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Abstract 

The Liénard system ( ) ( )xgyxf
dt

dy
y

dt

dx
−−== ,  is considered. Under 

some assumptions on functions ( )xf  and ( ) ,xg  we estimate the domain 

of location of the unique stable limit cycle of the Liénard system. This 

estimation has the form ,12 α<<α x  where 1α  and 2α  are 

respectively, the positive and the negative roots of the equation 

( ) ( ) .0
00

=







∫∫

α
dxxgdssf

x
 We use the above result for evaluating the 

amplitude of the limit cycle of the van der Pol equation 

( ) [ ( ) ] ( ) ( ) .012 =+−µ+ txtxtxtx ɺɺɺ  
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1. Introduction 

One of the most difficult problems connected with the study of 

nonlinear systems of the form 

( ) ( )yxYyyxXx ,,, == ɺɺ   (1) 

is the problem of the existence of limit cycles. Limit cycles, or isolated 

periodic solutions, are the most common form of solution observed when 

modelling physical systems in the plane. Early investigations were 

concerned with mechanical and electronic systems, but periodic behaviour 

is evident in all branches of science. In mathematics, in the study of 

dynamical systems with two-dimensional phase space, a limit cycle is a 

closed trajectory in phase space having the property that other 

neighbouring trajectories spirals into it either as time approaches infinity 

or as time approaches negative infinity. If all neighbouring trajectories 

approach the limit cycle as time approaches infinity, we say that the limit 

cycle is stable or attracting [1]. Limit cycles are an inherently nonlinear 

phenomenon; they cannot occur in linear systems. If functions ( )yxX ,  

and ( )yxY ,  in system (1) are linear, then system (1) cannot have a limit 

cycle. 

Most of the early history in the theory of limit cycles was stimulated 

by practical problems displaying periodic behaviour. For example, the 

differential equation derived by Rayleigh [2] in 1877, related to the 

oscillation of a violin string, is given by 

.0
3
1 3

2

2
=+














−






µ+ y

dt

dy

dt

dy

dt

yd
  (2) 

In 1927, the Dutch scientist van der Pol described self-excited 

oscillations in an electrical circuit with a triode tube with resistive 

properties that change with the current. The equation derived by van der 

Pol has the following form [3]: 

( ) .012
2

2
=+−µ+ x

dt

dx
x

dt

xd   (3) 
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In dynamics, the van der Pol oscillator is a non-conservative oscillator 

with non-linear damping where µ  is a positive parameter. Equations (2) 

and (3) are equivalent, as can be seen by differentiating Equation (2) with 

respect to t and putting .xdtdy =  

In 1928, the French physicist and engineer Alfred-Marie Liénard      

[4, 5] gave a criterion for the uniqueness of a periodic solution for a 

general class of equations of the form 

( ) ,0
2

2
=++ x

dt

dx
xf

dt

xd   (4) 

for which the van der Pol equation is a special case. Setting ,zdtdx =  

Liénard wrote Equation (4) in the following form of the system of 

differential equations of first order: 

( ) ., zxfx
dt

dz
z

dt

dx
−−==   (5) 

But in his proof of the uniqueness of a periodic solution of Equation (4), 

Liénard used other system of differential equations which is equivalent to 

system (5). For this, in system (5) he changed the variable ( ),xFyz −=  

where 

( ) ( ) ,
0

ξξ= ∫ dfxF
x

  (6) 

and obtained the system 

( ) ., x
dt

dy
xFy

dt

dx
−=−=   (7) 

Equation (4) is referred to as a Liénard equation, and both systems of 

Equations (5) and (7) are called Liénard systems. 
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In 1942, Levinson and Smith [6] considered the following differential 

equation: 

( ) ( ) ,0
2

2
=++ xg

dt

dx
xf

dt

xd   (8) 

which is a generalization of Equation (4). Equation (8) as well as 

Equation (4) most of authors call the Liénard equation1. The qualitative 

properties of solutions of differential equation (8) have been studied in 

many papers [7, 8, 9, 10, 11, 12]. Equation (8) can be written in the form 

of the system of ordinary differential equations 

( ) ( )., xgyxf
dt

dy
y

dt

dx
−−==   (9) 

This system can be used to model mechanical systems, where ( )xf  is 

known as the damping term and ( ))xg  is called the restoring force or 

stiffness. System (9) is also used to model resistor inductor capacitor 

circuits with nonlinear circuit elements. 

One of important properties of system (9) is the existence of periodic 

solutions. An important case of a periodic solution is a limit cycle. In 

papers [13, 14, 15, 16, 19], the authors obtained conditions, under which 

system (9) or the equivalent system 

( ) ( )xg
dt

dz
xFz

dt

dx
−=−= ,   (10) 

has a limit cycle. In papers [17, 18], the authors studied the location of a 

limit cycle of symmetric Liénard system (10) if ( )xf  is even and ( )xg  is 

odd. The aim of this paper is the estimation of the domain of location of a 

limit cycle of system (9) without assumption that ( )xf  is even and ( )xg  is 

odd. 

