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Abstract 

In Mathematics is common to make a mistake and therefore a false conclusion 

arises. In each case it is important to recognize the mistake in order to avoid a 

similar one in the future. Geometric figures provide decisive help in order to 

have a strict mathematical proof, but also can easily lead to wrong conclusions 

without a mathematical proof. In this paper, several incorrect conclusions 

drawn for plausible looking diagrams are presented, motivated by a well-known 

faulty model for measuring the length of a segment. Similar models that lead to 

a contradiction are developed and a model that leads to the correct result is 

derived. The presented models prove the usefulness of paradoxes, which can be 

implemented in a classroom in order to point out to students the significance of 

a strict mathematical proof as well as the construction of a correct 

mathematical model. The geometric nature of the problems provides the 

opportunity to use a dynamic geometric software. 
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1. Introduction 

A principal component in mathematics education is problem solving 

[1]. Students often face difficulties in mathematics problem solving 

struggling first for modelling the problem and later for solving it [2]. 

Productive struggle and learning mathematics are connected [3]. The 

struggle reduces whenever you can draw a diagram, in order to recognize 

the correct mathematical path for the mathematical proof. Unfortunately, 

the diagram could lead to wrong conclusions, due to mathematical 

mistakes or its misinterpretation. 

Mathematical models are used in order to understand the physical 

phenomenon under consideration, such as brain’s function [4], tumor’s 

growth [5], scattering and inverse scattering [6], the evolution and the 

prediction of an epidemic [7], blood’s flow [8], the affect of a magnetic field 

in a red blood cell [9] etc. It is crucial that the model’s mathematical 

description is flawless. In the case where the model is not correct, the 

obtained results are often bizarre. In mathematics this is unacceptable 

and the mistake must be recognized and corrected. This is an important 

step, because the gained knowledge and experience will be used in the 

future in order to avoid such mistakes.  

Mistakes occur from flawed reasoning, arithmetic errors or faulty 

logic. Two simple fault statements [10] are the following: 

111 22  xxxxx  

    10011111  xxxxx  

and 

      .11111111 2   

Similar statements can be found in [10], [11], [12], [13]. 
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Sometimes the obtained faulty statements are called paradoxes, 

gaining great attention from many authors. ‘A paradox is an item of 

information which contradicts with your current schemata, thus creating 

a cognitive conflict disbalance’ [14]. There are two main reasons that lead 

to a paradox: lack of essential logic or application of logic to a situation 

where it is not applicable. Kondratieva [14] used paradoxes in order to 

understand Mathematics, discussing themes from Algebra, Set Theory, 

Analysis, etc. Achilles and a tortoise, dichotomy and the stadium are the 

most known Zeno’s paradoxes [15]. Cantor’s and Russel’s paradoxes are 

widely studied [14], [15]. Paradoxes from Calculus and set theory are also 

studied [16], while Bell used paradoxes to study oppositions in 

Mathematics [17]. 

It is useful to incorporate the study of paradoxes in mathematical 

classes [14]. In our days their use is limited. Kleiner and Movshovitz-

Hadar [16] suggested a role for paradoxes in the teaching and learning 

process, emphasizing that paradoxes create curiosity, motivation and a 

better learning environment. Along this line Kondratieva [14] suggested 

that in order to correct students behaviour it would help if the teacher 

comes up with an example of an error leading to a paradox. 

In this paper we implement Kondratieva’s suggestion presenting 

several paradoxes where a diagram is employed. These paradoxes connect 

Geometry with other mathematical areas, providing significant didactic 

results [18]. Since Geometry is employed the use of a dynamic geometry 

software can be implemented. Moreover explanations of the paradoxes 

are presented. Specifically, in section 2 we show strange results that 

occur from diagrams and in section 3 strange results that occur from 

faulty reasoning. In section 4 faulty models for calculating a segment’s 

length are shown and a correct one is presented in section 5. In section 6 

discussion of these models is conducted, while in section 7 the conclusions 

are presented. 
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2. Strange Results that Occur from Diagrams 

2.1. Infinite length with finite area 

Let the length’s side of an equilateral triangle be .0a  Each side is 

divided in three equal segments with side 
3
a  deleting the middle one. 

With side each one of the deleted ones we construct outside of the initial 

equilateral triangle three equilateral triangles with sides .
3
a  Continuing 

this process indefinitely we draw the so-called Koch snowflake (Figure 1). 

