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Abstract 

The Laplacian matrix of a graph G  is denoted by ( ) ( ) ( ) ,GAGDGL −=  where 

( ) ( ) ( )( )nvdvdGD ,,diag 1 …=  and ( )GA  is the adjacency matrix of .G  A one-

edge connection of two graphs 1G  and 2G  is a graph 1GG =  2Guv�  with 

( ) ( ) ( )21 GVGVGV ∪=  and ( ) ( ) ( ) { },21 uveGEGEGE == ∪∪  where ( )1GVu ∈  

and ( ).2GVv ∈  In this article, we study the existence and multiplicity of 

Laplacian eigenvalue 2 in the bicyclic graph 21 GGG uv�=  based on existence 

and multiplicity of this special Laplacian eigenvalue in 1G  and .2G  Examples 

to illustrate and delimit the results are provided. 

1. Introduction 

All graphs in this paper are finite and undirected with no loops or 

multiple edges. The vertex set and the edge set of a graph G  are denoted 

by ( )GV  and ( ),GE  respectively. Also, the degree of ( )GVv ∈  is denoted 

by ( ).vd  The Laplacian matrix of G  is ( ) ( ) ( ),GAGDGL −=  where 

( ) ( ) ( )( )nvdvdGD ,,diag 1 …=  is a diagonal matrix and ( )GA  is the 

adjacency matrix of .G  We shall use the notation ( )Gkλ  to denote the k-th 

Laplacian eigenvalue of G  and we assume that ( ) ( ) .01 =λ≥≥λ GG n⋯  

We also use the symbol ( )λGm  to indicate the multiplication of the 

eigenvalue λ  of ( ).GL  A vertex of degree one is called a leaf vertex and a 

vertex is said quasi leaf (support vertex) if it is incident to a leaf vertex. A 

matching of G  is a set of pairwise disjoint edges of G. A perfect matching 

of a graph is a matching in which every vertex of the graph is incident to 

exactly one edge of the matching. A perfect matching is therefore a 

matching containing 
2

n
 edges, meaning perfect matchings are only 

possible on graphs with an even number of vertices. 
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Connected graphs in which the number of edges equals the number of 

vertices are called unicyclic graphs. Therefore, a unicyclic graph is either 

a cycle or a cycle with some attached trees. Let gn,U  be the set of all 

unicyclic graphs of order n with girth g. Throughout this paper, we 

suppose that the vertices of the cycle gC  are labelled by ,,,1 gvv …  

ordered in a natural way around ,gC  say in the clockwise direction. A 

rooted tree is a tree in which one vertex has been designated the root. 

Furthermore, assume that iT  is a rooted tree of order 1≥in  attached to 

( ) ( ),gii CVTVv ∩∈  where .
1

nni
g

i
=∑ =

 This unicyclic graph is denoted 

by ( ).,,1 gTTC …  The sun graph of order 2n is a cycle nC  with an edge 

terminating in a leaf vertex attached to each vertex that is the corona of 

.1KCn �  A broken sun graph is a unicyclic subgraph of a sun graph, so 

one can assume a sun graph is a broken sun graph too. A one-edge 

connection of two graphs 1G  and 2G  is a graph 21 GGG uv�=  with 

( ) ( ) ( )21 GVGVGV ∪=  and ( ) ( ) ( ) { },21 uveGEGEGE == ∪∪  where 

( )1GVu ∈  and ( ).2GVv ∈  We use the notation vu ~  when ( ).GEuve ∈=   

By [7, Theorem 13], due to Kelmans and Chelnokov, the Laplacian 

coefficient, ,k−ξn  can be expressed in terms of subtree structures of ,G  

for .0 n≤≤ k  Suppose that F  is a spanning forest of G  with 

components iT  of order ,in  and ( ) .
1 ii
nF ∏ =

=γ
k

 The Laplacian 

characteristic polynomial of G  is denoted by ( ) ( )( ) =−λ=λ GLILG det  

( ) .1
0

in
i

in

i

−
=

λξ−∑  If M  is a square matrix, then the determinant of M  

is denoted by M  and the minor of the entry in the i-th row and j-th 

column is the determinant of the submatrix formed by deleting the i-th 

row and j-th column. This number is often denoted by A., jiM  square 

matrix is non-singular if its determinant is non-zero or it has an inverse. 