                                                      
1Some authors call Equation (8) the generalized Liénard equation.  
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2. On the Existence of Periodic Solutions of System (10) 

Let us find the conditions that ensure the existence of periodic 

solutions of system (9). Note that the periodic solution of system (9) exists 

if and only if there is a periodic solution of system (10). The following 

theorem gives sufficient conditions for the existence of periodic solutions 

of system (10). 

Theorem 2.1. Suppose that ( )xF  is continuously differentiable, ( )xg  

is locally Lipschitz, and besides 

• ( ) 0>xxg  for ;0=/x  

• the equation ( ) 0=xF  has three real roots: ,0,0 21 <=>= bxbx  

and ( ) 0;0 >= xFx  for ( ) ( ) ( ) 0;,0, 12 <∞+∈ xFbbx ∪  for ( )2, bx ∞−∈  

( );,0 1b∪  

• ( )xF  monotonically increases in the intervals ( )2, b∞−  and ( );,1 ∞+b  

( ) +∞→xF  as ( ) ∞−→+∞→ xFx ,  as .−∞→x  

Then system (10) has a unique nontrivial (nonzero) periodic solution. 

Proof. As has been shown in [11, 21], any solution of system (10) is a 

clockwise rotation around the origin, i.e., any solution that starts on the 

positive semiaxis of ordinate ,Oz  sequentially passes the first quadrant, 

then the fourth, third, second, first again, and so on. Consider the 

trajectory ( ) ( )tztx ,  of system (10) in the plane Oxz  starting at the point 

H  with the coordinates ( )Hz,0  at the zero moment of time t (see Figure 1). 
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Figure 1. 

Denote by J and S the points of intersection of this trajectory with the 

curve ( ),xFz =  by I and L the points of intersection of the trajectory 

with the straight line ,1bx =  by U  and N  the points of intersection of 

the trajectory with the straight line ,2bx =  and, finally, by W  and M  

the points of intersection of the trajectory ( ) ( )tztx ,  with the axis .Oz  

Obviously, the solution ( ) ( )tztx ,  is periodic if and only if the points 

H  and W  coincide, i.e., .WH zz =  

Denote ( ) ( ) .:
0

ξξ= ∫ dgxG
x

 Consider the function ( ) ( ).
2

,
2

xG
z

zxv +=  

Its derivative along solutions of system (10) is equal to 

( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )[ ] ( )( ) ( )( ).

,
txFtxgtxFtztxgtxgtz

dt

tztxdv
−=−+−=  

(11) 
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The change of the function v  from point H  to point W  is equal to 

( ) ( )
( ) ( )( )

( )( ) ( )( ) ,
,

,0,0 dttxFtxgdt
dt

tztxdv
zvzvv HW ∫∫ −==−=∆

τ

0

τ

0

 

(12) 

where τ  is moment of time when the trajectory ( ) ( )tztx ,  reaches the 

point .W  Assume that ., 21 bxbx SJ <>  Let us show that v∆  is a 

decreasing function of .Hz  To do this, we break the trajectory between 

H  and W  into 6 pieces, where the first piece is a segment of the 

trajectory between points H  and ,I  the second piece is a segment of the 

trajectory between points I  and ,L  the third piece is the segment of the 

trajectory between the points L  and ,M  the fourth piece is the segment 

of the trajectory between the points M  and ,N  the fifth piece is a 

segment of the trajectory between the points N  and ,U  the sixth piece is 

a segment of the trajectory between the points U  and .W  So v∆  can be 

represented in the form ,
6

1 ii
vv ∆=∆ ∑ =

 where iv∆  is the change of the 

function v  on i-th piece of the trajectory. On the first, third, fourth and 

sixth pieces, z  can be represented as a function of a variable ,x  because 

on these pieces ( )tx  either monotonically increases or monotonically 

decreases; hence, the change of variable 
( )xFz

dx
dt

−
=  is quite correct. 

On the second and fifth pieces we use the substitution 
( )

.
xg

dz
dt −=  

We want to argue that v∆  is a monotonically decreasing function of .Hz  

So consider two trajectories starting at 0=t  from points ( )Hz,0  and 

( ),,0 HH zz ∆+  where .0>∆ Hz  We denote the trajectories of system 

(10), starting at 0=t  from the points ( )Hz,0  and ( )HH zz ∆+,0  by 

symbols 1T  and ,2T  respectively. By virtue of the conditions of the 

theorem of existence and uniqueness of solutions of system (10), 
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trajectories 1T  and 2T  have no common points, hence the trajectory 2T  

is located outside of the trajectory ,1T  i.e., any ray emerging from the 

origin, first intersects the trajectory 1T  and then the trajectory .2T  Let 

us discover how changes the expression for ( )6,,1 …=∆ ivi  in the 

transition from the trajectory 1T  to the trajectory 2T  

( ) ( )[ ]
( ) ( )

( ) ( )
( ) ( )

.
11

00
1 dx

xFxz

xFxg
dx

xFxz

xFxg
v

bb

−
=

−

−
=∆ ∫∫  

The value for ( )xz  on the trajectory 2T  is more then the value for ( )xz  

on ,1T  hence, ( ) ( ).12 11 TvTv ∆<∆  Here and below ( )2Tvi∆  and ( )1Tvi∆  

denote the values of iv∆  on trajectories 2T  and ,1T  respectively. 

