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Abstract 

A system of a serially connected Euler-Bernoulli beam and its optimal energy 
control are studied by means of semigroup of linear operators in the present 
paper. The system is formulated by partial differential equations with the 
boundary conditions. The spectral analysis and semigroup generation of the 
system are discussed in the appropriate Hilbert spaces. Finally, an optimal 
energy control is proposed, and existence and uniqueness of the optimal control 
are demonstrated. Eventually, an approximation theorem is proved in terms of 
semigroup approach and geometric method. 

1. Introduction 

The vibration and control of serially connected strings and Euler-
Bernoulli beams with linear feedback controls at joins have been studied 
extensively in the last two decades (see, e.g., [2-4, 7, 10, 12, 13, 15]). In 
addition to the analysis of the distribution of eigenvalues, one also needs 
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to establish the so-called spectrum determined growth condition in order 
to conclude exponential stability for these infinite-dimensional systems 
from spectral analysis. In the case of serially connected strings, the first 
results on exponential stability were obtained in [2] for a 2-connected 
strings with linear feedbacks at the middle of the span. The stability of    
N-connected strings under joints feedback was studied in [3]. 

In this paper, we consider the following serially connected beams 
with linear feedback control: 
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The linear feedback control at the joint points ,1,,1, −= njLj "  takes 

the form 
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where nLLL <<<= "100  and 

,,,0,0,0 2222 R∈>+≥≥ jjjjjj srqpqp  

( ) .,,02222 R∈βα∀≥αβ−+β+α jjjj srqp   (1.4) 
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Let us defines the energy of system (1.1)-(1.4) as 
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Then a simple computation shows that ( ) 0≤tE�  and hence the system is 
dissipative. 

Without loss of generality, we may assume that n is odd. For 
,,,2,1 nj "=  we set 
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where .10,,,2,1,1 ≤≤=−= − xnjLLl jjj "  Then system (1.1)-(1.4) 
can be transformed into the form of  
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where 
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where for ,,,2,1 nj "=  
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Now, we confine ourselves to system (1.1)-(1.4) with FEBA ,,,  specified 
by (1.6). Divide by 1ρω  both sides of those equations which contain 

nonzero factors ρ  in the system 0,MC =�  then we have becomes 

0,MC =�  (1.7) 

where 

[ ]1 2 3 4 ,M M M M M=�   (1.8) 
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with 
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where 41,, ≤≤ωρ kk  and nl  were defined in the Section 3 of [4]. 
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2. Spectral Analysis and Semigroup Generation 

In this section, we derive the characteristic equation satisfied by 
eigenvalues of system (1.1)-(1.4). To begin with, we put system (1.1)-(1.4) 
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into the framework of evolutionary equations in an underlying Hilbert 

space .H  Take ( ( )) nL 22 1,0=H  and define ( )( ) HHA →⊂AD:  by 
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which can be further written as a first-order ordinary differential 
equation of the following form: 
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In order for (2.7) to satisfy (2.5), the last two boundary conditions should 
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Therefore, in this case, ( )Aρ∈λ  and ( )A,λR  is compact. 
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and hence ( ) ( ) ( ) ( )( ) .00,0,0,0 =/T
xx vuvu  Therefore, 

[ ] [ ] ,0,0,0 2222 =/=

























=













λ ZeI

v

u

v

u

I
v

u
xK

nn
x

x

nn   (2.13) 

and satisfies 

.













λ=















v

u

v

u
A  

In other words, ( ) ( ).AA pσ=σ∈λ  

To sum up, we have obtained the following Theorem: 

Theorem 1. Let ( ) ( )λ=λ Hh det  be defined by (2.10). Then ( )λh  is 

an entire function of ,λ  and the following statements hold: 

(1) ( )Aσ∈λ  if and only if ( ) ,0=λh  i.e., 

( ) ( ){ }.0=λλ=σ hA  (2.14) 

The eigenvalues are symmetric with respect to the real axis. 

