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Abstract

We continue investigating the set of limit points of averages of rearrangements
of a given sequence. First we generalize results from the previous paper: if a
sequence is a composition of two sequences, one of which is bounded and one of
which tends to infinity, then we show necessary and sufficient condition for
expecting non-trivial accessible points. A new case will be studied too: the
sequences composed of two sequences, one tending to + oo, the other tending to
—o. Then we start to study accumulation points of the averages of rearranged

sequences and prove that if a sequence has 4 accumulation points (a, b, +©),

then any closed set in [a, b] can be represented as the set of accumulation

points of the averages of a certain rearranged sequence.

2020 Mathematics Subject Classification: 40A05, 26 E60.

Keywords and phrases: rearrangement of sequence, arithmetic mean.
Communicated by Francisco Bulnes.

Received June 20, 2023



62 ATTILA LOSONCZI

1. Introduction

In this paper, we are going to continue the investigations started in

[6]. For basic definitions, examples, ideas, intentions please consult [6].

In the first part of the paper our main aim is to generalize results
from [6]. In [6], we proved several theorems for unbounded sequences
where we assumed that the studied sequence is a composition of two
sequences, one of which is constantly 0 and one of which tends to infinity.

We got theorems like
Theorem 1 [6, Theorem 4.3]. Let (a,,) = (b, )|/ (c, ), where b, =0, c,, — +.
If

=1
then 1 is accessible in average by rearrangement of (a,, ).
Theorem 2 [6, Theorem 4.4]. Let(a,,) = (b, )||(c,, ), whereb, =0, ¢, — +o

and (c,) is increasing. If 1 is accessible in average by rearrangement of

(ay,), then

Now we generalize these theorems in two ways:

(1) We will assume only that the “lower” subsequence is bounded from

above.

(2) We replace 1 with any point above the upper bound of the “lower”

subsequence.
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We are also going to investigate a new case when a sequence does not
have finite accumulation point but it has both +o as accumulation
points. We present necessary and sufficient condition for non-trivial
points accessible in average by rearrangements.

Previously, we described all behaviour of (a, ) hence finally we can

enumerate all possible cases regarding AAR(an).

In the second part of the paper, we turn our attention to
accumulation points instead of limit points. We investigate what sets we
can get as the accumulation points of the averages of rearrangements of

the original sequence.
For more details, see Subsection 1.2.
1.1. Basic notions and notations
For easier readability we copy the basic notations from [6].

Throughout this paper function A( ) will denote the arithmetic mean

of any number of variables. We will also use the notation
Ala; :1<i<n) for A(ay, ..., a,). If H c R is a finite set, then A(H)

denotes the arithmetic mean of its distinct points.

Let us use the notation R = RU {~ow, +o} and consider R as a 2
point compactification of R, i.e., a neighbourhood base of +ow is
{(c, +] : c € R}.

Definition 1.1. Let (a,) be a sequence. We say that a, tends to
a € R in average if

n

Sa

lim A(ay, ..., a,) = lim 4=
n—o n—wo N

= Ol

A

We denote it by an a,<> a. We also use the expression that o is the

limit in average of (a,,).
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With this notation if a series Zan is Cesaro summable with sum ¢

n
then we may say that s, -"1) ¢, where s, = Zai.
=1

Definition 1.2. Let (a,) be a sequence, a € R. We say that a is

accessible in average by rearrangement of (a,) if there exists a

A

rearrangement of q,,, i.e., a bijection p : N - N such that Ap(n) > O
The set of all such accessible points will be denoted by AAR(, ).

Definition 1.3. If (a,),(b,) are two sequences, then let

(cn) = (a,)](b,) be the sequence defined by ¢g, = b,, c,_1 = a,(n € N).
Definition 1.4. If (a,,), (b,), (c,) are three sequences, then we write

(c,,) = (a,)U(b,) if (a,), (b,) are distinct subsequences of (c,) and they

altogether cover all elements in (c,, ).

1.2. Brief summary of the main results

We just enumerate some of the most interesting results to give a taste
of the topic.