( ) ( )
( )

( )( ) .2 dzzxF
xg

dz
xFxgv

I

L

L

I

z

z

z

z ∫∫ −=



−−=∆  

Taking into account that on this piece ( )xF  is positive and monotonically 

increasing and ( ) ( ) ,12 TT
zxzx >  we obtain that ( ) ( ).12 22 TvTv ∆<∆  

( ) ( )[ ]
( ) ( )

( ) ( )
( ) ( )

.
1

1 0

0

3 dx
xFxz

xFxg
dx

xFxz

xFxg
v

b

b −
=

−

−
=∆ ∫∫  

In this case we also have ( ) ( ).12 33 TvTv ∆<∆  

( )[ ] ( )
( ) ( )

( )[ ] ( )
( ) ( )

,
0

0
4

2

2
dx

xzxF

xFxg
dx

xFxz

xFxg
v

b

b

−

−
=

−

−
=∆ ∫∫  

whence ( ) ( ).12 44 TvTv ∆<∆  

( ) ( )
( )

( )( ) .5 dzzxF
xg

dz
xFxgv

U

N

U

N

z

z

z

z ∫∫ =



−−=∆  

On this piece ( )xF  is negative. Since ( ) ( ) ,12 TT
zxzx <  then 

( )( ) ( ) ( )( ) ( ) ,12 TzxTzx
zxFzxF ∈∈ <  
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hence ( ) ( ).12 55 TvTv ∆<∆  

( ) ( )
( ) ( )

( )[ ] ( )
( ) ( )

.
00

6
22

dx
xFxz

xFxg
dx

xFxz

xFxg
v

bb −

−
=

−
−=∆ ∫∫  

Here ( ) ( ) ,12 TT xzxz >  therefore ( ) ( ).12 66 TvTv ∆<∆  Thus, it has been 

proved that ( )6,,1 …=∆ ivi  decrease if Hz  increase, hence v∆  also 

decreases with increasing .Hz  

In cases 1bxJ ≤  or 2bxS ≥  (or both )21 , bxbx SJ ≥≤  the second 

or fifth pieces respectively (or both) of the trajectory HJMSW are absent 

but the proof that v∆  is a decreasing function of Hz  is the same. 

Let us show that .lim −∞=∆+∞→ v
Hz  To do this, it is enough to prove 

that .lim 2 −∞=∆+∞→ v
Hz  We will show that Iz  increases indefinitely 

with unlimited increase of the value .Hz  Getting rid of t  in system (10) 

and passing to the argument ,x  we write the differential equation which 

describes the orbit HIJ 

( )
( )

.
xFz

xg

dx

dz

−
−=  (13) 

According to the condition of the theorem ( ) 0<xF  for ( ),,0 1bx ∈  hence 

( )
( )

( )
z

xg

xFz

xg
<

−
 for ( ).,0 1bx ∈  (14) 

From Equation (13) and inequality (14) it follows 

( )
z

xg

dx

dz
<−  for ( ).,0 1bx ∈  

Separating variables and integrating, we obtain 

( ) ( ) ,
2
1

2
1 1

0

2
1

2 dxxgzbz
b

H ∫−>−  

whence bearing in mind that ( ) ,1 Izbz =  we get that +∞→Iz  if 

.+∞→Hz  
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Let ( ).,1 Jxbc ∈  Let us designate the ordinates of the intersection 

points of the trajectory 1T  and the line cx =  on pieces IJ  and ,JL  

respectively ∗z  and .∗∗z  Taking into account that L is the intersection 

point of the trajectory 1T  and the line ,1bx =  we conclude that 0<Lz  

(see Figure 1). Bearing in mind the continuity of the trajectory ,1T  the 

value ( )Jxbc ,1∈  we choose so close to the value of 1b  that .0<∗∗z  

Let ( )xz  be the solution of Equation (13) such that ( ) .0 Hzz =  We 

shall show that ( ) +∞→cz  if .+∞→Hz  The inequality 

( ) ( )cFzxFz −>−  holds on the interval ( )cb ,1  because the function 

( )xF  monotonically increases on this interval. Hence Equation (13) yields 

( )
( )

( )
( )

.
cFz

xg

xFz

xg

dx

dz

−
<

−
=−  

Separating variables and integrating, we obtain 

( )
( )

( ) ,
2
1

1

2 dxxgzcFz
c

b

cz

zI
∫<



 −−  

whence (taking into account that ( ) )0>= ∗zcz  it follows the inequality 

( ) ( ) ( )[ ] ( ) .2
1

2
dxxgcFzcFcz

c

b
I ∫−−+>  

Since +∞→Iz  if ,+∞→Hz  then ( ) +∞→=∗ czz  if .+∞→Hz  

Bearing in mind that ( )xF  increases for ,1bx >  we have 

( )( ) ( ) ( )∗∗∗ −−<−=∆ ∫ zzcFdzzxFv
I

L

z

z
2  

( ) ( ) ( )[ ] ( ) .2
1

2












−−+−< ∫ dxxgcFzcFcF

c

b
I  

(15) 

