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Abstract 

A generalized KP equation with general variable coefficients (gvcKP) has been 
reduced to the variable coefficients KdV equation (vcKdV) by a transformation 
of variables. Since the single solitary wave solution and 2-solitary wave solution 
of the vcKdV have been known already, substituting the solutions of the vcKdV 
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into the corresponding transformation of variables, the single and 2-solitary 
wave solutions of the gvcKP can be obtained successfully. 

1. Introduction 

It is known that the transverse perturbations always exist in the 
higher-dimensional system. Anisotropy is introduced into the system and 
the wave structure and stability are modified by the transverse 
perturbation. Recent theoretical studies for ion-acoustic/dust-acoustic 
waves show that the properties of solitary waves in bounded non-planar 
cylindrical/spherical geometry differ from that in unbounded planar 
geometry. A dissipative cylindrical/spherical KdV is obtained by using 
the standard reductive perturbation method [1]. The cylindrical KP 
equation (CKP) has been introduced by Johnson to describe surface wave 
in a shallow incompressible fluid [2-3]. Since the variable-coefficient 
equations can model more complex physical phenomena than their 
constant-coefficient counterparts, variable coefficient KP equations with 
various form have been investigated by some authors [4-7]. With the aid 
of Mathematica, the idea of improved homogeneous balance method, Yan 
investigated a ( )12 + -dimensional variable coefficients KP equation, 

found its Bäcklund transformation via which some exact solutions are 
obtained, and found its non-local symmetry [4]. Ma et al. found non-auto-
Bäcklund transformation for ( )12 + -dimensional generalized KP 

equation with variable coefficients, and obtained its symmetry 
transformation and exact solutions [5]. 

In recent years, many famous methods which can be used to find 
exact solutions of nonlinear partial differential equations have been 
proposed ([8] and references there in). 

We consider the generalized KP equation with general variable 
coefficients (gvcKP) in the form [7] 

[ ( ) ( ) ( ) ( ) ] ( ) ( ) ( ) ( ),1266 2 tftgtfuthutgtfuuutgu yyxxxxxt +′=++++  (1) 
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where ( ) ( ),, tftg  and ( )th  are all functions of variable t only. The gvcKP 

is a better integrable water wave model. 

The gvcKP Equation (1) includes the following important cases: 

(a) If ( ) ( )
t

tftg 12
1,1 ==  and ( ) ,3

2

2

t
th α=  Equation (1) becomes the 

CKP that has been investigated in [9-11]. 

,03
2
16 2

2
=α+





 +++ yy

x
xxxxt u

t
utuuuu  (2) 

where α  is a constant. CKP Equation (2) has been investigated to obtain 
decay mode solutions by means of Hirota method [9] and simplified 
homogeneous balance method [10] respectively, and to obtain the single 
and 2-solitary wave solution by means of reduction of dimensionality 
[11]. 

(b) If ( ) ,0=tf  Equation (1) becomes the variable coefficient KP 

equation (vcKP) 

[ ( ) ( )] ( ) .06 =+++ yyxxxxxt uthuuutgu   (3) 

In particular, if ( ) ( ) ,,1 constthtg =σ==  Equation (3) becomes the 

classical KP equation. The KP equation is also derived using reductive 
perturbation method in superthermal dusty plasma and the steady state 
solution has been given [11-13]. 

The present paper is a direct continuation of our previous work      
[11, 14]. We aim to find solitary wave solutions of gvcKP (1). The paper is 
organized as follows: In Section 2, the gvcKP (1) is reduced to the 
variable coefficient KdV equation by a transformation of variables. In 
Section 3, the single solitary wave solution and 2-solitary wave solution 
of gvcKP (1) can be obtained in terms of the corresponding 
transformation of variables, since the solutions of the vcKdV equation 
have been known already. In Section 4, some conclusions are made. 
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2. Reduction of gvcKP 

In Equation (1), we assume that 

( ) ( ) ( ),,,,,, tyqxtwtyxu +=ξξ=   (4) 

where ( )tyqq ,=  is a function to be determined later. Substituting (4) 

into (1), yields a equation as follows: 

