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Abstract

A new approach is used to show that the solution for one class of systems of
linear Fredholm integral equations of the third kind with multipoint
singularities in the semiaxis is equivalent to the solution of systems of linear
Fredholm integral equations of the second kind in the semiaxis with additional
conditions. The existence, nonexistence, uniqueness and nonuniqueness of
solutions to systems of linear Fredholm integral equations of the third kind
with multipoint singularities in the semiaxis are analyzed.
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1. Introduction

Consider the system of linear integral equations of the third kind

n oo
pilus(e) = A3 [ g, D)y + @), x € fa ), @
=17
where i =1, 2, ..., n, p;(x) and f;(x) are given continuous functions on

la, =), k;j(x, y) are given continuous functions in G=[a, «) x [a, =), u;(x)
are the sought functions on [a, ), i, j=1,2,...,n, and A is a real
parameter. There exists ¢ € {1, 2, ..., n} such that, forall i =¢t+1,...,n
and [ =1, 2, ..., m(i), p;(x;;) = 0, where x;; € [a, «) and for all i =1, 2,

e, t=1, pi(x) =1 for all x € [a, ).

Various issues concerning the theory of integral equations were
studied in [1-14]. Specifically, in [12], Lavrent’ev constructed regularizing
operators for solving linear Fredholm integral equations of the first kind.
In [7], uniqueness theorems were proved for systems of nonlinear
Volterra integral equations of the third kind and regularizing operators
in the sense of Lavrent’ev were constructed. In [9], a new approach was
used to analyze the existence and uniqueness of solutions to systems (1)

in the case where x;; = a foralli=¢,...,n and [ =1, 2, ..., m(i).
Here, a new approach, we prove that the solution of system (1) in the
space Lg’n(a, =) is equivalent to the solution of systems of linear integral

equations of the second kind with the some integral conditions. Here

Ly, n(a, ) denote the space of all n-dimensional vector-functions with

elements of Ly(a, «).
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Let C,la, =) denote the space of all n-dimensional vector functions

with elements from Cla, ). Here Cla, ) denote the space of all

. . T
continuous functions on [a, ). For vectors u = (yq,...,u,) and

v=(vg, ..., 0, )T € R", the inner product is defined by the formula

(u, V) = WVy + ... + UL,
Throughout this paper, we assume that
m(i)
pi(x) = Hpi,z(x), pi.1(x;) = 0, p; (x) € Cla, o),
=1
i=t..,nl=1 .., m@.

pi.1(x) # 0 for x € [a, ) and x # x;; € [a, =), where m(i)e N.

Setting x = x;;, we find from (1) that
n oo
[ it Do)y + fie) = 0.
=1

1=t t+1,...,n.

Subtracting (3) from (1) yields

pi i) = 1) [ T, 9) =g, 9Vt (0)dy + i) = fiein).
=1

xela, o), i=¢tt+1,..,n.

Assume that the following conditions hold.

@)

3)

(4)

(@ For all i=1,2,...,t-1,t<n,j=1,2,...,n, kij(x, y)e C(G)N

Ly(G).
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(b) For all i =t,t+1,...,n,j=1,2,..,n1=12, .., m@),kj,(x, y)
e C(G), for fixed x € [a, =), k;j;(x, y) € Lo(a, ), kij m(i)(x, ¥) € Ly(G),

where k;; o(x, ) = kij(x, ¥).

1
kij 1 (x, ) = p—(x)[kij, -1, ¥) = Ky 1 (g, 9] (%, ¥) € G

1,1
(¢) For all i=1,2,...,t-1,¢<n, fi(x) e Cla, «) N Ly(a, =), for all
i=tt+1,...,n1=12, ..., m@),F x)e Cla, »), F; ,;)(x) € Ly(a, «),

where F; o(x) = f;(x),

F(x) = ﬁm,l_ux) ~ faa )], x € (a, ).