Theorem 1.5. Let (a,) = (b,)|(c,), where b = limb, € R, ¢, — +»
and (c,,) is increasing. If ¢ > b is accessible in average by rearrangement

of (a,), then
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Theorem 1.6. Let (a,) = (b,)|(c,), where limb, =b e R, ¢, — +o.

If

and ¢ > b then c is accessible in average by rearrangement of (a,, ).
Theorem 1.7. Let (a,,) = (b, )||(c, ), b, = —0,¢,, = +o0. Then a € AAR, ),
a € R if and only ifli_m%” =0 and h_m%” = 0.
Theorem 1.8. Let (a,) be a sequence bounded from below or above,

n
’
a;
i=1
n

’

(aj,) be one of its rearrangements. Let c, =

Then the set of
accumulation points of (c,) is [lim c,, lim ¢, ].

Theorem 1.9. Let (a,) be a sequence such that it has at least 4
accumulation points: a, b, -, +o (a, b € R, a < b). Let Z < [a, b] be a

closed set. Then there is a rearrangement (a;) of (a,) such that the

accumulation points of the sequence (p,) is exactly Z, where

p, = Alaq, ..., a).
2. More on the Basic Concept

We introduce terminology for the most frequently used property of

sequences.

Definition 2.1. Let (c¢,) be a sequence such that ¢, — «. We say

that (c,) is balanced if

We present an equivalent form.
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Proposition 2.2. (c,) is balanced if and only if

. ¢ ¢ Cpo
lim —L 4 22 4.4 2L = o O
n—o Cyp Ch Cn
. X C C Cp—
Let us use the notation A(%) = &L 2 4 .. &1
Cn Cn Cn

Proposition 2.3. Removing or adding finitely many elements to a
sequence does not change the property of being balanced.

O
Proposition 2.4. Let (c,), (d,,) be balanced sequences, K € R. Then

(K -¢c,), (¢, + K), (¢, +d,) are all balanced as well.

Proof. (K - ¢,) is balanced:

i=1
(¢, + K) is balanced:
Cn K
n-1 n-1
i G
Cn + K Cn + K i=1 =1
— 0,
n-1 n-1 1+ K n-1
+
Z(Ci+K) ¢; +(n-1)K n-1
=1 1=1 C;
i=1
n-1
n-1 Z Ci
i=1
because Z ¢; — oo moreover — o,
1=1
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(¢, +d,,) is balanced:

n-1 n-1
n-1 C; di
Z(Ci +di) o 2L g i:é
i=1 _ Cn n s 40
¢, +d, ¢, +d, ’
n-1 n-1
2 ¢ 2 di
since this is a weighted average of -=L— and lzé , of which both tend
cn n
to infinity. O

Proposition 2.5. Let (c,,) be a balanced sequence. Then Ecz—-l =1
n

Proof. Suppose indirectly that HCZ——l =qg<1. Let g<p<l.
n

Then there is N € N such that n > N implies that (’72—’1 < p. Take such

n

n.If N+1<k<n-1, then

c c c Cph_9 Cp_ _
Sk k.k+1._.n2.n1<pnk'
Cn Crk+1l Ck+2 Cn-1 Cn
Then
c c c C,_ c _N_
—1+-..+l+ N+1+..+ n1<—1+-..+i+pn‘N1
c c
+-~-+p2+p<—1+~-~+i+p~ < +o0,
Ch ch 1-
which is a contradiction. O

Example 2.6. (c,,) being balanced does not imply that 2L — 1, i.e.,

c
Cn

. Cyy
lim 2-L =1,
C}’L
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Proof. Let (c,,) be the following sequence: 1, 2, 2, 4, 4, 4, 8, 8, 8, 8,

..., 1e, we have k +1 pieces of 2" in (c,).

We show that (c,,) is balanced. Let ¢,_; # ¢, = 2F. Then

k-1
Ar(lc”):c_1+...+cn_12k.2_—£‘
Cp Cp ok 2
If ¢,,_1 = ¢, thenclearly
C C C,_ C C C,_
ASLCILI) = _1+_2+...+n_2 < _]_+_2+“.+l’l_1 = A’gcn),
Cn-1 Cn-1 Cpn-1 Cn Cn Cn

which together with the previous statement gives that (c,,) is balanced.