[ ( ) ( )] [ ( ) ( ) ( ) ] ( )[ ] ξξξξξξξ ++++++
ξ∂
∂ wqthqwqthtgtfwwwtgw ytyyt

266  

( ) ( ) ( ).12 2 tftgtf +′=  (5) 

Setting the coefficients of ξw  and ξξw  to zero, yields 

( ) ( ) ( ) ( ) .0,06 2 =+=+ ytyy qthqqthtgtf   (6) 

The system (6) admits the following solution: 

( ) ( ) ( )
( ) ( ) ( ),3, 21

2 tcytcyth
tgtftyq ++−=   (7) 

where ( )
( ) ( )

( ) ( )
( ) ( )

1
242

12
12

11 ,, kkk ττ
τ

τττ
dehtcetc

dzzgzftdgft ∫∫
∫−==  is a 

arbitrary constant and ( ) ( ) ( )thtgtf ,,  satisfy the constrain condition 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) .012 22 =′−+′ thtgtfthtgtfthtgtf   (8) 

Using (7), the expression (4) becomes 

( ) ( ) ( )
( ) ( ) ( ).3,, 21

2 tcytcyth
tgtfxtwu ++−=ξξ=   (9) 

By using the transformation of variables (9), Equation (5) becomes 

[ ( ) ( )] ( ) ( ) ( ).126 2 tftgtfwwwtgwt +′=++
ξ∂
∂

ξξξξ   (10) 

If 
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( ) ( ) ( ) ,012 2 =+′ tftgtf   (11) 

and after integrating Equation (10) with respect to ξ  once and taking the 

constant of integration to zero, Equation (10) becomes the variable 
coefficient KdV equation (vcKdV) for ( )tww ,ξ=  

( ) ( ) .06 =++ ξξξξ wwwtgwt   (12) 

From the discussion above, we come to the conclusion that the 
( )12 + -dimensional gvcKP (1) for ( )tyxuu ,,=  is reduced to the   

( )11 + -dimensional variable coefficient KdV (12) for ( )tww ,ξ=  by using 

the transformation of variables (9) under the constrain conditions (8) and 
(11), if ( )tw ,ξ  is a solution of the variable coefficient KdV (12), 

substituting it into Equation (9), then we have the exact solution of the 
gvcKP (1). 

3. Solitary Wave Solutions of gvcKP, CKP and vcKP 

In previous section, the gvcKP (1) has been reduced into the vcKdV 
(12) by the transformation (9) under the constrain conditions (8) and (11). 
The vcKdV (12) is of physically importance and its solutions have been 
known for many researchers, for instance, according to [15], by means of 
homogeneous balance priniple the vcKdV (12) has single solitary wave 
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where ,, 0vs  and 0a  are arbitrary constants. And vcKdV (12) also has     

2-soliton solution 
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(14) 
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where is  and ia  are arbitrary constants, ( ) ( ) ,6 0
2


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3.1. Solitary wave solutions of gvcKP 

Substituting Equation (13) into transformation (9) we have the single 
solitary wave solution for gvcKP (1), which is expressed by 

( )
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where ( ) ( )
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tgtfx 21
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conditions (8) and (11). 

Substituting Equation (14) into transformation (9) we have the         
2-solitary solution for gvcKP (1), which is expressed by 
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(16) 

where is  and ia  are arbitrary constants, ( )
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and ( ) ( ) ( )thtgtf ,,  satisfy the constrain conditions (8) and (11). 
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Solitary waves and solitons represent one of the interesting and 
famous aspects of nonlinear phenomena in spatially extended systems 
[16]. 

3.2. Solitary wave solutions of CKP 

If ( ) ( )
t

tftg 12
1,1 ==  and ( ) ,3

2

2

t
th α=  constrain conditions (8) and 

(11) are satisfied, and solution (15) becomes the single solitary wave 
solution for CKP (2), which is expressed by 
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3.3. Solitary wave solutions of vcKP 

If ( ) ,0=tf  constrain conditions (8) and (11) are satisfied, and 

solution (15) becomes the single solitary wave solution for vcKP (3), 
which is expressed by 
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where ( ) ;2
11 ττ dhyx

t
∫−+=ξ kk  solution (16) becomes the 2-solitary 

wave solution for vcKP (3), which is expressed by 
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where is  and ia  are arbitrary constants, ( )
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4. Conclusion 