M. FARKHONDEH et al. 16 

Let G  be a graph with n vertices. It is convenient to adopt the 

following terminology from [4]: for a vector ( ) ,,,1
nt

nxxX R∈= …  we 

say X  gives a valuation of the vertex of ,V  and with each vertex iv  of ,V  

we associate the number ,ix  which is the value of the vertex ,iv  that is 

( ) .ii xvx =  Then λ  is an eigenvalue of ( )GL  with the corresponding 

eigenvector ( )nxxX ,,1 …=  if and only if 0≠X  and 

( )( )
( )

.,,1, nixxvd j

vNv

ii

ij

…=∀=λ− ∑
∈

  (1.1) 

In [3], authors have considered several conditions in the bicyclic 

graph 21 GGG uv�=  for having the Laplacian eigenvalue 2. In this 

article, we would like to continue studying on the existence and 

multiplicity of Laplacian eigenvalue 2 in bicyclic graphs 21 GGG uv�=  

based on existence and multiplicity of this special Laplacian eigenvalue in 

1G  and .2G  

2. Main Results 

It is well-known that the multiplicity of Laplacian eigenvalue 2 of 

unicyclic graphs is less than 3. In [3, Lemma 2], it was shown that for a 

bicyclic graph ( ) .42, <GmG  Now, we try to examine the multiplication 

of the Laplacian eigenvalue 2 of ,21 GGG uv�=  where 1G  and 2G  are 

unicyclic graphs, in different following cases: 

(1) 1G  and 2G  do not have 2 among their Laplacian eigenvalues. 

(2) Just one of 1G  or 2G  has 2 among its Laplacian eigenvalues. 

Without loss of generality, let ( ) 12
1

=Gm  or ( ) .22
1

=Gm  

(3) Both 1G  and 2G  have 2 among their Laplacian eigenvalues with 

multiplicity 1 or 2. 
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We start this article by the following example which shows that 

21 GGG uv�=  may have 2 among its Laplacian eigenvalues, even if both 

1G  and 2G  do not have 2 among their Laplacian eigenvalues. 

Example 2.1. Let 
ii gniG ,U∈  be two broken sun graphs with 

,12 −= ii gn  for .2,1=i  We name the unique vertices of degree 2 of 1G  

and ,2G  by u and v, respectively. Then ( )GL  has 2 among its Laplacian 

eigenvalues, Although both 1G  and 2G  do not have 2 among their 

Laplacian eigenvalues, by [1, Theorems 5 and 10]. In fact, we may assign 

1 and �1 to the vertices of 
1gC  and ,

2gC  respectively; and assign �1 and 

1 to leaves of 1G  and ,2G  respectively. By this assigning, we obtain a 

vector in 21 nn
R

+
 that satisfies in Equation (1.1) for .2=λ  In the 

following (see Figure 1), we have given this assigning for two specific 

graphs with 41 =g  and .32 =g  

 

Figure 1. 2,21 =λ= GGG uv�  is an eigenvalue of ( ).GL  

Before proceeding, it is important to note that the selection of two 

vertices that connecting graphs 1G  and 2G  is very important and by 

changing them, different eigenvalues are obtained for the graph ,G  as in 

Figure 2 one can see. 
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1G                                                     2G  

Figure 2. ( ) 21 GGGL uv�=  and ( ) .02 =Gm  

Now, we give an example which shows that if 
ii gniG ,U∈  are two 

unicyclic graphs, for ,2,1=i  in which 1G  has a perfect matching, 

( ) 12
1

=Gm  and ( ) ,02
2

=Gm  then it is possible ( ) .02
21

=GG uv
m �  

Example 2.2. It is well-known that each sun graph has 2 among its 

Laplacian eigenvalues. Also, it is easy to check that the broken sun graph 

2G  and 21 GGG uv�=  in Figure 3 do not have 2 among its Laplacian 

eigenvalues. 

Next, we give a sufficient condition that 21 GGG uv�=  has 2 among its 

Laplacian eigenvalues, for 
ii gniG ,U∈  with ( ) 12

1
=Gm  and ( )2

2Gm .0=  

 

1G                                                     2G  

Figure 3. ( ) 21 GGGL uv�=  and ( ) .02 =Gm  
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Theorem 2.3. Let 1G  be a broken sun graph of order 1n  which has no 

perfect matching and has 2 among its Laplacian eigenvalues. Also, 2G  is 

a unicyclic graph of order 2n  that does not have 2 among its Laplacian 

eigenvalues. Then 21 GGG uv�=  has 2 among its Laplacian eigenvalues 

if one of the following conditions occurs: 

(1) ( ) ,1=ud  

(2) ( ) ,3=ud  

(3) ( ) 2=ud  and ( )wud ,  is even, where w has the shortest distance to 

u among all vertices of 1G  with degree 3. 