Obviously CZ—_l -+ 1. O

n

Proposition 2.7. If ¢,, - +o and q;;l — 1, then (c,) is balanced.
n

Proof. We can assume that ¢, > 0.

Let M € N be given. Choose 0 < p <1 such that p2M > <. Find

N e N such that n > N implies that CZ——I >p. Let n>N+2M. If

n

N +1<k<n-1, then

c c c C,_o Cp,_ _
Sk _ Sk Skl En-2 n1>pnk‘
Cn Cr+1 Cr+2  Cn-1 Cp
Then
c c c Cp_ c Cy_
A’(lcn): 1 45N (EN+1 sl PN+, Pl
Cn n Cn Cn Cn Cn




POINTS ACCESSIBLE IN AVERAGE BY REARRANGEMENT ..

69

Proposition 2.8. If (A,(f"’)) increasing and lim A,(fk’) = +o0, then
n—>w

Proof. Obvious calculation shows that

Ar(chl) Al Sny Cn o pla) gy Sn
Cn+l  Cn+l n+1

Then A < A% gives that

Aler) < (Al 41y —CC”
n+l

A,(,f’f)(—cZ*l —1)<1

n

Aglck) < ;’
Cnt1 4
Cn
which implies that
S SN
Cn+1 -1
Cn
hence CZ—” -1—- 0 and C’(’:—*l — 1 and finally (’72—’1 - 1. O
Example 2.9. lim A,(f’f) - 0 and 7L 51 do not imply that
n—o0 Chn

(A,(fk' )) is increasing.

Proof. Let (c,) be the following sequence: 1,1, 2, 2, 2, 3, 3, 3, 3, ...,

where there are n +1 pieces from n in the sequence.

. o . . Cpn—
Obviously ¢, — +x, (¢, ) is increasing and ’;—nl - 1.
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We show that lim A) = 4oo. If ¢ = Cpsp, then clearly AL) < A(Ck)

n—>c
If ¢, #¢p41, Cpy1 =k+1, then A ck) > (k+1)- 75 = k. These two
statements gives the claim.

We finally show that (A{°*)) is not increasing. Let ¢, =k, ¢, =k +1.

Then Ar(chl) < A) because

() _o. 1 2 k

Ay 2 k+3 k+ +k =
Alr) — g +3- +-~+(k:+1)~—k
n+l k+1 kE+1 E+1’

and all terms in the latter are smaller than in the former, except the last
terms which are equal. O

Example 2.10. (c,) being balanced does not imply that (c,zl) is
balanced as well.
Proof. Let (c,) be the following sequence: 4 pieces of 1 then 9 pieces

of 2 then 16 pieces of 6 and so on; generally there are (n + 1)2 pieces of n!

in the sequence.

We show that (c,) is balanced. If ¢, =c,,;, then clearly
Aler) < A,(ffl). If ¢, # Chi1s Cpaq = k!, then A,(fjl) k2 % =k
These two statements gives the claim.

We show that (c2) is not balanced. Let ¢, # ¢,.1, ¢ysq = k!. Then

k-1

A,(ffl) _ Z(l 1) (é',) _ ;((l-i—l)'j 22( l+1)vj

=1

-2
<1+Z%:1+(k—2)—<1+%£2
k

showing that (¢2) is not balanced. O
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3. Generalizing Previous Results

First let us present a generalized form of [6, Theorem 3.1].

Theorem 3.1. Let (a,) be a sequence and a < b(a, b € R) are two of

its accumulation points. Then [a, b] AAR ).

Proof. The proof can copy the proof of [6, Theorem 3.1] remarking
that we have not used that (d,,) is bounded. O

Theorem 3.2. Let (a,) = (b,)|(c,), where b = limb, e R, ¢, — +»
and (c,) is increasing. If ¢ > b is accessible in average by rearrangement
of (a,), then

Cn
n-1

D6

1=1

— 0.

