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Abstract 

This work aims to analyze the action of spinning particles in general relativity.  

In general relativity the affine connection is required to be symmetric, so 
torsion is zero, we want to verify if a spinor field can be considered a torsion 
source. The broader reference context is Einstein Cartan’s gravitational theory, 

which is a generalization of general relativity; in this theory in addition to 
curvature there is torsion associated with intrinsic angular momentum 
density. The affine connection is not restricted to be symmetric as required in 

general relativity, torsion is included due to the antisymmetric part of the 
affine connection. In Einstein Cartan’s theory torsion is connected to the spin 
tensor as ex-pressed by the Cartan equations. These equations are obtained 

through the variation of the total action with respect to the torsion; the total 
action is intended as the sum of the action for the gravitational field and the 

action for the fermionic field, ,fG sss   according to the minimal action 

principle .0S  

We consider these important hints about torsion and spin tensor to revisit 
general relativity with spinor fields, we focus on the requirement of symmetric 

affine connection and develop the calculation of the spin coefficients.  
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In order to include fermions in general relativity we introduce a local reference 

frame and define a tetrad of basis vectors. We refer to the Hamiltonian 
formulation and calculate the canonical momenta associated with the temporal 
variation of the tetrads, we find a fermionic rotational term. This term is 

connected to torsion as suggested by Cartan’s equations. Starting from a 
torsion-less theory we get a rotational current that would generate a torsion 
contribution. 

In the conclusions we turn back to the Lagrangian and consider the interaction 

terms in comparison with linearized theory. We argue that gravitomagnetism 
is well described in the linearized theory while the term of spin connection 
giving rise to fermionic current is canceled out, so we mean these terms are 

describing different interactions, it will be interesting to investigate in further 
analysis. 

1. Introduction 

1.1. Affine connection  

This work moves between general relativity which is a torsion-free 

theory and the gravitational theory of Einstein-Cartan.  

Torsion is a tensor defined from the affine connection :
   

.






 T   (1) 

In general relativity the affine connection is symmetric, so torsion is zero.  

The choice of the affine connection 
  is a consequence of two 

requirements:  

 symmetry ;



   

 metricity of the covariant derivative  .10  vg  

These conditions are fulfilled if the affine connection coincides with 

the metric connection defined by the Christoffel symbols  

   .
2
1






  gggg   (2) 
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1.2. Spinors in general relativity  

In general relativity, physical laws are required to maintain the same 

form under a general coordinate trans-formation  ,4MDiff  according 

to the general covariance principle.  

Mathematically this concept is expressed by Weyl’s theorem which 

implies the choice of a symmetric metric connection for the description of 

the gravitational field.  

Fermionic fields are described by spinors, spinors are a 

representation of the Lorentz group, there are no analogous objects for a 

general coordinate transformation.  

Conforming to the equivalence principle it is possible to identify a 

system of inertial coordinates so that the effects of the gravitational field 

are cancelled.  

We consider a locally inertial reference frame, the tetrad field 
ae  will 

be better defined later.  

In order to construct the Dirac equation or more generally the action 

for the fermionic field we replace the ordinary derivative with a covariant 

derivative. The covariant derivative of a spinor must transform as a 

vector with respect to coordinate transformations and as a spinor with 

respect to a Lorentz transformation of the tetrad basis. Lorentz 

transformations rotate the vectors of the tetrad without changing the 

space-time coordinates.  

After these clarifications we write the generally covariant Dirac 

action and calculate canonical momenta in consonance with the 

Hamiltonian formulation.  

This calculation leads to a fermionic rotational current.  
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2. Materials and Method 

2.1. Spinor action  

We have already mentioned tetrads as a local inertial frame (Cartan’s 

repère mobile) [2].  

The following formulas summarize the relations between tetrads and 

the metric:  

.,, b
a

b
a

vv
a

ab
v

a
abv eeeeeeg  


   (3) 

Both Greek and Latin indexes run from 0 to 3 and transform respectively, 

under general coordinates and under local Lorentz transformations. 

Within this system we consider fermionic fields.  

The covariant derivative of a Dirac spinor D  acts according to the 

following definitions: 

,
4

  
ab

ab
iD   (4) 

,
4

ab
abu

iD      (5) 

where abaab i  ,],[
2

 is usual (flat-space) matrix-  and ab  is the 

spin connection.  