Theorem. Let conditions (2), (a), (b) and (c) satisfied. Then the

solution of linear integral equations (1) in Ly ,(a, =) N Cyla, ) is

equivalent to the solution of the following system of linear integral

equations of the second kind:

wi@) =2y [ ke D)y + fiw) i =12 -1,
- a

ui(x) = %Z:zlja Kij, m(iy (6, 3 (0)dy + Fj pyiy (%), (5)

i=tt+1,...,n xela, ),

with conditions
M "0k i )y + B i) = 0, ©
a
where i =t, t+1,...,n,1=1,2, ..., m@i), and

T
kio1za(xigs ) = (kig, -1 (eigs ), ooy K 1 (33, )7
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Proof. First, let u(t) = (u;(t), ..., u, @)! e Cpla, )N Ly ,(a, ) be a

solution of system (1). Then identities (3) and (4) hold. Taking into
account (2) and conditions (b) and (c) we find from (4) that

m(i)
| J EXETE xZ[ (e, Y0y + By (x),
=2
xela, o), i=tt+1,..,n. (7)
In system (7), for i satisfying m(i) = 1, we have
m(i)
Hpi,l(x) =1, x € [a, «).
1=2
Furthermore, in system (7), for equations for which m(i) > 2, setting

X = X;9, we have

n [oe]

lz_[a kij 1 (xig, Y)uj(y)dy + Fj1(x;9) = O, (8

J=1
i=tt+1,..,n m@) =2

Subtracting (8) from (7) and taking into account conditions (b) and (c),

we obtain

m(i)
[ ] pi1Goui) ij kij,o(x, Yuj()dy + F 5(x), x  [a, ), (9)
1=3

where i =¢t+1,...,n and m(i) > 2. In system (9), for i such that

m(i) = 2, we assume that

m(i)
Z pi (%) =1, x € [a, ).
=3

Continuing this process, we see that the vector function u(x) solves

systems (5) with conditions (6).
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Conversely, let u(t) = (4 (¢), ..., u, (t))T € Cyla, )N Ly ,(a, =) be a

solution of system (5) with conditions (6). In system (5), we consider the
i-th equation at i = ¢, ¢ +1, ..., n. Multiplying it by p; ,,,;(x) and taking

into account condition (6) at [ = m(i), we obtain

n o0
DPi. m(i)(®)ui(x) = %ZJ Kij, m(i)-1 (%, 3)uj()dy + F; 1nii)-1 (%),
=17

xela, o), i=tt+1,..,n. (10)

Multiplying the i-th equation in system (10) by p; p,(;)-1(x) and taking

into account condition (6), for I = m(i) — 1, we have
n (e}

i) 1 (E)Ps () ()i ) = 2" [y iy 2 3D ()
=

+ Fi,m(i)—2(x)’ X € [a’ oo),
i=tt+1,..,n m@) =2 (11)

Continuing this process with respect to (11) and taking into account
condition (6), we see that u(t) solves system (1). Theorem is proved.

Corollary 1. Let conditions (2), (a), (b) and (c) be satisfied, and % be

a real number that is not an eigenvalue of the matrix kernel k(x, y), where

kp1(x, y) kyo(x, y) ok (e, y)
k1,1 (x, ) k1,20, ¥) Y PR Y
k(x, y) =
ktl,m(t)(x’ y) kt2,m(t)(x’ ) -~-ktn,m(t)(x, y)
knl,m(n)(x7 y) kn2,m(n)(xa y) knn,m(n)(xa y)

Then the following assertions hold:
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(i) The solution of system (1) is unique in Ly ,(a, =) N Cya, ).

(11) The solution of system (5) can be written as

u(x) = F(x) + I:R(x, y, MF(y)dy, x € [a, =), (13)

where F(x) = (f(x), e, fi1(0), Fy (&), woes Fo (@)

u(x) = (uy(x), ug(x), ..., u, (x))T, R(x, y, A) is the matrix resolvent of
the matrix kernel Mk(x, y), and k(x, y) is defined by formula (12). In this
case, the vector function u(x) defined by (13) is a solution of system (1) if

and only if u(x) satisfies condition (6).