Proof. We can assume that ¢ >0 (i.e., b > 0) because otherwise
consider sequences (b, —b), (c,, —b). If the statement is true for these

sequences then by 2.4 it is true for the original sequences as well.

Let (d,,) be a rearrangement such that d,, A, ¢. This rearrangement
defines a rearrangement of (c,), namely take the elements from (c,,)
exactly in the same order as they come in (d,). Let us denote that

rearranged sequence with (c;,) and ¢, = d,,, .

Let ¢ > 0. Then thereis N € N such that m > N implies that

m
Sa
=1
m

c—¢< < C+e
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n—1
Let n be chosen such that m,_; > N. Set s,, = Z c; and
i=1

[y

Mp—1 n—

woy = D di- Y cl

=1 i=1

ie, w,; is the sum of elements form (b;) which are among

dy, ..., dp, . We get that

my, -1
2 d
= s, +w
c—e< =L =L n<c+e (1)
m, -1 m, -1
mp
d;
= s, +tw, +c
c—e< izl _°n n_ N o<t (2)
mn mn
From (2) we get that
cl
]_+—n
s, +w
c—e<— 1 ccte
mn
Sy, + Wy,

By multiplying with the denominator and using (1) we get that

c—e¢ m m, —1 m G
L < (e—e)—L <1+ &
c+e my, -1 s, tw, m, -1 S, +wy,

m, -1 m c+e m
<(c+e)—L < =

sp+tw, m,-1 c—¢ m, -1’

and clearly both sides tend to 1 when ¢ — 0.

It gives that _n — 0.

nt Wy
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’

.. . c .
We show that it implies that =2 — 0. Let the number of terms in w,,
sn

be k, = m, — n, the number of terms in s, be [, = n —1. Clearly

Cn
€ _ _ Sn
Sp F Wy | Wn
sn
Therefore it is enough to prove that —% is bounded. Assume the contrary

Sn

and assume first that HZ’—" = +o0, Let N € N such that n > N implies
n

that

S, +w, >c+b andw—”<c+2b
L, +k, 2 k, 3

Let K € R such that

K+1.c+2b<c+b
K 3 2

Now choose n > N such that Yn > K. Then

Sn
w, > Ks,,
(K +1w,, > K(s, +w,,),

c+b>K+1'c+2b>K+1'w_n
2 K 3 K k

n

l, +k, s,+w, s,+w, c+b

> : > >
ky, L, +k, L, +k, 2’

which is a contradiction.
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Assume now that h_mw_" = —o. Let N € N such that n > N implies
Sl’l
that
Sp + Wy

c s
n_n oy = d 2~ 0.
ln+kn>2>0an ln>

For K = -2 choose n > N such that

w
n < _2’
sn
w, < -2s,,
S, +w, S, —2s, L, s,
< = - —— <0,
L, +k, L, +k, b, +k, 1,

— a contradiction again.

’

Finally we got that z—n — 0. Now [6, Corollary 4.2] yields the

n

statement. O

Theorem 3.3. Let (a,) = (b,)|(c,), where limb, =b e R, ¢, — +o.
If

and ¢ > b then c is accessible in average by rearrangement of (a,, ).

n
Proof. Set v = L . Set s, = Zci. Note that s, — +o moreover
c-b o]
1=
s . . . c
2 5 +oo. With that notation the assumption gets the form: —2— — 0.
n

Sn

Take a subsequence (b),) from (b,,) such that b, — b.
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We can assume that ¢, is increasing (by [6, Corollary 4.2]) and
n
¢, > max{l, 2(c —b)}. Then let m, = {v : Zci J The previous

assumption on ¢, gives that (m,) is a strictly increasing sequence of

integers.

