− + =  

 
  

∫ ɶ
� �� � ��
τ  

0 2 2
4 2 2 22, , , , , , ,i

ij iG p q f F F A d

   −  
  

ɶ
� �� � ��
τ τ   (56) 

( ) ( )
0

0

1 2 0 1 1
0 5 1 11 1, , , , , ,

t t
i

ij ij ij i
t

F F t t G p q f F F A
+
  

 
− + =  

 
  

∫ ɶ
�� � � ��

τ   

0 2 2
5 2 2 22, , , , , , ,i

ij iG p q f F F A d

  −  
 

ɶ
�� � � ��

τ τ    (57) 
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( ) ( )
0

0

1 2 1 0 1 1
0 6 11 1, , , , , ,

t t
i

i i ij i
t

A A t t G p q f F F A
+
  

 
− + =  

 
  

∫ ɶ
��� ���

τ   

0 2 2
6 2 2 22, , , , , ,i

ij iG p q f F F A d

  −  
 

ɶ
�� �� ��

τ τ.    (58) 

Since 0, , , , , ,i
ij ip q f F F A η

 
  ∈
 
 

ɶ Y
� � �� �� k k
kk k k

 we get from the Proposition 2 

0 1 1 0 2 2
1 1 1 1 1 1 2 2 2 2, , , , , , , , , , , ,i i

ij i ij iG p q f F F A G p q f F F A
   
   −
   
   

ɶ ɶ
� �� �� �� � � �� �

τ τ   

0 0 1 2 1 2
1 1 2 1 2 1 21 2 ,i i

ij ij i iC p p q q f f F F F F A A
 
 ′≤ − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � � � �  

(59) 

0 1 1 0 2 2
2 1 1 1 2 2 2 21 2, , , , , , , , , , , ,i i

ij i ij iG p q f F F A G p q f F F A
   
   −
   
   

ɶ ɶ
� �� �� �� �� �� �

τ τ  

0 0 1 2 1 2
2 1 2 1 2 1 21 2 ,i i

ij ij i iC p p q q f f F F F F A A
 
 ′≤ − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � �� �  

(60) 

0 1 1 0 2 2
3 1 1 3 2 21 1 2 2, , , , , , , , , , , ,i i

ij i ij iG p q f F F A G p q f F F A
   
   −
   
   

ɶ ɶ
� �� �� �� �� �� �

τ τ  

0 0 1 2 1 2
3 1 2 1 21 2 1 2 ,i i

ij ij i iC p p q q f f F F F F A A
 
 ′≤ − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � �� �  

(61) 
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0 1 1 0 2 2
4 1 1 4 2 21 1 2 2, , , , , , , , , , , ,i i

ij i ij iG p q f F F A G p q f F F A
   
   −
   
   

ɶ ɶ
� �� �� � � �� �� �
τ τ  

0 0 1 2 1 2
4 1 2 1 21 2 1 2 ,i i

ij ij i iC p p q q f f F F F F A A
 
 ′≤ − + − + − + − + − + −
 
 

ɶ ɶ
� �� � � � � �� �  

(62) 

0 1 1 0 2 2
5 1 1 5 2 21 1 2 2, , , , , , , , , , , ,i i

ij i ij iG p q f F F A G p q f F F A
   
   −
   
   

ɶ ɶ
� �� �� � � �� �� �

τ τ  

0 0 1 2 1 2
5 1 2 1 21 2 1 2 ,i i

ij ij i iC p p q q f f F F F F A A
 
 ′≤ − + − + − + − + − + −
 
 

ɶ ɶ
� �� � � � � �� �  

(63) 

1 1 0 1 1 0 2 2
6 1 6 2 21 2 2, , , , , , , , , , , ,i i

ij i ij iG p q f F F A G p q f F F A
   
   −

  
  

ɶ ɶ
� ��� �� �� � �� �

τ τ  

0 0 1 2 1 2
6 1 2 1 21 2 1 2 ,i i

ij ij i iC p p q q f f F F F F A A
 
 ′≤ − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � �� �  

(64) 

where constants ( )0 0, , , , , 1, , 6l lC C h r R T e l′ ′= = …  are independents of 

0t  and have been present in the proof of Proposition 3. 