The obtained inequality implies that −∞→∆ 2v  if .+∞→Hz  
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If we choose Hz  small enough, such that the entire trajectory 

between points H  and W  is located in the domain ( ),, 12 bbx ∈  then 

obviously that .0>∆v  Taking into account that v∆  decreases when Hz  

increases, and tends to ∞−  when ,+∞→Hz  one can conclude that there 

exists the unique value 0>Hz  such that .0=∆v  This means that there 

exists a unique periodic solution of system (10). The proof is complete. 

Corollary 2.1. If conditions of Theorem 2.1 are satisfied, then there is 

a unique periodic solution of system (9). 

3. The Estimation of the Domain of Location of a  

Stable Limit Cycle 

Let us find the conditions under which system (9) has a unique stable 

limit cycle, and evaluate the domain of location of this limit cycle. 

Theorem 3.1. Suppose that RRRR →→ :,: gf  are such that 

conditions of Theorem 2.1 are fulfilled and besides: 

• there exist 01 >a  and 02 <a  such that ( ) 0<xf  for ( ),, 12 aax ∈  

( ) 0>xf  for ( ) ( );,, 12 ∞+∞−∈ aax ∪  

• the function 
( )
( )xf

xg
−  monotonically increases in intervals ( ),, 2a∞−  

( ),, 12 aa  and ( );,1 ∞+a  

• the equation ( ) ,0=Φ x  where ( ) ( ) ( )dssFsgx
x

∫=Φ
0

 has one positive 

root 1α=x  and one negative root ;2α=x  

• the relation  

( ) ( ) ( )[ ] 0
1

2

=+∫
α

α
dxxFxfxg  (16) 

holds. 
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Then system (9) has a unique stable limit cycle, and this limit cycle is 

located in the strip .12 α<<α x  

Before proving the theorem, we note some properties of system (9). 
From conditions of the theorem it follows that ,, 2211 abab <>  and the 

function ( )xf  is continuous. As has been shown in [11], the continuity of 

( )xf  and locally Lipschitz of ( )xg  are sufficient for the existence and 

uniqueness of solutions of system (9). 

Property 1. System (9) has the unique position of equilibrium 

,0,0 == yx  (17) 

which is unstable. Moreover, for every { }21 ,min0 aa<ε<  and for any 

trajectory of system (9) with initial values ( ) ( )0,0 yx  such that ( ) 200 2y<  

( )( ) δ<+ 0xG  for any arbitrarily small ,δ  there exists such moment of 

time 01 >t  that ( ) ( )( ) .2 11
2 ε=+ txGty  

To prove the uniqueness of the equilibrium position, let us solve the 
next system of algebraic equations 

( ) ( ) .0,0 =−−= xgyxfy  (18) 

Taking into account that ( ) 0=xg  only when ,0=x  we see that system 

(18) has the unique solution (17). Consider the auxiliary function 

( ) ( ).
2

,
2

xG
y

yxV +=   (19) 

Function ( )yxV ,  is positive definite. Consider its derivative along 

solutions of system (9) 

( ) ( )[ ] ( ) ( ) .2yxfyxgxgyxfy
dt

dV
−=+−−=  

Function ( ) 2yxf−  is nonnegative for { }21 ,min aax <  and can vanish 

only on the set .0=y  Bearing in mind that the set 0=y  is not 

invariant for system (9), using the reasoning used in the proof of the 
Barbashin-Krasovskii instability theorem ([20], Theorem 15.1), we can 
prove Property 1. We omit a verbatim repetition of this proof. 



ESTIMATION OF THE DOMAIN OF LOCATION OF A … 127 

Property 2 ([11, 21]). Any trajectory of system (9), the beginning of 

which is located on the positive semi-axis of ordinate, sequentially passes 

the first quadrant, then the fourth, third, second, first again, and so on 

(i.e., the motion is clockwise around the origin). 

Proof of Theorem 3.1. Choose a point A with coordinates ( )0,Ax  on 

the positive semi-axis of abscissa such that .1α=Ax  From the conditions 

of the theorem it follows that if ( ),,0 1bx ∈  then ( ) ( ) ,0,0 <> xFxg  

whence we obtain that ( ) 0<Φ x  for ( ].,0 1bx ∈  Taking into account that 

( ) ,0,0 11 =αΦ>α  we see that .11 bx A >α=  Let −γ A  and +γ A  be 

respectively negative and positive semi-orbits, passing through the point 

.A  Let us denote the first intersection of the negative semi-orbit with the 

positive semi-axis of ordinates by letter ( ),,0 ByB  and the first crossing 

of the positive semi-orbit with the negative semi-axis of ordinates by 

letter ( ),,0 CyC  where .0,0 <> CB yy  

Consider the segment of the trajectory of system (9), leaving the point 

B at null moment of time, passing through the point A and ending at the 

point .C  Let us suppose that 

.CB yy −≥  (20) 