If k e N, then let

d { ch if k=m,,
k= ' :
bk—n if ke (mn’ mn+1)’

l.e., on the m, position put c,, on the other positions put elements from

(b7,)-

We show that dkA> c. Let m,,_; <k < m,. Obviously

k—(n— 1) n-1 k—(n-1) n-1
b: + c; Z b! ZCL
_ i=1 i=1 _ =1 i=1
Aldy, .., dy) = . S = =

Let us investigate the two terms. For the first one we get that

k—(n-1) k—(n-1)
b b
; _ Z k—(n-1)
k T k-(n-1) k ’
Clearly

k—(n-1)
2
i=1

im0

because b — b. Regarding the second factor we have

n-1_n-1_ n-1 _ 1

k my_1 USy_1 — 1 v Sn-1 _ _1
n-1 n-1

— 0.
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Hence
k—(n-1)
DI
Now let us analyze the second term.
n-1
2
1 _ Sn-1 < Sp-1 < i=1
v o4 1 v(s,.1 +c,)+1 " m, k
Sp-1 Sp-1
Sp-1 — Sp-1 — 1
T m vs -1 1
n-1 n-1 U+

Sn-1

Evidently both sides tends to %z c—b using that SC" — 0 by

n-1

assumption.

Therefore

S
i

9]

I
—

i

? —>c-b,

which gives that klim Aldy, ..., d;) =c.
{—>00
By [6, Corollary 2.4], we can add the remaining elements from (a,,)

(that are not in (by,)||(c,)) to (d,) such that the limit in average does not

change. O

4. Sequences Composed of Two Sequences, One Tending to + o,

the Other Tending to —o

We are going to investigate the case when a sequence does not have

finite accumulation point but it has both +o as accumulation points.
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Theorem 4.1. Let (a,) = (b,)|(c,), b, > —o, ¢, = +o. If there is

a € AAR(, ), a € R, thenli_m%nzoandh_m%z:o‘

Proof. Suppose indirectly that h_m%” = 2p > 0 ((b,) can be handled

similarly). Then there is NV € N such that n > N implies that 07” > p.

>e¢>0. If a e AAR ), then there is a rearrangement of

b
Let 9

(a,) say (ap,) such that ankA> a. Which yields that there is M e N

such that v > M implies that

Let M be chosen such that {c, :n < N} c{a, :k < M} moreover

atl . ¢ Find a ¢, such that n > N and ¢, = a,, ., and v > M and

M+1
v+1 < 2n +1. It can be done because let

l=max{m:(3k <M suchthat b,, = ank) or (3k < M suchthat ¢, = an, )}

andlet v+1 = min{w : a, = ¢y, m > 1.

Let us estimate how much the new element a, modifies the

average.
v v+l v
Ay Z Any, Z Any,
k=1 k=1 _ k=1 _ Cn
vlv+1) v+1
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Clearly
1%
A,
=1 a+e a+1 <
vw+1)] v+l M+1
and
C
Cn Cn n

> > L
v+1 2n +1 2+l 2+l
n n

which gives that

which is a contradiction.

Theorem 4.2. Let (a,) = (b,)|(c,), b, = -, ¢,, = +o. If h_m%” =0
and lim % = 0, then R = AARg, ).

Proof. If enough to prove that 0 € AAR, ) because (b, —a)|(c, —a)

satisfies the conditions of the theorem and if a,-a A) 0, then

A

a, - a.

Let € > 0.

First assume that %’L — 0 and 07” — 0. We define a rearrangement

of (a,). First take elements from (c,,) in the order as they are in (c,,)
such that the average would be > 0. It can be done as ¢, — +w. Then
add elements from (b,) in the order as they are in (b,) such that the

average of all selected elements (the previous ones and the just added
ones) would be < 0. It can be done as b, - —. Then add not used
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elements from (c,) in the order as they are in (c,,) such that the average
of all selected elements (the previous ones and the just added ones) would
be > 0 and so on. Let us denote the constructed sequence by (ank).

We show that the rearranged sequence tends to 0 in average. Let
N e Nsuch that n > N implies that ‘I;—”‘ <<, %” < é

Choose V e N such that {b,, ¢, : n < N} c {a, :k <V} Let

Suppose that s > 0 (the other case is similar).