(2) For each ( ),Aσ∈λ  the corresponding eigenfunction [ ]Tvu,  is 

given by (2.13), where Z  is any nonzero solution of the algebraic equation 
( ) .0=λ ZH  

(3) A  is a densely defined discrete operator in ,H  i.e., A  is densely 

defined in H  and ( ) ( ) 1, −−λ=λ AAR  is compact for any ( ).Aρ∈λ  

(4) A  is an infinitesimal generator of a semigroupC -0  in .H  
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3. An Optimal Energy Control 

In this section, let us discuss an optimal control problem of the 
following system: 

( ) ( ( )( ),, ttyutAydt
dy B+=  

( ) ,0 0yy =   (3.1) 

where both state space H  and control space Y  are Hilbert spaces, the 

state function ( )ty  on [ ]T,0  is valued in A,H  is the infinitesimal 

generator of a semigroup-0C  ( ) B.0, ≥ttS  is a bounded linear operator 

from [ ]( )Y:,02 TL  to [ ]( ) ( )( )ttyuTL ,,:,02 H  is a control of the system. 

In this section, we shall discuss a specific optimal control, that is, the 
minimum energy control of the system (3.1). We know that the minimum 
energy control in an abstract space is, in general, the minimum norm 
control. So, from mathematics point of view, the existence and 
uniqueness of the optimal control are essential. If these are true, then 
how to obtain the optimal control is a significant problem. The main 
content of this paper is to solve these essential and significant issue. 

From the theory of operator semigroup, we see that for every control 

element ( )( ) [ ]( ),:,0, 2 YTLyu ∈⋅⋅  the system (3.1) has an unique mild 

solution 

( ) ( ) ( ) ( )( )( ) .,
0

0 dsssyustSytSty
t

B−+= ∫   (3.2) 

Let ( )⋅ϕ  be an arbitrary element in [ ]( ),,,0 HTC  and 

[ ]( ) ( ) ( ) ( ) ( )( ) ,,inf
0

0,,02 dsssyustSytSt
t

TLu B
Y

−−−ϕ=ρ ∫∈
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define the admissible control set of the system (3.1) as follows: 

{ [ ]( ) ( ) ( ) 0
2 :,,0 ytStTLuUad −ϕ∈= Y  

( ) ( )( ) },,
0

εB +ρ≤−− ∫ ssyustS
t

  (3.3) 

where ε  is any positive number. 

It can be seen from (2.2) that adU  is not empty and contains 
infinitely many elements related to ϕ  and .ε  The minimum energy 
control problem is actually to find the element ,u  satisfying 

{ },:min0 adUuuu ε=   (3.4) 

where 0u  is said to be a minimum energy control element. 

Lemma 3.1. The admissible control set adU  defined by (2.2) is a 

closed convex set in Hilbert space [ ]( ).:,02 YTL  

Proof. Convexity: For any adUuu ∈21,  and a real number 
,10, <λ<λ  it is easy to see from (2.2) that 

( ) ( ) ( ) ( )( ) ,2,1,,
0

0 =+ρ≤−−−ϕ ∫ issyustSytSt i
t

εB   (3.5) 

and hence 

( ) ( ) ( ) ( ( )( ) ( ) ( )( ))dsssyussyuBstSytSt
t

,1, 21
0

0 λ−+λ−−−ϕ ∫  

( ) ( ) ( ) ( )( )dsssyustSytSt
t

,1
0

0 B−−−ϕλ≤ ∫  

( ) ( ) ( ) ( ) ( )( ) .,1 2
0

0 dsssyustSytSt
t

B−−−ϕλ−+ ∫   (3.6) 
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Since ( ) [ ]( ),;,01 2
21 YTLuu ∈λ−+λ  it follows that ( ) 21 1 uu λ−+λ  

,adU∈  this implies that adU  is a convex subset of [ ]( ).;,02 YTL  

Closedness: Suppose { } ,adn Uu ⊂  and .0lim =− ∗
∞→ uunn  It can 

be shown that .adUu ∈∗  In fact, from the definition of adU  we see that 

( ) ( ) ( ) ( )( ) .,2,1,,
0

0 "=+ρ≤−−−ϕ ∫ ndsssyustSytSt n
t

εB  

Since ( ) 0, ≥ttS  is a semigroup-0C  in Hilbert space ,H  there is a 

constant 0>M  such that ( ) .sup
0

MtS
Tt

≤
≤≤

 On the other hand, since 

( )sy  is differentiable on [ ],,0 T  it is continuous on [ ],,0 T  and hence 

( ) [ ]{ }Tssy ,0: ∈  is a bounded set in [ ]( ).:,02 YTL  Thus there is a 

constant 0>N  such that ( )( ) ( )TsNssyBu ≤≤≤ 0,  and  

( ) ( ) ( ) ( )( )dsssyustSytSt
t

,
0

0
∗−−−ϕ ∫ B  

( ) ( ) ( )( ) ( )( )dsssyussyuytSt n
t

,,
0

0 B∫−−ϕ≤  

( ) ( )( ) ( )( )],,[
0

ssyussyustS n
t

∗−−+ ∫ B  

.NTuuM n ⋅−++ρ≤ ∗ε   (3.7) 