Proof. Let 1G  be a broken sun graph which has no perfect matching 

and has 2 among its Laplacian eigenvalues. So, ( )4mod01 ≡g  and there 

exist odd number of vertices of degree 2 between any pair of consecutive 

vertices of degree 3, by [1, Theorem 10]. We may assign { }1,0,1−  to the 

vertices of ,
1gC  by the pattern 1,0,1,0 −  consecutively starting with a 

vertex of degree 3, and assign to each leaf vertex the negative value of its 

neighbour to obtain an eigenvector, like ,X  of ( )GL  corresponding to the 

eigenvalue 2. Note that by assigning vertices of 1G  in this method 

certainly ( ) .0=ux  So, by assigning 0 to all vertices of ,2G  we can easily 

check that the eigenvector X  satisfy in Equation (1.1) for .2=λ  This 

completes the proof.  □ 

Example 2.4. (i) In Figure 4, 1G  and 2G  are broken sun graphs such 

that just one of them has 2 among its Laplacian eigenvalues. By Theorem 

2.3 and by Equation (1.1), 

( )tX 0,0,0,0,0,0,0,1,0,0,1−=  

is an eigenvector of ( )GL  corresponding to the eigenvalue 2. 
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Figure 4. 21 GGG �=  has 2 as its Laplacian eigenvalue. 

(ii) In Figure 5, we show that the condition for u in case ( ) 2=ud  in 

Theorem 2.3 is not superfluous. 

 

Figure 5. 21 GGG uv�=  with ( ) .02 =Gm  

Now it’s time to study the Laplacian eigenvalue 2 in 21 GGG uv�=  

for unicyclic graphs 1G  and 2G  with ( ) 22
1

=Gm  and ( ) .02
2

=Gm  

Theorem 2.5. Let ( ( ) ( ) )11
11

1
,,

g
TTCG …=  be a unicyclic graph with a 

perfect matching and ( ) .22
1

=Gm  Also, ( ( ) ( ) )22
12

2
,,

g
TTCG …=  is a unicyclic 

graph such that ( ) .02
2

=Gm  It holds that 21 GGG uv�=  has 2 among its 

Laplacian eigenvalues. 
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Proof. Let ( ( ) ( ) )11
11

1
,,

g
TTCG …=  be a unicyclic graph with a perfect 

matching and ( ) .22 =Gm  So, ( )4mod01 ≡g  and ,11 gs =  where 1s  is 

the number of trees of odd orders in ,1G  by [1, Theorem 13]. So, to obtain 

an eigenvector like X  of ( )GL  corresponding to the eigenvalue 2, we 

have two situations: 

(1) If ,
1gCu ∈  then we may assign { }1,0,1−  to the vertices of ,

1gC  

by the pattern 1,0,1,0 −  consecutively starting with the vertex u. Now, 

for ,iu  the root of 
( )

1
,,1,

1
gi

CiT …=  if ( ) ,0=iux  then we assign 0 to 

each vertex of 
( )

,
1

i
T  and if ( ) ,0≠iux  then we assign all vertices of the 

tree with 1,1 −  such that Equation (1.1) is satisfied for .2=λ  

Furthermore, we assign 0 to each vertex of 2G  (note that Equation (1.1) 

is satisfied). 

(2) If ,
1gCu ∈/  without loss of generality we can assume that 

( ( ) ).1
1TVu ∈  We assign 0 to each vertex of the tree 

( )1
1T  and assign 

{ }1,0,1−  to the vertices of ,
1gC  by the pattern 1,0,1,0 −  consecutively 

starting with the root of 
( )

.
1

1T  The other vertices of G  are assigned like 

case (1). So, G  has 2 among its Laplacian eigenvalues and the proof is 

complete.  □ 

Example 2.6. In Figure 6, 1G  and 2G  be two unicyclic graphs with 

( ) 22
1

=Gm  and ( ) .02
2

=Gm  The bicyclic graph 21 GG uv�  has 2 among 

its Laplacian eigenvalues with multiplicity 1. 

We continue this article by studying the multiplicity of the Laplacian 

eigenvalue 2 of ,21 GG uv�  where the unicyclic graphs 1G  and 2G  have 2 

among their Laplacian eigenvalues. For this, we need the following results. 
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Figure 6. 21 GGG uv�=  with ( ) .12 =Gm  

Lemma 2.7 ([2, Lemma 2.2]). If M  is a non-singular square matrix, then 

.det 1NPMQM

QP

NM

QP

NM
−−⋅==














 (2.1) 

We use the notation uM  when in iM ii ,,  is the row and column 

corresponding to the vertex u in a graph. 