First we show that there is v > V such that

U
Z Ay,

—kzlv e (— €, e),

1%
Z ank:

If s < ¢, then we are done. If not then suppose k:lv > e, Then clearly
v+1 v
D D
k=1 _ k= v by
v+1 v v+l v+1’°
for a, =0, But
U
pRH
k=1 v |bn| |bn| ¢
—— >0 and - < 2 <~
v v+1 v+1 n 2
v+1
D an,
— € . . . .
hence £=1 > ——, l.e., sooner or later we will step into (¢, €) referring

+1 2
also to the definition of (ank ).
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U
D an,
Now suppose that k=1v

€ (- ¢, ¢) and let us examine how much the

average changes if we add a new element. If v>V,a,  =c¢, (b, is

similar), then

v v+1 v
Za”k Za”k za”k e |
k=1 k=1 < k=1 4| Cn
‘ v v+1 v +1)| |u+1]
v
1 i c
— € €
< k=1 I < =+= =
v+1 v n 2 2

Which means that by the definition of (ank) we will always remain in the

A, 0.

interval (-, ¢), i.e., we showed that a, >

ny,
Let us turn to the general case and let (bnk), (ka) subsequences of
(6,), (c,) respectively such that b, — 0, c,, — 0. Apply the previous
assertion for sequence (d,) = (by, )||(c;,) Which gives that R ¢ AARg ).
Now [6, Corollary 2.4] gives the statement. O
We can summarize the previous two theorems in the following way.

Theorem 4.3. Let (a,,) = (b, )| (¢, ), b, = —0, ¢, > +o0. Thena € AAR(, ),

a € R if and only if lim % = 0 and lim * = 0. O
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5. Summary of all Cases

We are now in the position that we can describe all possible cases

regarding AAR(, ). Let us denote the accumulation points of (a,) by
(@)

(1) There is no finite accumulation point of (a,,).

(@) If (a,) = {- o}, then AAR(, )= {~o0}.

) If (a,) = {+}, then AAR(, ) = {+oo}.

© If (a,) = {£o} let (a,) = (b,)|(cn), by = —o, ¢, > +.

Then AAR ) = R if and only if h_m%” =0 and h_m%” = 0. Otherwise

AAR( ) = {£ oo},

@) If +o ¢ (a,), then let lima, = a, lima, = b (a, b € R). In this
case AAR(, ) = [a, b].

(3) There are also finite and infinite accumulation points of (a, ). Let
lima, = o € R, lima, =B € R, min (a,) — {0} = a € R, max (a,) — {+o}
= b e R. Obviously either o = — or B = +w.

Then we can decompose (a,,) in the following way: (a,) = (b,) U (¢,)
U(d,), b, = a, c, — B, (d,) is the rest of the sequence (if needed). This
decomposition is not unique in general. However if o = —o, ¢ > —o, then

(b,,) is unique up to finitely many elements and if B = +o, b < +, then

(c,,) is unique up to finitely many elements.
(@) If @ = 0 or b = +oo, then AAR(, ) = [a, b]U {a, B}.

(b) If —0 < @ £ b < +0, then we have the following cases:
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(i) Let o = —oo, B < +oo. If (b,) is balanced then AAR(, ) = [-o, b]. If

(b, ) is not balanced then AAR(, ) = [a, b]U {-co}.

(ii) Let o > o, B = 4. If (c,) is balanced then AAR(, ) = [a, +o].
If (c,) is not balanced then AAR, ) = [a, b]U {+}.

(i) Let o = -, B =+w. If (b,), (c,) are both balanced then
AAR, ) = R. If (b,) is balanced, (c,) is not balanced then AAR(, y =
[-o0, b]U {+oo}. If (b,) is not balanced, (c,) is balanced then AAR, ) =
[a, +0]U {~oo}. If none of (b,), (c,) is balanced then AAR(, ) = [a, 0]
U{-o0, +oo}.

6. On Accumulation Points

Theorem 6.1. Let (a,) be a sequence bounded from below or above,

n
2.
(ay,) be one of its rearrangements. Let c, = ‘:; . Then the set of

accumulation points of (c,) is [limc,, limc,,].