Corollary 2. Let conditions (2), (a), (b) and (c) be satisfied, and % be

a real number that is an eigenvalue of the matrix kernel k(x, y), and the

vector functions @(x), @(x), ..., @4(x) and v;(x), va(x), ..., vy(x) be the
eigenfunctions of the matrix kernels k(x, y) and (k(y, x))T corresponding

to the eigenvalue 1 where k(x, y) is defined by (12). Then the following

l b
assertions hold:

(i) If there exists i € {1, 2, ..., q} such that

j "), F(x))dx # 0,

the system (1) has no solution in Ly ,(a, ) N Cy[a, o).

) Ifforall ie {1, 2, ..., q}

_[oo(wi(x), F(x))dx = 0,
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n

and r(A) # r(B), where A isan sxq matrixand s = zi:tm(i),
A by 1,1 .- Qi1 g
A= |, Q=] 7B:(A7Q)>Ai: ............... , (14)
A, b, Lim(),1 -+ Yimli),q
b1 -
bi = ’ail,j =7\’J‘ <ki,l—l(xil’ y)’ (Pj(y»dy’l:t”n’
a
bim(i)

I=1,...,m@), by = —F; ;1 (x;) - 7»_[ (ki 1-1 (i ¥), 9oy, j=1, ..., q,
a

r(A) is the rank of the matrix A and @g(x) is a partial solution of system

(5), then system (1) has no solution in Ly ,(a, «) N Cya, ).

@i) Ifforall ie {1, 2, ..., q}

j (:(x), F(x))dx = 0,
a
and r(A) = r(B) = q, then system (1) has a unique solution in Ly ,(a, )

NC,la, «) and this solution can be represented as

q
u(x) = 9o (x) + D _cj;(x). (15)
=1
Here, ¢ = (¢, cg, ..., ¢q )T is the only vector satisfying the system
Ac = Q, (16)

where the matrices A and @ are defined by formula (14).
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) Ifforall ie {1, 2, ..., q}
j (v:(x), F(x))dx = 0,
a
and r = r(A) = r(B) < q, then system (1) has a solution in Ly ,(a, =)
C,la, ) and this solution is given by (15), where the vector ¢ = (¢, c9,

.y Cp )T depends on q — r arbitrary constants and satisfies system (16).

Proof. In case (i), by the Fredholm alternative, system (5) has no
solution in Lz,n(a, ). Therefore, system (1) also has no solution in
Ly ,(a, ). In cases (ii)-(iv), by the Fredholm alternative, system (5) has
a solution representable as (15), where ¢, co, ..., cg are arbitrary

constants. Substituting (15) into (6) gives system (16). Applying the
Kronecker-Capelli theorem to system (16), we prove assertions (ii)-(iv) in

Corollary 2 to Theorem.

Example 1. Consider the system

u) =[] L)

(x+1)y x  x+1

uz(y)}dy A ,
(6 1) (x — 2) (x — Bug(x) = xf[w () + g e (y)}dy
Ba

+oc2(x—1)(x—3)+7,

(17)
where x € [1, «) and A, o4, By, 09, By are parameters. It is easy to see that
system (17) satisfies conditions (2), (a), (b) and (c) for n = 2, a =1, ¢ = 2,

P21(x)=x-38, pg o(x)=x-1, pg g(x) =x—2,x91 =3, x99 =1, x93 =2, ky1(x, y)

1 3 2 _(x-1)(x-3) X
- xy,k12(x9 y)_ (x+1)y’k21(x’ y)_ y ’k22(x9 y)_ y+1

’

x—1 1 1
kZl,l(x’ y) = T’ k22,1(xa y) = —1a kZl,Z(xa y) = ;’ k22,2(x’ y) = 0’

y+
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Kot 5(x, ) = 0, kag 5(x, ) = 0 for (x, y) € [L, o) x[L, %), f,(x) = %+%
falx) = ag(x —1) (x - 3) +B727 Fyq(x) = ag(x —1) - 22 Fyo(x) = ag + 5= B2
F, 5(x) = —% for x € [1, o).

Then, for system (17), system (5) and conditions (6) are written as

2 o B
7»]‘ {_ul (x+1)yu2(y)}dy+71+le,

(18)
— __2 oo
ug(x) = =g x € [L, ),
with the conditions
o o0 3 B_z B
o o0 1 _B_2 B
7\’. 1 y + 1 u2(y)dy 3 - ’ (19)
@ OO 1
7\,. ;ul(y)dy+062 +%=0

From (19), we have

o0 1 _
KL v+l us(y)dy = 0,
By =0, (20)
XJ. 1 u;(y)dy + o9 = 0.