Letting ∞→n  leads to 

( ) ( ) ( ) ( )( ) .,
0

0 εB +ρ≤−−−ϕ ∗∫ dsssyustSytSt
t

 

Thus, ,adUu ∈∗  and adU  is a closed set. The proof is complete. 
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Theorem 2. There exists an unique minimum energy control element 
in the admissible control set adU  of the system (1.1). 

Proof. Since [ ]( )Y:,02 TL  is a Hilbert space, it is naturally a strict 

convex Banach Space. From the preceding Lemma, we have seen that 

adU  is a closed convex set in [ ]( ),:,02 YTL  it follows from [2] that there 

is an unique element adUu ∈0  such that 

{ }.:min0 adUuuu ∈=  

According to the definition (2.3), 0u  is just the desired minimum 

energy control element of the system (1.1). The proof is complete. 

Finally, we shall show that the minimum energy control element can 
be approached. 

Theorem 3. Suppose that 0u  is the minimum energy control element 

of the system (1.1), then there exists a sequence { } adn Uu ⊂  such that { }nu  

converges strongly to 0u  in [ ]( ),:,02 YTL  namely, 

.0lim 0 =−
∞→

uunn
 

Proof. Let { }nu  be a minimizing sequence in the admissible control 

set ,adU  then it follows that  

,,2,1,1 "=≤+ nuu nn  (3.8) 

and 

{ }.:inflim adnn Uuuu ∈=∞→   (3.9) 

It is obvious that { }nu  is a bounded sequence in [ ]( ),;,02 YTL  and so 

there is a subsequence { }
knu  of { }nu  such that { }

knu  weakly converges to 

an element u~  in [ ]( )Y;,02 TL  (see [3]). 
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Since adU  is a closed convex set in [ ]( )Y;,02 TL  (see Lemma 2.1), we 

see from Mazur’s Theorem that adU  is a weakly closed set in 

[ ]( ),:,02 YTL  thus .adu U∈�  Combining (3.2) and employing the 

properties of limits of weakly convergent sequence on norm yield 

{ }inf : limad nu u U u u→∞∈ ≤ ≤�
kk  

    { }lim lim inf ; .n n adn n
u u u u U

→∞ →∞
= = = ∈

kk
  (3.10) 

Thus, we have 

lim ,n nu u→∞ = �   (3.11) 

and 

{ }inf ; .adu u u U= ∈�  (3.12) 

Since { }
knu  is weakly convergent to ,u�  it follows from (3.3) that { }

knu  

converges to .u�  Therefore, we see in terms of Theorem 2 and (3.4) that 

0 ,u u=�  namely, u�  is the minimum energy control element. Thus, { }
knu  

strongly converges to the minimum energy control element in 

[ ]( ).:,02 YTL  Without loss of generality, we can rewrite { }
knu  by { },nu  

then the conclusion of theorem is now obtained. 

The Theorem 3 points out that the minimum energy control element 
can be approached by a weakly convergent sequence in the control space, 
which provides the theoretical basis of approximate computation for 
finding the minimum energy control element. 

4. Conclusion 

In this paper, we have investigated a kind of optimal energy control 
for a serially connected Euler-Bernoulli Beam formulated by partial 
differential equations with initial and boundary conditions. After a 
discussion of minimum energy problem for the beam system, we have 
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proposed and proved the existence and uniqueness Theorem 3 of the 
optimal energy control in terms of semigroup approach of linear 
operators. Finally, we gave an approximation result Theorem 3.2 that 
points out that the minimum energy control element can be approached 
by a weakly convergent sequence in the control space, and provides the 
theoretical basis of approximate computation for finding the optimal 
energy control element. 
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