From inequalities (59) to (64), setting ( )31 2 1 2 ,m
d

f f f f + Ω− = −
E

 we 

deduce from relations (53) to (58) using 1⋅  and the fact that [ ] :,0 η∈t  

1 2 11p p C′− ≤ η  

0 0 1 2 1 2
1 2 1 2 1 21 21 1 1 1 1 ,i i

ij ij i ip p q q f f F F F F A A
 
 × − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � � � �  

(65) 
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211 2q q C′− ≤ ηɶ ɶ  

0 0 1 2 1 2
1 2 1 21 2 1 1 1 1 11 2 ,i i

ij ij i ip p q q f f F F F F A A
 
 × − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � �� �  

(66) 

1 2 31f f C′− ≤ η  

0 0 1 2 1 2
1 2 1 21 2 1 21 1 1 1 1 ,i i

ij ij i ip p q q f f F F F F A A
 
 × − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � �� �   

(67) 

0 0
1 2 41

i iF F C′− ≤ η  

0 0 1 2 1 2
1 2 1 21 2 1 21 1 1 1 1 ,i i

ij ij i ip p q q f f F F F F A A
 
 × − + − + − + − + − + −
 
 

ɶ ɶ
� �� � � � � �� �  

(68) 

1 2
51ij ijF F C′− ≤ η  

0 0 1 2 1 2
1 2 1 21 2 1 21 1 1 1 1 ,i i

ij ij i ip p q q f f F F F F A A
 
 × − + − + − + − + − + −
 
 

ɶ ɶ
� �� � � � � �� �  

(69) 

1 2
61i iA A C′− ≤ η  

0 0 1 2 1 2
1 2 1 21 2 1 21 1 1 1 1 .i i

ij ij i ip p q q f f F F F F A A
 
 × − + − + − + − + − + −
 
 

ɶ ɶ
� � � �� � � �� �  

(70) 
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Adding member to member inequalities (65) to (70), we get 

0 0 1 2 1 2
1 2 1 21 2 1 1 1 1 11 2

i i
ij ij i ip p q q f f F F F F A A− + − + − + − + − + −ɶ ɶ� �  

(
6 0 0

1 2 1 21 2 1 1 11 21
i i

l
l

C p p q q f f F F
=

 ′≤ η − + − + − + − 
 ∑ ɶ ɶ� �  

)1 2 1 2
1 1ij ij i iF F A A+ − + −  

(
6 0 0

1 2 1 21 2 1 21 1 11
i i

l
l

C p p q q f f F F
=

 ′+ η − + − + − + − 
 ∑ ɶ ɶ

� �� � � �� �  

)1 2 1 2
1 1 .ij ij i iF F A A+ − + −

� � � �   (71) 

Then, if we take η  such that 

{
( )

}
1 2 3 4 5 6

1
0 inf 1, ,

12 C C C C C C
< η <

′ ′ ′ ′ ′ ′+ + + + +
 (72) 

implies in particular ( ) 1
1 2 3 4 5 6 6

0 .C C C C C C′ ′ ′ ′ ′ ′< η + + + + + <  From 

which we deduce, by sending the first term of the right hand side of (71) 

to the left hand side 

( 0 0
1 2 1 2 1 21 1 1 11 2

11
12

i ip p q q f f F F− + − + − + −ɶ ɶ  

)1 2 1 2
1 1ij ij i iF F A A+ − + −  

0 01
1 2 1 21 2 1 21 1 112

i ip p q q f f F F

≤ − + − + − + −



ɶ ɶ
� �� � � �� �  

1 2 1 2
1 1 ,ij ij i iF F A A


+ − + −



� � � �  
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which gives 

( 0 0
1 2 1 2 1 21 1 1 11 2

i ip p q q f f F F− + − + − + −ɶ ɶ  

)1 2 1 2
1 1ij ij i iF F A A+ − + −  

0 01
1 2 1 21 2 1 21 1 1 111

i ip p q q f f F F

≤ − + − + − + −



ɶ ɶ
� �� � � �� �  

1 2 1 2
1 1 .ij ij i iF F A A


+ − + −



� � � �  

Then, the map χ  defined by (51) is a contracting map in the complete 

metric space ηY  which then has a unique fixed point ( )0, , , , , ,i
ij ip q f F F Aɶ  

solution of the system (3I) and hence of the differential system (I) such 

that 

( ) ( ) 0 0
0 0 0 0

0 0
0, , , , , , , , , , .t ti i

ij i t t t ij it
p q f F F A t p q f F F A

 
 =
 
 

�� ��� �

ɶ ɶ  

This completes the proof of Proposition 4.  � 

Based on the method presented in Subsection 5.1, we have proved the 

following result. 

Theorem 3. Let ( )3 1 3
0 0 0 ,, ,N m

dp q f− +
δ∈ ∈ ∈ ΩɶR R E  and , ,i

ijE Φ  

.i Ra X∈  Then  

(1) The differential system (I) has a unique global solution ( , , ,p q fɶ  

)0 , ,i
ij iF F A  defined all over the interval [ [0, ,+ ∞  and such that  

( ) ( ) ( )0
0 0, , , , , 0 , , , , , .i i

ij i ij ip q f F F A p q f E a= Φɶ ɶ  
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(2) The Yang-Mills-Boltzmann system (15)-(16) has a unique solution 

( ), ,f F A  defined all over the interval [ [0, + ∞  and satisfying 

( ) ( ) ( ) ( )0
00 , 0 , 0 , 0 .i i

ij ij i if f F E F A a= = = Φ =  
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