Condition (20) holds iff 

.22
CB yy ≥  (21) 

Let us find values of function ( )yxV ,  at points B  and C  

( ) ( ) .
2

,0,
2

,0
22
C

CC
B

BB
y

yVV
y

yVV ====  
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Dividing 
dt

dy
 by 

dt

dx
 and ( ) ( )xgyxf −−  by y  in system (9), we obtain the 

differential equation 

( )
( )

.
y

xg
xf

dx

dy
−−=  (22) 

This differential equation describes the orbits BA  and CA  for 

[ ).,0 Axx ∈  Let ( )xyy 1=  and ( )xyy 2=  be functions, graphs of which 

are respectively orbits BA  and ,CA  hence their initial values are equal 

to ( ) ( ) .0,0 21 CB yyyy ==  

We find ( )( ) :2,1,, =ixyxV
dx

d
i  

( )( )
( )

( ) ( ) ( )
( )
( )





−−=












+=

xy

xg
xfxyxG

xy

dx

d
xyxV

dx

d

i
i

i
i 2

,
2

 

( ) ( ) ( ).xyxfxg i−=+   (23) 

Equality (23) yields 

( )
( ) ( ) ( ) .2,1,

2 0
0

2
=−=












+ ∫ idxxyxfxG

xy
i

x
x

i A
A

  (24) 

Integrating by parts, we transform the integral on the right-hand side of 

(24) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
,

0000
dx

xy

xFxg
dxxFxfxFxydxxyxf

i

xxx

ii

x AAAA

∫∫∫ ++=  

.2,1=i  

Bearing in mind that ( ) ( ) ,2,1,0,00 === ixyF Ai  we obtain 

( ) ( ) ( ) ( )
( ) ( )

( )
,2,1,

000
=+= ∫∫∫ idx

xy

xFxg
dxxFxfdxxyxf

i

xx

i

x AAA
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whence from (24) it follows 

( )
( ) ( ) ( )

( ) ( )
( )

.2,1,
2

0

00

2
=++= ∫∫ idx

xy

xFxg
dxxFxfxG

y

i

xx

A
i AA

  (25) 

Lemma 3.1. ( ) ( )111 byxy >  for [ ).,0 1bx ∈  

Proof. The function 
( )
( )xf

xg
y −=  has the following properties: 

( ) ,00 =y  0>y  for ( )1,0 ax ∈  and 
( )
( )

.lim
1

+∞=



−−→ xf

xg
ax

 The function 

( )xy1  is continuous and differentiable in the interval ( ) ( ) 0;,0 1 >xyx A  

for [ ) ( ) .0,,0 1 =∈ AA xyxx  The function ( )xy1  increases in the interval 

( ),,0 Dx  where Dx  is the abscissa of the point ,D  in which the curves 

( )xyy 1=  and 
( )
( )xf

xg
y −=  intersect. Obviously, .1axD <  

Let us show that for ( ),,0 1ax ∈  curves ( )xyy 1=  and 
( )
( )xf

xg
y −=  

intersect at a single point D  (no other intersection points). Indeed, for 

1axxD <<  the function 
( )
( )xf

xg
−  increases and ( )xy1  decreases (since 

01 <
dx

dy
 for ),Dxx >  so there are no other points of intersections 

(except the point ).D  Consequently, in the interval ( )Dx,0  the function 

( )xy1  increases and in ( )1, bxD  it decreases. 

Let us show that ( ) ( ).0 111 byy >  To do this, consider the function 

( ) ( ).1 xFxy +  Its derivative is equal to 

( ) ( )[ ] ( )
( )
( )

( )
( )
( )

.0
11

1 <−=+−−=+
xy

xg
xf

xy

xg
xfxFxy

dx

d   (26) 

From inequality (26) it follows that 

( ) ( ) ( ) ( ).00 1111 bFbyFy +>+  (27) 
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Bearing in mind that ( ) ( ) ,00 1 == bFF  from (27) we obtain 

( ) ( ).0 111 byy >  (28) 

Since ( )xy1  in ( )Dx,0  increases and in ( )1, bxD  decreases, from (28) it 

follows that ( ) ( )111 byxy >  for [ ).,0 1bx ∈  This completes the proof of 

lemma. 

From this lemma it follows that 

( ) ( )
( )

( ) ( )
( )111 by

xFxg

xy

xFxg
−<−  for ( ),,0 1bx ∈  

or the same 

( ) ( )
( )

( ) ( )
( )111 by

xFxg

xy

xFxg
>  for ( ).,0 1bx ∈  (29) 

The function ( )xy1  decreases in [ ),,1 Axbx ∈  therefore ( ) ( )xyby 111 >  for 

( ).,1 Axbx ∈  This yields 

( ) ( )
( )

( ) ( )
( )111 by

xFxg

xy

xFxg
>  for ( ).,1 Axbx ∈  (30) 

From equality (25) and inequalities (29) and (30), we obtain 

( )
( ) ( ) ( )

( )
( ) ( ) .1

2
0

0110

2
1 dxxFxg

by
dxxFxfxG

y AA xx

A ∫∫ ++>  

Since the point A  has been chosen from the condition ,1α=Ax  where 

1α  is the root of the equation ( ) ,0=Φ x  this inequality can be written in 

the form 

( )
( ) ( ) ( ) .