Lemma 2.8 ([6, Lemma 8]). Let 1G  and 2G  be two graphs of order n 

and m, respectively. Then the Laplacian characteristic polynomial of 

21 GGG uv�=  is 

( ) ,... uvG MQQMQML −−=λ   (2.2) 

where ( )1GLIM −λ=  and ( ).2GLIQ −λ=  

Corollary 2.9. Let G  be a unicyclic graph on n vertices. If ,,1 …λ  nλ  

are the Laplacian eigenvalues of ,G  then nλλ ,,1 …  are the Laplacian 

eigenvalues of .GGG uv�=′  
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Proof. Suppose nuu ,,1 …  and nvv ,,1 …  are the vertices of G  and 

the copy of ,G  respectively. Let GGG
jivu�=′  and ( ).λ= GLM  

Therefore ( ) ,..2
ij vvG MMMMML −−=λ′  by Equation (2.2). So ( )λ′GL  

( )
ji vu MMMM −−=  and the result follows.  □ 

Let 1G  and 2G  be two unicyclic graphs such that ( ) ( ) .122
21

== GG mm  

In [3], it has been proven that 21 GGG uv�=  has 2 as its Laplacian 

eigenvalue. In this case, the multiplicity of the eigenvalue 2 in bicyclic 

graph G  may be 1, 2 or 3. 

Example 2.10. Let G  be a unicyclic graph as follows. It is not hard 

to check that ( ) 12 =Gm  and ( ) 32 =GG uv
m �  (see Figure 7). 

 

Figure 7. GGG uv�=′  with ( ) .32 =′Gm  

Now, we identified some bicyclic graphs that having 2 among their 

Laplacian eigenvalues with multiplicity 3. 

Theorem 2.11 ([Main Theorem]). Let 1G  and 2G  be unicyclic graphs 

containing a perfect matching with ( ) ( ) .222
21

== GG mm  It holds that 

( ) ,32
21

=GG uv
m �  where 

1gCu ∈  and .
2gCv ∈  

Proof. If ( ) ( ) ,222
21

== GG mm  then there are two situations. 

(1) If mCG =1  and nCG =2  then ( ),4mod0≡≡ nm  by                  

[1, Theorem 12]. 
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(2) If ( ( ) ( ) )11
11

1
,,

g
TTCG …=  and ( ( ) ( ) )22

12
2

,,
g

TTCG …=  such that 

( ( ) ) ( ( ) ) nTVmTV
gg

== ∑∑
=

=

=

=
2

1

1

1
21 ,

k

k

kk

k

k
 and there exists at least one i 

(or j) so that ( ( ) ) ( ( ( ) ) ).3or3
21 ≥≥

ji
TVTV  Let 

{ ( ) ( ( ) ) } ,2,1;1;oddis: =≤≤= igTVTs i
ii

i k
kk

 

so ii gs =  and ( ),4mod0≡ig  for ,2,1=i  by [1, Theorem 13]. 

In addition, 21 uvGGG �=  is a bicyclic graph so ( ) ,32 ≤Gm  by        

[3, Lemma 2]. On the other hand, 

( ) ( ) ( ) ( ) ( ) ( ).2,2
22

21
λ−λ==λλ−λ==λ gQLfML GG  

According to Equation (2.2), it is enough to show that uM  and vQ  have 

2−λ  as a factor. 

Case 1: Let nm CGCG == 21 ,  and ( ).4mod0≡≡ nm  

We use induction on m. If ,41 CG =  then the result follows and so the 

induction basis holds. 

( ) ( ).242

210

121

012

2 +λ−λ−λ=

−λ

−λ

−λ

=uM  

Suppose in the cyclic graph ( )44 , −− mum CMC  with ( )4mod04 ≡−m  

has 2−λ  as a factor. 
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Let mCG =1  and without loss of generality, assume that .muu =  So 

,

QN

NM

M
T

u

′

′

=  

such that 

,

2100

1210

0121

0012



























−λ

−λ

−λ

−λ

=′M  

( )






−≤≤

≠

=−λ

=′′=′ ,5,1

;,

;,2

; mji

jia

ji

qqQ

ij

ijij  

and 

( ) ( )






−≤≤≤≤
==

==−× .51and41

;.,0

;1,4,1

;54 mji

wo

ji

nnN ijijm  

Therefore ,1NMNQMM T
u

−′−′′=  by Lemma 2.1. 