The spin coefficients are defined as follows:  

,  baab ee   (6) 

  is the tensorial covariant derivative satisfying the metricity condition 

0  vg  

 .






  bbabaab eeeee   (7) 
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The spin coefficients ab  are antisymmetric in a and b  

.baab     (8) 

In the following calculations we use explicit antisymmetric equations 

(23)-(24).  

We write the action for the fermionic field:  

   ,2
2

,, 4  



  imDDgxdieS a    (9) 

,aae    and gxd4  is the volume element.  

We make explicit the covariant derivative and write the action as 

follows:  


  




  ab
abuf

iigxdS
8
1

22
4  

.
8
1


 

  mab
ab   (10) 

The terms of interaction with the spin connection are  

  .,
8
1

8
1

8
1   





ab

abc
cab

abab
ab e   (11) 

We define  

 ., abccabT    (12) 

The only nonvanishing elements of cabT  are the following: 

  ,
0

0
2,00




















k

k

kij
ijijT   (13) 

  ,, 000 ijjiji TT    (14) 

  .2
01

10
2, 50












 ijnijn

ijnnijT   (15) 

The indices are flat indices: 0 timelike; jin ,,  spacelike. 
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2.2. Canonical momenta  

We consider a global time function according to the 13   splitting of 

spacetime. Spacetime  vgM ,4  is assumed to be globally hyperbolic. 

Topologically, this means 44 , MRM   admits regular foliation with 

non-intersecting three-dimensional space-like hypersurfaces  ,  is 

global time-like function identifying the elements of the foliations 

(simultaneity surfaces).  

We calculate the canonical moments according to the Hamiltonian 

formalism 

.;
0

0 



















e

S

e

S f

a

f
a   (16) 

For further explanations, the reader could refer to [3].  

3. Results 

The only terms depending on the time derivative of the tetrad 
 ae  

are related to the spin connection, we isolate and analyze only this part of 

the action (10) 

.
8
1   


ab

cab
cTe   (17) 

Since the only non-vanishing elements of cabT  are jinijij TTT 00 ,,  we 

only consider contributions arising from the terms  

,
8
1 0

0   
 ij

ijTe   (18) 

,
8
1 0

0   
 ji

ji Te   (19) 

.
8
1   

 nij
ijn Te   (20) 
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Spin coefficients are depending on tetrads, we make explicit calculations  

 ,






  jjijiij eeeee   (21) 

 .000








  jjjj eeeee   (22) 

The same we do for Christoffel symbols,  

 ,
2
1




 















 gggg  

according to the equation va
a

uv eeg   we replace the metric tensor with 

tetrads and look for . ae   

Spin coefficients are antisymmetric, so we write  

   ,
2
1

2
1 












  ijjiijjiij eeeeeeee   (23) 

   .
2
1

2
1

00000













  eeeeeeee jjjjj   (24) 

Temporal derivatives of the tetrad are manifest in these parts:  

 ,
2
1 




  ijjiij eeee   (25) 

 .
2
1

000





  eeee jjj   (26) 

The terms including time derivatives of the tetrad present in the 
Christoffel symbols are cancelled out, due to the antisymmetric part of 
the spin coefficients. 

We only consider these contributions: 

   ,
2
1

8
1

8
1 0

0
0

0   








 ij
ijji

ij
ij TeeeeeTe   (27) 

   ,
2
1

8
1

8
1 0

00
0

0   








 ji
jji

ji
ji TeeeeeTe   (28) 

   .
2
1

8
1

8
1   








 nij

ijjin
nij

ijn TeeeeeTe   (29) 
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Finally, we obtain the conjugated momenta 

.
2
1

8
1 0

0
0

0  



 




 












 nia
in

ai
i

ia
i

a

f
a TeeTeeTee

e

S
  (30) 

Index a is flat spacelike  

.
2
1

8
1 0

0
0  








 






 ji
ji

f Tee
e

S
  (31) 

Index 0 is flat timelike  

The term (28) provides two contributions.  