2
0

0

2
1 dxxFxfxG

y Ax

A ∫+>  (31) 
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Lemma 3.2. The curve ( )xyy 2=  has not points of intersection with 

the branch of the curve 
( )
( )xf

xg
y −=  which lies in the fourth quadrant of 

the plane .Oxy  

Proof. Assume the contrary: let these curves have one or more points 

of intersection. If we move along the curve ( )xyy 2=  from the point C  

towards the point ,A  then let P  be the point of intersection of this curve 

with the curve 
( )
( )xf

xg
y −=  closest to the point .A  Taking into account 

that the function 
( )
( )xf

xg
−  increases for ,1ax >  the slope of the tangent to 

the curve ( )xyy 2=  at the point P  is positive (see Figure 2). 

On the other hand, since the equality 
( )
( )xf

xg
y −=  holds at the point 

,P  then the slope tangent to the curve ( )xyy 2=  is equal to zero. This 

contradiction proves the lemma. 

 

Figure 2. 
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Since according to Lemma 3.2 the curves ( )xyy 2=  and 
( )
( )xf

xg
y −=  

do not intersect, then conditions 

( )
( )
( )xf

xg
xy −<2  for ( ),,0 1ax ∈  

( )
( )
( )xf

xg
xy −>2  for ( )Axax ,1∈   (32) 

are valid. 

Consider the function ( ).2 xyy =  For ( ),,0 1ax ∈  we have ( ) ,0>− xf  

( ) ,02 <xy  whence it follows 

( )
( )
( )

.0
2

2 >−−=
xy

xg
xf

dx

dy
 (33) 

For ( ),,1 Axax ∈  the conditions ( ) 0>xf  and (32) also imply inequality 

(33), whence it follows that ( )xy2  increases for ( ),,0 Axx ∈  therefore 

( ) ( )122 byxy <  for ( ).,0 1bx ∈  

We have ( ) ( ) 0,0 2 << xyxF  in the interval ( ),,0 1b  whence we 

obtain 
( ) ( )[ ]

( )
0

2
>

−

−

xy

xFxg
 for ( ).,0 1bx ∈  Since the function ( )xy2  

monotonically increases, then ( )xy2−  monotonically decreases, hence 

( ) ( ) 0122 >−>− byxy  for ( ),,0 1bx ∈  whence we have 

( ) ( )
( )

( ) ( )
( )122 by

xFxg

xy

xFxg
<  for ( ).,0 1bx ∈  

Consider the function 
( ) ( )

( )xy

xFxg

2
 in ( ):,1 Axb  

( ) ( )
( )

( ) ( )
( )

,
22







−

−=
xy

xFxg

xy

xFxg
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whence by increasing ( )xy2  in ( ),,1 Axb  we have 

( ) ( )
( )

( ) ( )
( )

,
122 by

xFxg

xy

xFxg

−
>

−
 

or the same 

( ) ( )
( )

( ) ( )
( )

.
122 by

xFxg

xy

xFxg
<  (34) 

Hence inequality (34) holds for ( ) ( ).,,0 11 Axbbx ∪∈  From equality 

(25) for 2=i  and inequality (34), we obtain 

( )
( ) ( ) ( )

( )
( ) ( ) .1

2
0

0120

2
2 dxxFxg

by
dxxFxfxG

y AA xx

A ∫∫ ++<  

Taking into account that  

( ) ( ) ,0
0

=∫ dxxFxg
Ax

 (35) 

we get the inequality 

( )
( ) ( ) ( ) .

2
0

0

2
2 dxxFxfxG

y Ax

A ∫+<  (36) 

Bearing in mind that ( ) ( ) ,0,0 22
2

22
1 CB yyyy ==  from (31) and (36) it 

follows 

( ) ( ) ( ) .
22

2

0

2
B

x

A
C y

dxxFxfxG
y A

<+< ∫  (37) 

Thus, we see that inequality (21) holds under condition (35). 

Now choose a point E  with coordinates ( )0,Ex  on the negative semi-

axis of abscissa such that .2α=Ex  Conditions of the theorem imply that 

inequalities ( ) ( ) 0,0 >< xFxg  hold for ( ),0,2bx ∈  whence it follows 

that ( ) 0>Φ x  for [ ).0,2bx ∈  Taking into account that ( ) ,0,0 22 =αΦ<α  
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we obtain that .22 bxE <α=  Let −γE  and +γE  be respectively negative 

and positive semi-orbits of system (9), passing through the point .E  

Denote by letter ( ),,0 KyK  the first intersection of the negative semi-

orbit −γE  with the negative semi-axis of ordinates, and denote by letter 

( )QyQ ,0  the first intersection of the positive semi-orbit +γE  with the 

positive semi-axis of ordinates. Here .0,0 >< QK yy  

Consider now the segment of the trajectory of system (9), leaving the 

point K  at null moment of time, passing through the point ,E  and 

ending at the point .Q  Assume that 

.QK yy ≥−   (38) 