The remarkable result of the Koch snowflake is that it has infinite length, 

but finite area [19]. 

 

Figure 1. Koch snowflake. 

Regarding the perimeter, in the following table the values of interest 

are written. 

Step Equilateral(s) side length Number of equal sides Perimeter 

0 a 3 3a 

1 
3
a  43   

3
43 a  

2 23

a  243   2
2

3
43 a  

3 33

a  343   3
3

3
43 a  

        

n n
a

3
 n43   n

n a

3
43   
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From the previous table the limit of the perimeter of the Koch 

snowflake when n tends to infinity is indefinite, since 

.
3
4lim3

3
43lim 












 



n

nn
n

n
a

a  

For completeness we have to prove the expression for the perimeter of the 

Koch snowflake using mathematical induction. 

In order to calculate the area of the Koch snowflake, we create the 

following table containing all the necessary information. 

Step Side’s length New triangles Area 

0 a 0 
4
32

0 aA   

1 
3
a  3 

4
3

3
3

2
01 





 aAA  

2 23

a  43   
4
3

3
43

2

212 







 aAA  

3 33

a  243   4
3

3
43

2

3
2

23 







 aAA  

        

n n
a

3
 n43   4

3

3
43

2
1

1 







 

 n
n

nn
aAA  

It is obvious that 

,
9

43
9
31,

9
31

20201 





 





  AAAA  

,
9

43

9

43
9
31

3

2

203 






  AA  

and therefore 

,,
9

431
9

43

9

43
9
31

1

1
0

1

20




















 






   nAAA
n

n

n

n k

k

k
  
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which can be proved using mathematical induction. This relation leads to 

the area of the Koch snowflake, which is 

,
5
32

1
1lim

2

9
4

9
3

0
a

AAA nn



















 

since the series is geometric with ratio .
9
4  

2.2. Infinite area, but finite volume! 

Let f be the function    .,1,1  x
x

xf  Since 

    ,lnlimlnlim1lim 1
11






 Axdx
x

dxxf
A

A
A

A

A
  (1) 

the area between ,fC  axis xx   and from the line 1x  up to   is 

indefinite (Figure 2). 

 

Figure 2. The graph of   .1
x

xf   
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It seems ‘logical’ that rotating fC  around x-axis the volume of the 

resulting solid of revolution would be also indefinite. But, calculating the 

integral 

  ,111lim1lim1lim
121

2

1






 









 Ax
dx

x
dxxf

A

A

A

A

A
 

we conclude that rotating fC  around x-axis the volume of the resulting 

solid of revolution is finite (Figure 3), since 

  ,2

1
 


dxxfV   (2) 

which was unexpected. 

 

Figure 3. Rotating the graph of  
x

xf 1  along the x-axis. 
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3. Strange Results that Occur from Faulty Reasoning 

3.1. The missing square 

One of the most famous paradoxes is the one described in Figure 4, 

where the two figures seem equal, but the areas are not, because of the 

missing square [14]. 

 

Figure 4. The missing square. 

Strict geometrical analysis of the figures, reveal the faulty reasoning. 

Looking at both figures the assumption that there are two equal 

orthogonal triangles with area 22
2

513 cm5.32cm   seems logical, but 

this does not explain the missing square. Moreover, in both figures the 

coloured part has area 2cm32  and therefore the problem remains 

unexplained, revealing though that the shapes are not orthogonal 

triangles. Calculating the slopes of the hypotenuses with respect to the 

horizontal sides of the red and the green orthogonal triangles, we find 

that they are ,,
5
2

8
3  respectively, concluding that the hypotenuses of the 

triangles are not collinear. Changing the position of the red and the green 

triangle in the second figure the extra square appears, because the 

hypotenuses move a little bit up creating the space for our missing 

square. Drawing the figures with extreme caution and detail this can be 

easily verified. 

3.2. Bizarre areas 

One more paradox is given in Figure 5, where both areas seem equal 

[10], but this means that !6564   
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Figure 5. Bizarre areas. 

Mathematics reveal the unorthodox of the conclusion, which as in the 

previous subsection involves slopes of segments, justifying the fact that in 

the right figure the ‘diagonal’ segments do not coincide, leaving a tiny 

area of 2cm1  uncoloured, something that it is not visible in the figure. 

Once more, cautious drawing will reveal the paradox. 