Also 

[ ] .

0000

00

0

00

000
4,4

55
1

































′

′

=′ −×−
−

⋯

⋱⋱

⋮⋱⋱⋮

⋱⋱

⋯
M

M

NMN mm
T  
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Then 

( );1
ij

T bNMNQ ′=′−′ −  

.5,1

;,

;1,2

;1,2
4,4

−≤≤















≠

≠=−λ

==
′

′
−−λ

=′ mji

jia

ji

ji
M

M

b

ij

ij  

Furthermore, ,1 HQNMNQ T +′=′−′ −  such that 

( )

















−≤≤

≠≠

≠=−λ

≠=

==
′

′
−

== .5,1

;,1,

;1,2

;1,0

;1,

;

4,4

mji

jiia

ji

ji

ji
M

M

hhH

ij

ijij  

Consequently, 

1,1
4,41 Q

M

M
QNMNQ T ′

′

′
−′=′−′ −  

.1,14,4 QMQMMu ′′−′′=⇒  

On the other hand 

( ) ( ).242

210

121

012

2
4,4 +λ−λ−λ=

−λ

−λ

−λ

=′M  

Also, ( ) ( )55 −×−′ mmQ  according to the induction hypothesis has 2−λ  as a 

factor therefore, uM  has 2−λ  as a factor. With a similar method, one 

can check that vQ  has 2−λ  as a factor. Thus, ( ) 32 =Gm  and we are 

done. 
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Case 2: Let ( ( ) ( ) )11
11

1
,,

g
TTCG …=  and ( ( ) ( ) )22

12
2

,,
g

TTCG …=  so 

ii gs =  and ( ),4mod0≡ig  for .2,1=i  In addition, there exists some 

( ),ji  such that ( ( ) ) ( ( ( ) ) ).33
21 ≥≥

ji
TVTV  Let ( ( ) )1

i
TVu ∈′  and 

( )
( ( ) )

( ),,max, 1 iTVxi uxduud
i

∈
=′  where iu  is the root of 

( )
.

1
i

T  Since 1G  

has a perfect matching, u′  is a leaf vertex and its neighbour, say ,u ′′  has 

degree 2. Thus, { }( ) .,\ 2SuuGG �′′′=  Using [5, Theorem 2.5], we obtain 

( ) { }( ).22 ,\ uuGG mm ′′′=  So by repeating this method in the graph 

{ }uuG ′′′,\  and omitting all leaf vertices and quasi leaf vertices of degree 

2 and using [5, Theorem 2.5], the obtained graph is two cycles like graph 

in the case 1. So ( ) 32 =Gm  and the proof is complete.  □ 

Example 2.12. 1G  and 2G  are two unicyclic graphs with ( ) =2
1Gm  

( ) .22
2

=Gm  Also, there exists at least one k  such that 
( )

3≥i
T
k

 for 

1=i  or .2=i  In Figure 8, the bicyclic graph 21 GG uv�  has 2 among its 

Laplacian eigenvalues with multiplicity 3. 

 

Figure 8. 21 GGG uv�=  with ( ) .32 =Gm  
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According to the Example 2.10, we can see that the converse of 

Theorem 2.11 does not necessarily true, in general. 

Theorem 2.13. Let 1G  be a unicyclic graph with a perfect matching 

and ( ) .22
1

=Gm  Also, 2G  is a unicyclic graph such that ( ) .12
2

=Gm  So, 

( ) ,22
21

≥GG uv
m �  where .

1gCu ∈  

Proof. It is proven like Theorem 2.11, by a similar method.  □ 

Example 2.14. 1G  and 2G  are two unicyclic graphs with ( ) 22
1

=Gm  

and ( ) .12
2

=Gm  The bicyclic graph 21 GG uv�  has 2 among its Laplacian 

eigenvalues with multiplicity 2 (see Figure 9). 

 

Figure 9. 21 GGG uv�=  with ( ) .22 =Gm  

In this paper, we studied the existence and multiplicity of Laplacian 

eigenvalue 2 in the bicyclic graph 21 GGG uv�=  based on existence and 

multiplicity of this special Laplacian eigenvalue in 1G  and .2G  

Now, we pose the following problem. 

Problem. In the definition of ,21 GGG uv�=  if we replace the edge 

uv with the path nn uuup −−−= ⋯21  for ,3≥n  then whether we can 

obtain similar results. 
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