Condition (38) holds iff 

.22
QK yy ≥   (39) 

Arguing as before, we can show that 

( ) ( ) ( )
22

2

0

2
K

x

E
Q y

dxxFxfxG
y E

<+< ∫   (40) 

under condition 

( ) ( ) ,0
0

=∫ dxxFxg
Ex

 

where Ex  is the abscissa of the point .E  

Let us write equality (16) in the form 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ,0
1

2 0

0
=+++ ∫∫

α

α
dxxFxfxgdxxFxfxg  

whence we obtain 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] .
12

00
dxxFxfxgdxxFxfxg +=+ ∫∫

αα
  (41) 
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Bearing in mind that 

( ) ( ) ( ) ( ),,,,
21

00
21 EAEA xGdxxgxGdxxgxx ===α=α ∫∫

αα
 

we get 

( ) ( ) ( ) ( ) ( ) ( ) .
00

dxxFxfxGdxxFxfxG
EA x

E

x

A ∫∫ +=+  (42) 

Equation (42) and inequalities (37) and (40) yield 

., 2222
KCBQ yyyy <<  (43) 

Taking into account relations (43), let us construct the figure BACKEQB 

on the plane .Oxy  This figure is bounded by the curves BAC, KEQ and 

straight line segments QB and CK (see Figure 3). 

 

Figure 3. 
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Since the trajectories of system (9), starting from straight line 

segments QB and CK, directed inside the figure BACKEQB, then this 

figure is an invariant set of system (9). Taking into account that the 

figure BACKEQB is a bounded set, according to the Poincaré-Bendixson 

theorem, we can state that any trajectory of this set tends either to an 

asymptotically stable equilibrium position, or to a limit cycle. According 

to Property 1, system (9) has a unique equilibrium state 0,0 == yx  

which is unstable. Hence system (9) has a limit cycle ( ) ( ),, tytx cc  all 

points of which satisfy the inequalities ( ) 12 α<<α txc  (because the 

whole figure BACKEQB is located in the strip 12 α<<α x  of the plane 

Oxy). The proof of theorem is complete. 

Remark 3.1. It is obvious that condition (16) is satisfied if system (9) 

is such that ( )xf  is even function and ( )xg  and ( )xF  are odd functions. 

In this case .12 α−=α  

Example 3.1. Consider system (9) in which ( ) ( ),
5
6

15
82 −−= xxxf  

( )








<

≥

=
.0for

18
73

,0for

xx

xx

xg  

The function ( )xf  has the following properties: ( ) 0<xf  for ( ,
15

4286 −−∈x  

) ( ) 0,
15

4286 >+ xf  for ( ) ( ).,,
15

4286
15

4286 ∞+−∞−∈ +− ∪x  

The function 
( )
( )xf

xg
−  increases for all x from the domain of definition, 

because its derivative is positive in the intervals ( ),,
15

4286 −−∞−  

( ) ( ) ( ).,,,0,0,
15

4286
15

4286
15

4286 ∞+− ++−  
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We find ( ) ( ) ;; 2
5
63

15
4

35
62

15
4

3

43
xxxxFxxxF xx −−=−−=  

( ) 2.3
5
24

15
1

150

5
−=−−=∫ xxxdsssF xx

 and 3=x  are the roots of the 

equation ( ) .0
0

=∫ dsssF
x

 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]dxxFxfxgdxxFxfxg +=+ ∫∫ −−

0

2

3

2
 

( ) ( ) ( )[ ] .099
3

0
=+−=++ ∫ dxxFxfxg  

Thus, according to Theorem 3.1, for given ( )xg  and ( ),xf  there exists a 

unique stable limit cycle of the Liénard equation, and this limit cycle is 

located in the strip .32 <<− x  

Example 3.2. Consider system (9) in which 

( ) ( )
( )

( )







<−

≥−
==

.0for1
116
19

3

,0for1
116
19

3
,

2 xx

xx
xfxxg   (44) 

We derive 

( )
( )

( )








<−

≥−
=−==

.0for
3116

193

,0for
2116

19
3

,1,1 3

2

21

xx
x

xx
x

xFaa  

The function 
( )xf

x
−  increases in intervals ( ) ( ) ( ) ( )∞−−∞− ,1,1,0,0,1,1,  

because its derivative is positive in these intervals. The function 

( ) ( )dsssFx
x

∫=Φ
0

 has roots .5,
3
8

21 −=α=α  Let us verify the 

feasibility of the equality ( ) ( )[ ] .01

2
=+∫

α

α
dsxFxfx  Indeed, 
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( ) ( )[ ] ( )5
2
1 2

0

5

3
8

5
−−=+ ∫∫ −−

FxdxdxxFxfx  

.0
3
8

2
1 23

8

0
=






++ ∫ Fxdx  

Moreover, ( ) .∞+=∞+F  Therefore, if ( )xf  and ( )xg  are defined by 

equalities (44), then in the strip 
3
85 <<− x  of the plane ,Oxy  

according to Theorem 3.1, there exists a unique stable limit cycle of 

system (9), which is globally asymptotically stable. 