Proof. If limec,, = lim ¢,, then there is nothing to prove. Assume that

limc, < limc,. Assume that (a,) is bounded from below and a, > K.

The other case is similar.
Let lime, < p < Ecn. Obviously it true for infinitely many n that

¢, < p <c,_1. Then
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which gives that

Cho1 = <
n-1 n-1 n-1
Then we get that
n-1 n-1 n-1
Zag a; +ay, a;
¢ —ec. = i=1 _ =1 _ =1 _a_n:Cn—l_a_n
n-l ot T n nn-1 n n n
. P __ 9 9 __p an _p-K _
“"n-1 nnrn-1) n n-1 n-1" n-1 ’

if n 1s big enough.
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O

Lemma 6.2. Let (b,) be a sequence, ¢ € R. Assume that A(by, ..., b,)

ef(a,b) if n>N (a<b,a,beR). Then Ye >0 we can create a new

sequence (d,) with d; =b; (i<k),d, =c,d; =b;_1 (@ >k >N) such

that n > k implies that A(dy, ..., d,) e (a —¢, b+ ).
Proof. Choose k € N such that n > k£ —1 implies that
@3 <5

€ n-1
(2) a——<a-T.

2
If m >k, then
m-1
c+ b;
A(dy, ..., dm)=%=%+A(dh e ) L

hence a —¢ < A(dy, ..., d,,) < b+e.
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Lemma 6.3. Let (b,) be a bounded sequence, a = limb,, b = limb,),
a<b,(a, beR). Let ¢c,d € R such that a < c <d < b. Then there is a

rearrangement (b)) of (b,) and there is N € N such that n > N implies
that A(bi, ..., by,) € (c, d).

Proof. It is an obvious consequence of [6, Proposition 2.6]. O

Theorem 6.4. Let (a,) be a sequence such that it has at least 4
accumulation points: a, b, —©, +o(a, b € R, a < b). Let z c [a, b] be a
closed set. Then there is a rearrangement (a)) of (a,) such that the

accumulation points of the sequence (p,) is exactly Z where

p, = Alaq, ..., a}).

Proof. Let (a,) = (b,)(cy)| (@ N(e,) (), where b, = a, ¢, = b,
d, - —o, e, — +o and (f,) is the rest of the elements in (a,). Assume

that Vvn a -1 < by, ¢, <b+1. Let K = max{|a - 1|, b +1]}.

First let us note that there is a sequence (¢,) such that the
accumulation points of (¢,) is exactly Z. We know that Z is separable
because R 1is hereditary separable, hence let Z; < Z such that
cl(Zy) = Z and |Zy| < Ng. Let Zy = {w,, : n € N} and then the sequence

(wy, we, wy, Wy, s, Wy, Wy, Ws, Wy, ...) satisfies the requirement.

We are going to create a rearrangement (aj,) of (a,) such that there
is a sequence (n;) such that n; €N, (n,) is increasing and
n, < n < ng,; implies that an a, € (¢ —%, i +%) It is easy to see

that (aj,) fulfills the requirements.

Let us generalize the problem slightly. We have a sequence of disjoint

finite open intervals (I;) with I, = (@, b) and want to create a
rearrangement (a,) of (a,) such that there is a sequence (n;,) such that

n; < n < ng,; implies that a,, € ;.
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We define sequences by recursion. By Lemma 6.3 we can find a

rearrangement (r;) of (b,)[(c,) and N; e N such that n > N; implies

that A(, ..., r}) e I;. We can also assume that ri' = a;.

Assume that for &k € N, k£ > 1 there are a sequence (r,f) and positive

integers ny < ng < -+ < n,_7 < ny such that
(0) if n > ny, then r¥ is an element of (b, )||(c,),

(1) if n < ny_q then r,]f_l = r,]f

’

(2if1<i<k-1andn; <n<n; then AG{, ..., 7l) e I,
3) if n;, < n then AGF, ..., k) e I,
(4) there is i < n; such that r* = a;.