3.3. Aristotle’s wheel paradox 

Every point of a rotating circle along a line without sliding belong to 

curve called a cycloid [20]. Every point  yx,  of a cycloid is defined via 

the relations 

 

 









,cos1

sin

Ry

Rx
  (3) 

where   is the angle through which the rolling circle has rotated, the 

circle has radii R and the point  0,0O  belongs to the cycloid. 

Consider the following problem. Two circles with common center O  

and different radii 0R  are attached to each other. The parallel 

lines 21 ,   are tangents of the circles    ,,, ORO  in the points ,, AB  

respectively [12]. These circles rotate clockwise along their tangent lines 
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21 ,   without sliding and complete a whole rotation reaching at the 

points ,,   respectively (Figure 6). Since , AB  we conclude that 

!22  RR  

 

Figure 6. Rotating circles. 

It is an extraordinary result, but Mathematics reveal the faulty 

reasoning of this problem. If the circles make a full turn without sliding, 

then ,R  which is a contradiction. Therefore there is a sliding circle. It 

is easy to realize that the inner circle is the sliding one. As a matter of 

fact the smaller the inner circle is the more it slides. This result can be 

verified using a dynamic geometric software, in which we can see that the 

inner circle’s point belongs to a cycloid. 

4. Measuring the Length of a Segment 

In this section four models are presented in order to derive the length 

of a segment, which are self-similar denoting a fractal structure with 

fractal dimension equals to 1 [21]. The first one is a well known model, 

while all the others are developed in order to create new paradoxes as 

well as a correct model. In each faulty model a similar mistake is 

embedded and an extraordinary result is derived. 
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4.1. Is 2 equals to ?  

Let O be the center of a semicircle with radius 0R  and perimeter 

.1 RLc    (4) 

With diameter ,R  two new semicircles are drawn (Figure 7), where each 

one has perimeter 

.
22
RLc   (5) 

 

Figure 7. The second approach with semicircles. 

Continuing this procedure four semicircles are drawn (Figure 8) and 

after  n  repetitions, 12 n  semicircles are drawn with perimeter 




 n
R

L
n

c
n ,

2 1
  (6) 

and therefore all the semi-circumferences add up to 

.
2

22
1

11 R
R

LS
n

nc
n

nc
n 


   (7) 

When n tends to infinity, the sum, ,c
nS  ‘tends’ to the diameter R2  and 

since 
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,limlim RRS
n

c
nn




  (8) 

it stands 

!22  RR   (9) 

 

Figure 8. The third approach with semicircles. 

4.2. Is 2 equals to ?2  

Let an isosceles orthogonal triangle with hypotenuse’s length 

,0,2 RR  and sum of the equals sides 

.221 RLt    (10) 

With hypotenuse equals to ,R  two isosceles orthogonal triangles are 

drawn (Figure 9), where each one has a sum of the equal sides 

.22 RLt    (11) 
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Figure 9. The second approach with isosceles orthogonal triangles. 

Continuing the same procedure  n  times (see for instance Figure 

10), the sum of the equal sides of each of the 12 n  isosceles triangles is 

,
2

2
2


n

t
n

RL   (12) 

while the total sum of the equal sides of the 12 n  isosceles triangles is 

,22
2

222
2

11 R
R

LS
n

nt
n

nt
n 


   (13) 

so 

,2222limlim RRS
n

t
nn




  (14) 

which is the diameter, so 

!22222  RR   (15) 
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Figure 10. The third approach with isosceles orthogonal triangles. 

4.3. Is 2 equals to a number in  ?222,  

In the previous model the ratio of the vertical sides of each isosceles 
triangle is 1. In this section the assumption is that this ratio is ,0  so 

when the hypotenuse is ,0,2 RR  the vertical segments are 

.
1

2,
1

2
22 





RR   (16) 

This assumption leads to a model in which similar orthogonal triangles 
with similarity ratio equals to   are used between steps and in every step 

of the construction. 

Following the procedure (after  n  repetitions) that is described 

in section 4.1 (see consequently Figures 11 and 12), the total sum of the 

vertical segments of the 12 n  triangles is 

 
1

12
2 


 R

Sn   (17) 

and therefore 

   
.

1

12
22

1

12
22 







R

R
  (18) 
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Figure 11. The second approach with similar orthogonal triangles. 

 

Figure 12. The third approach with similar orthogonal triangles. 