4. The Amplitude of the Limit Cycle of the  

Van Der Pol Oscillator 

A popular choice of the model to describe the dynamics of nonlinear 

physical phenomena is the van der Pol oscillator. His behaviour is 

governed by the differential equation (3). In economics, the van der Pol 

equation is equivalent to the system of differential equations of transition 

economy [23]. Equation (3) with the parameter value 0=µ  becomes the 

equation of simple harmonic oscillator 

,0=+ xxɺɺ  (45) 

which models the inflationary fluctuations in conditions of full 

competition [23]. The behaviour of solutions of the van der Pol equation 

essentially depends on a positive parameter .µ  For example, if ,1�µ  

then these solutions are close to sinusoidal, but if ,1�µ  then the 

solution becomes similar to a meander. Such behaviour of solutions, van 

der Pol called a relaxation oscillation [3]. 

It is known [24, p.300], that the differential Equation (3) has a single 

stable limit cycle for any ;0>µ  it has been shown [25] that this limit 

cycle is not algebraic. In general, to find the periodic solution of the van 
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der Pol equation is not possible, therefore, the efforts of many researchers 

have focused on finding its approximate solution. Dorodnitsyn [26] 

studied Equation (3) by analytical way; to do this, he created the 

asymptotic method. Sudakov [27] suggested another approach for the 

description of a limit cycle of the van der Pol equation in the relaxation 

mode (in case of large ).µ  In paper [28], a periodic solution of Equation 

(3) is constructed in the form of a series converging for all values of the 

damping coefficient .µ  

An important direction in the study of a limit cycle of the van der Pol 

equation is the estimation of its amplitude (the largest value of x). 

Zonneveld [29], solving the equation of van der Pol numerically using a 

computer, received approximate values of the amplitude Am for some 

fixed values of :µ  

µ  Am   µ  Am  

1 2, 00862  6 2, 01983 

2 2, 01989  7 2, 01822 

3 2, 02330  8 2, 01675 

4 2, 02296  9 2, 01544 

5 2, 02151  10 2, 01429 

In paper [30], two computational methods are proposed. These methods 

allow to find approximately the amplitude of a periodic solution of 

Equation (3). The first of these methods bases on discrete mechanics. In 

the second of these methods, the author used the Taylor series expansion 

of the solution. The results are obtained as the table: 

µ  ( )1Am  ( )1Am  

0, 1 2, 005 2, 000 

1, 0 2, 009 2, 009 

10, 0 2, 014 2, 014 

Here Am(1) and Am(2) are the amplitude values defined respectively by 

the first and the second method. 
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In contrast to papers [29] and [30], there are a lot of results allowing 

to evaluate the amplitude of the limit cycle of the van der Pol equation, 

regardless of the value of .µ  

Odani [12] obtained the estimation of the amplitude of Equation (3): 

5425,2323Am ≈+<  for all .µ  (46) 

Then, in paper [31], studying the Liénard equation, assuming the 

function ( )xF  to be such as in Theorem 2.1, he suggested the existence of 

auxiliary functions [ ] [ ),,,0:, ∞→/φ bbυ  related in some way with 

function ( )xF  and ( ),xg  and proved a theorem, which states that in this 

case, the limit cycle of the Liénard equation is located in the domain 

( ).bx υ/<  Applying the proven theorem to the van der Pol equation, he 

showed that the amplitude of the limit cycle of equation (2) for any µ  

satisfies the constraint 

.3233,2Am <  (47) 

The obtained estimation improved his earlier result (46). 

Equation (4) is studied in paper [32] where ( )xF  is assumed to be 

such as in Theorem 2.1. The estimate ub ≤≤ Am1  is obtained, where 

the positive root u is determined from the equation ( ) .0
0

=∫ dxxF
u

 

For the van der Pol equation we have 

( ) ,0
212

,0
3

,
3

243

0

3
=−=










−−= ∫

uu
dxx

x
x

x
xF

u

 

whence 

4495,26Am ≈=≤ u  for all .µ  (48) 

Now let us estimate the amplitude of the limit cycle of equation (3) 

applying Theorem 3.1. Equation (2) is a special case of Equation (9) where 
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( ) ( ) ( ) .,12 xxgxxf =−µ=  It is easily seen that under these ( )xf  and 

( ),xg  all conditions of Theorem 3.1 are satisfied. In this case the equation 

( ) 0=Φ x  has the form  

,0
3

3

0
=










−µ∫ dss

s
s

x

 

whence we obtain .0
315

35
=−

xx  The positive and the negative roots of 

this equation respectively, are ,5,5 21 −=α==α= xx  hence 

2361,25Am ≈≤  for all .µ  

Thus, applying Theorem 3.1 to the van der Pol equation, we obtained 

estimations of the amplitude more exact than (46), (47) and (48). 
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