3.1. Tetrads in the Schwinger gauge  

Consider the Schwinger time gauge condition ,00 re  we can express 

tetrads as follows:  

,0; 00  reNe  

.; a
r

a
r

aa
r

ra eeNeNe    (32) 

Coterads are so defined  

,0;1
0  

neN
e  

.;0
r
n

r
n

r
r ee

N
N

e    (33) 

Canonical momenta become 

  ,;1
8
1 0 rTe

Ne

S ia
irr

a

fr
a 







   (34) 

.0
0

0 










e

S f   (35) 
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4. Summary and Conclusion 

The last considerations concern the analysis of interactions and the 

comparison with the results obtained in linearized general relativity [4].  

We write the Dirac Lagrangian  

  ,,
8
1

22
  





ab

abc
cuf eiiL  (36) 

since ,aae    (36) becomes  

    .,
8
1

2
  




 meeiL ab
abc

c
a

u
a

af   (37) 

We express the Dirac Lagrangian replacing equations of aT  and ,cabS  

   
a

u
aaT  energy momentum tensor    abccab iS ,

4
 

spin angular momentum tensor  

.
22

  



 mSeiTeiL cab

abc
a

af   (38) 

There are two terms of interaction between the gravitational field and the 

fermionic field.  

The first interaction term a
aTe 
  consists of the product of the tetrad 


ae  with the energy-momentum tensor aT  for the Dirac field, the 

appearance of the tetrad field 
ae  is due to modified matrix-  being 

.aae    This interaction is also evident in linearized gravity.  

The second term cab
abc Se 

  is related to the spin connection; in 

weak gravity the interaction part containing the spin connection vanishes 

(only to first order).  
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The linearized metric tensor is obtained by the flat metric plus a 

small perturbation vh  

.vvv hg     (39) 

In the linearized theory of general relativity, the interaction is 

represented by the product of the field vh  with the Dirac energy-

momentum tensor .vT   

In the non-relativistic limit this interaction has gravitoelectric and 

gravitomagnetic effects, both orbital and spin angular momenta couple in 

the same way to the gravitomagnetic field, the precession rate is 

universal for any angular systems [4].  

Gravitomagnetism seems well explained with linearized gravity.  

In this work we have analyzed in detail the spin coefficients.  

Momenta a  and 0  have been calculated from (11), this term 

disappears if we consider the linearized theory for gravity, as already 

said.  

Canonical momenta are related to the spin rotational current; we can 

compare the second member of the Equations (30); (31) with the canonical 

spin angular momentum tensor.  

  .,
4

  bcaabc iS   (40) 

The results we obtained confirm the interaction between the fermionic 

field and the gravitational field, moreover the spinor rotational current, 

usually associated with torsion, is highlighted through the calculation of 

canonical momenta.  

 In this way we can explain how torsion arises dynamically, due to the 

presence of spinors [5]. 
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Appendix A 

Tetrads and Cotetrads 

Let  vgM ,4  be a spacetime, consider a generic point  pxMp  ,4  
are local coordinates. We consider a transformation that leads to inertial 

local coordinates .aXx   

The flat metric in p  is expressed by the law of transformation of 

tensors under coordinate change  

  .vv

ba

ab g
x

X

x

X
p  





   (A.1) 

We define tetrads as follows  

   
,

aa
X

px
pe






   (A.2) 

  .v
v
baab geep 

   (A.3) 

The 4-metric can be expressed in terms of orthonormal cotetrads or local 

coframes  

   
,





x

pX
pe

a
a   (A.4) 

  ,abv

ba

v
x

X

x

X
pg 








    (A.5) 

  ,ab
b
v

a
v eepg     (A.6) 

., abba
abvba eeee  


  
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Lapse and shift function 

Let 4M  be a globally hyperbolic manifold, consider splitting 13   

with foliation surfaces   
 ,, zx  represents the coordinates of 

the points of   


;  are local 3 coordinates on   
 ,; l  is the unit 

controvariant vector normal to   at 


 [3].  

We can thus define the lapse and shift functions:  

 The positive function   0N  is the lapse function: 4; 

    dN  measures the proper time interval between the two 

hypersurfaces   and ; d  

  rN  is the shift function ,    dN r  describes the horizontal shift. 

 

Figure 1. Lapse and shift. 