Function 

   ,0: fDf  

with 

   
,0,

1

12
2




 x
x

x
xf   (19) 

is continuous in  ,,0   strictly increasing in the interval  ,1,0  strictly 

decreasing in the interval  ,1  and 

   .22,2fDf   (20) 

Therefore from (18) every number in the interval  22,2  must be equal 

to !2  
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4.4. What is really equals to 2!  

The procedure that is described previously can be applied with 

equilateral triangles (Figure 13). 

 

Figure 13. The third approach with equilateral triangles. 

It is easy to verify that in this case 

!42    (21) 

5. Constructing a Correct Sequence 

In order to construct a sequence that converges to the correct value, 

triangles that are not similar in every step of the procedure are used. For 

convenience isosceles triangles are used, with decreasing equal angles. 
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Let a segment with length 02 R  and an isosceles triangle where 

the equal angles are ,  the side which is unequal to the other two is 2R 

and therefore the sum of its equal sides is 

  .
cos

2
11 
 RLS kk   (22) 

Bisecting angle   and taking the base of the isosceles triangle equals to 

R (Figure 14), the total sum of the equal sides of each triangle is 

 
.

cos
22

2
22 
 R

LS kk   (23) 

 

Figure 14. The second approach with non similar isosceles triangles. 

Therefore in the n-th repetition   n  of this procedure              

(see Figure 15) the total sum of the 12 n  triangles’ equal sides is 

 
,

cos
22

12

1




 
n

RLS n
n

n
kk   (24) 
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so 

 
.2

cos
2limlim

12

RRS
n

n
c
nn





  (25) 

 

Figure 15. The third approach with non similar isosceles triangles. 

6. Discussion 

It is worth wondering why the models from section 4 came up with 

these results. It is obvious that sequences, ,nS  are constant  ,22, RR  

  ,Rf   and 4, respectively), and therefore they converge in their constant 

value, which by definition is not equal to .2R  This is due to the fact that 

in each step the figures are similar to each other, creating fractal images. 

For instance, looking at the models that triangles are used, as the 

segment decreases two times, the triangle’s sides decrease two times. The 

fractal nature of the curves involved denote that if they are observed 

under a microscope, they still would have the same shape. On the 
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contrary with the fractal Koch snowflake [19] which has finite area and 

infinite perimeter at the same time, the derived structures have finite 

length and area. 

In the case of the semicircles, since the semi-circumference (section 

4.1) is greater than the diameter in the n-th step it stands for the semi-

circumference that 

,
22 11 


nn
RR  

while in the triangles’ models (section 4.2) from the triangle’s inequality 

is obtained 

  ,
2

2
2

42,
2

2
2

,
2

2
2

22
111111 


nnnnnn
RRRR

f
RR  

respectively, indicating the faulty models. 

On the contrary, the triangle’s inequality in the model that converges 

in the correct value (section 5) is given by 

,
2cos

2
1

2

2

1

1








n

R
R

n

n
 

and 

,0
2cos

2lim
1

2

2

1

1






















n

R

n

R

n

n
 

verifying the convergence of the derived model. 

7. Conclusions 

In this paper we presented several mathematical fallacies. These 

fallacies occur taking into account only the diagrams, creating wrong 

conclusions. When a strict mathematical proof is employed the fallacies 
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uncover, revealing the correct answer. Sometimes drawing a detailed 

diagram using a dynamic geometric software the mistake appears. It is 

usual to use diagrams in order to compose a strict mathematical proof. 

Students have to recognize the necessity of the strict mathematical 

procedure, which in many cases can be easier developed using a diagram. 

The fallacies that are presented for measuring the length of a 

segment prove the value of the correct definition of a mathematical 

model. From these paradoxes it can be derived that something may seem 

visually correct in geometry, but this does not mean that is correct or can 

be proved mathematically! Areas and perimeters behave very differently 

when limits are concerned! In the corresponding presented paradoxes the 

length of a limit curve is not the same as the limit of the length of the 

curve. 

Careful designing and proper investigation are necessary in order to 

avoid mistakes that are crucial. Mistakes generate curiosity, increase 

motivation, create a learning environment and show that faulty logic is 

common in Mathematics, but can be useful for Mathematical progress. 

Teachers must implement paradoxes in their teaching, because the 

strange result increases student’s interest, leading to new learning paths 

in order to gain knowledge. This will improve the problem-solving ability 

of the students. The presented paradoxes establish bridges between 

Geometry and other mathematical areas emphasizing in the necessity of 

a strict mathematical proof in order to verify or not what it seems logical. 
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