1y

(I) If By # 0, then from (18) and (20) it follows that system (17) has

no solution in Ly 5(1, ).

(IT) Let By =0, It is easy to see that %

=1 is a unique eigenvalue of

the matrix kernel k(x, y), where

1 2

k(x, y) =| %Y (x+1)y |, (x, y) e [1, o) x[1, o).
0
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(i) Let A # 1, o =

A 7: i (0 +B; In2). Then system (17) has a unique

solution in Ly 9(1, e) N Cy[l, o) and this solution is given by

(0 + ABg an)% + By , Ug(x) =0, x € [1, o).

ul(x): x+1

1-A

(1) Let A #1, 09 # %(ocl +PB;In2). Then system (17) has no

solution in Ly o(1, o).

(i) Let A =1, 04 # — B1In2. Then system (17) has no solution in
L2’2(1, °°)

(iv) Let A =1, a; = — By In 2. Then system (17) has a unique solution

in Ly 9(1, o) N Cy[l, e°) and this solution is given by

B1

x+1

1 (%) = (- 0y — Py ln2)%+  un(x) = 0, x € [L, o).

Example 2. Consider the system

(=) = A | i g )+ ey )|
ofx—1) PBlx-1)
* x+1 * x+2 @D
T 1 3 Y
xug(x) = KIO [(y+ o) up () + O+ uZ(y)}derm,

where x € [0, ) and A, a, B, ¥ are real parameters. It is easy to see that

system (21) satisfies conditions (2), (a), (b) and (¢c) for n =2, a =0, ¢t =1,

x -1
p1,1(x) =x -1, pz,l(x) =x, %17 =1, x91 =0, kyq(x, y) = x+1)(y+2)’
__1 . -3 N S
kyo(x, ) = y+1,k21(x, y) = y+2,k22(x, y)= y+1,k1171(x, )= (x+1)(y+2)’

k12,1(x7 y) = 07 kzl,l(X, y) = Oa k22,l(x’ y) =0 for (x’ y) € [O’ oo)x [O’ 00)7
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’

) = S B o) -

x+1 x+ 2 x+1

o
Fpq(x) = x+1+x52,F2,1(x)= r_

for x € [0, »). Then, for system (21), system (5) and conditions (6) are

written as

[ u () o B
ul(x)—KJ.O (x+1)(y+2)dy+x+1+x+2’ (22)
us (@) = Y= x e [0, ),

with the conditions

(23)

= u (y)
%JO y+2 ay

[
e

It is easy to see that 1_ In 2 is the only eigenvalue of the matrix kernel

A
k(x, ), where
1
k(x, y) = (x+1)(y +2) , (x, ¥) € [0, »)x [0, o).
0 0

(i) Let y # 0. Then system (21) has no solution in Lg (0, c).

(i1) Let A # ﬁ and A # 0. Then system (22) has a unique solution

in Ly (0, =) given by the formula

PSR S S
1 1-A1n2 2 Jx+1 x+2° (24)

+1
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Combining (24) with (23) yields.

Y=00a=- . (25)

Thus, the functions defined by (24) are a solution (21) if and only if
conditions (25) hold. Then system (21) has a unique solution in L2,2(O, )

given by formula

Uy (x)

"1 am2\ 22 2 )x+1 x+2’ (26)

ug(x) =0, x € [0, ).

1 ( p lﬁjl p

(iii) Let A = 0. Then system (21) has a unique solution in L2’2(0, o)
given by the formula

__«a §

w(x) = x4+l x+2

u2(x)=x11,xe[o,oo).

. 1 B _
iv) Let A = o’ o # SIng’ v=0. Then system (21) has no

solution in Lg 9(0, ).

Lu: B

() Let A =15, 0=-5715

, ¥ = 0. Then system (21) has a unique

solution in Ly 9(0, «) given by formula

B B
2x+1)In2 x+2° 27)

ug(x) =0, x € [0, o).

ul(x) = -
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