In this paper, by making corresponding transformation of variables, the 
( )12 + -dimensional gvcKP equation is reduced to the ( )11 + -dimensional 

vcKdV equation, which can be solved by using homogeneous balance 
method [4, 10, 15] to obtain single solitary wave solution and 2-soliton 
solution. Substitutiong the solitary solutions of the vcKdV equation into 
the corresponding transformation of variables, we have the solitary wave 
solutions of the gvcKP equation. It is interesting to research CKP 
equation but avoid the singularity point analysis when .0=t  The idea of 
reduction of dimensionality in the present paper may be extended to 
other works to make further progress. 

Acknowledgements 

The authors are very grateful to the referees for their invaluable 
comments. 

 

 



TWO-SOLITARY WAVE SOLUTION OF A … 141

References 

 [1] J. K. Xue, Cylindrical and spherical ion-acoustic solitary waves with dissipative 
effect, Phys. Lett. A 322 (2004), 225-230. 

 [2] R. S. Johnson, Water waves and Korteweg-de Vries equations, J. Fluid Mech.          
97 (1980), 701-709. 

 [3] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, 
Cambridge University Press, Cambridge, 1997. 

 [4] Z. Y. Yan, Backlund transformation, non-local symmetry and exact solution for 
( )12 + -dimensional variable coefficient generalized KP equations, Commun. 

Nonlinear Sci. Numer. Simul. 5 (2000), 31-35. 

 [5] H. C. Ma, Z. Y. Qin and A. P. Deng, Lie symmetry and exact solution of            
( )12 + -dimensional generalized Kadomtsev-Petviashvili equation with variable 

coefficients, Therm. Sci. 17(5) (2013), 1490-1493. 

 [6] A. Pankov and K. Pflüger, On ground-traveling waves for the generalized 
Kadomtsev-Petviashvili equations, Math. Phys. Anal. and Geom. 3 (2000), 33-47. 

 [7] M. L. Wang, X. L. Li and J. L. Zhang, Two-soliton solution to a generalized KP 
equation with general variable coefficients, Appl. Math. Lett. 76 (2018), 21-27. 
http://dx.doi.org/10.1016/j.aml.2017.07.011. 

 [8] A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional 
higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-
water waves, Eur. Phys. J. Plus 132 (2017), 29. 

 [9] S. F. Deng, The decay mode solutions for cylindrical KP equation, Appl. Math. 
Comput. 218 (2012), 5974-5981. 

 [10] M. L. Wang, J. L. Zhang and X. Z. Li, Decay model solutions to cylindrical KP 
equation, Appl. Math. Lett. 62 (2016), 29-34. 

 [11] X. Z. Li, J. L. Zhang and M. L. Wang, Solitary wave solutions of KP equation, 
cylindrical KP equation and spherical KP equation, Commun. Theor. Phys. 67 
(2017), 207-211. 

 [12] L. T. Gai, S. Bilige and Y. Jie, The exact solutions and approximate analytic 
solutions of the ( )12 + -dimensional KP equation based on symmetry method, 

Springer Plus 5 (2016), 1267. 

 [13] N. S. Saini, N. Kaur and T. S. Gill, Dust acoustic solitary waves of Kadomstev-
Petviashvili (KP) equation in superthermal dusty plasma, Advan. Space Res.           
55 (2015), 2873-2882. 

 [14] X. Z. Li, J. L. Zhang and M. L. Wang, Decay mode solutions to ( )12 + -dimensional 

Burgers equation, cylindrical Burgers equation and spherical Burgers equation,       
J. Appl. Math. Phys. 5 (2017), 1009-1015. 



XIANG-ZHENG LI et al. 142

 [15] M. L. Wang and Y. M. Wang, A new Bäcklund transformation and multi-soliton 
solutions to the KdV equation with general variable coefficients, Phys. Lett. A        
287 (2001), 211-216. 

 [16] A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order 
extended KdV equation in a stratified shear flow: Part I, Comput. Math. Appl.         
70 (2015), 345-352. 

g 