We will see that ny, ..., n; can be chosen independently of .

Assume that sup I, < inf I;,;. (The other inequality can be handled

similarly).

If a,,; is already in (r}), say r* = a;,;, then let N, = max{i, n;}.

If not, then let I, =(a’,d'),c= b:a' ,I'=(a"+¢ b—¢) and apply

Lemma 6.2 for (r,f), I'' N =ny, ¢ ¢ =a;,;. Hence in that way we can

merge a;,; into (r}) in a way that all conditions (0), (1), (2), (3), (4)

remain valid (maybe we have to modify n;). Let us keep the notation

(r,lf) for this new sequence too. Let N be the index of ;1 in (r,lf).
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Let A be the length of I,.;. Let M > max{Nk,%,M}.
If m>M, then g(b_hCHI) < % < n,ffl which gives  that

b-a+1)(m+1)< %mz, ie., if we take intervals ((b -a+1)m, %mZ)
for all such m, then those intervals will overlap. Hence there are a

P>M and an wunused element e from (e,) such that

>a-—1.
Paa

b-a+1)P<e <%P2 and
First note that b < A({, ..., rf_1, e) because

(P l)A(rl g eeey rP_1)+e S P 1a+£ > b

A(rlk,...,rﬁ,e) = iz P P

m=1
If m > P thenlet s = Z r¥, z=rk Then

i=1
s+e s+z+e
|A(r1k,...,r,,kl_l,e)—A(rlk,...,r,,kl,e)|:| e e |
_|s+e—mz| m -1 k k e
T mm+1)| T m(m +1)|A(r1 e M) + m(m +1)

Now there 1s a sufficiently large m such that m > P and

k k k k
Al ..., rp, e, 11, ..., Ty) € I1iq,
k k
because A(1", ..., rp, €) > b and
lim AG B, e, 1p ") <sup I} <inf]
im A", ..., 7B, €, IPyq, ---s Iy) < sup I, < inf I, 4,

m-—©

and by |A(r1k, s r,’;’l_l, e) — A(rlk, s r,]fl, e)| < % Fix such m.
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Let

IN

E+1 r,f if n < m,
rn - .
e if n

m.
If n > m, then choose not-used elements from (b, )| (c,,) such that
A, Yy e 1.

We show that this can be done (we apply a similar argument as above).

We go by induction. It is true for n = m. Assume that we are done till n

n-1
and looking for /1. Let s = > Pl ze(a-1,b+1).

i=1
s s+z| |s-nz|
AGEY ey A, e ) = 12— =
A n) (1 n d n n+1| |nm+1)
1 kel Eal |Z| K K 2h h
< R i | IR A e
n+1|‘A(1 n Ol n+l n n 9 2
It AGE, Yy e Iy, say AGE, L rE) < inf I, +%, then
we can choose rii from (c,) such that rfi1 > A, .., rf*1) and
that will satisfy A({*, ..., rf*1) € I, ,;. The other case is similar.

Let now n;.; = m. We show that all conditions (0), (1), (2), (3), (4)
will be valid for (r¥*1). (0) and (1) are obvious by definition. (2) is valid

because we keep all previous n;(1 <i < k) and by (3) for (r,]f). (3) holds

by definition. The first step was to include a;,; hence (4) is valid too.

Let a, =r¥ if n, <n <ny,;. Clearly the accumulation points of

p, = Alai, ..., a,,) is exactly Z. O

Remark 6.5. In Theorem 6.4 if we want to weaken the condition then

by Theorem 6.1 we cannot abandon neither —oo nor +co.



88

ATTILA LOSONCZI

Remark 6.6. In Theorem 6.4 we cannot say more in general in a way

that any closed sets Z outside [a, b] could be the accumulation points of

the averages of a rearranged sequence.

Proof. Let (a,) = (-2")[|(-1)||(1)|(2"). By Theorems 3.2 and 3.1,

AAR ) = [-1, 1]U {~o0, +o0}. g

(1]

(2]

(3]

(4]

(5]

(6]
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