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Abstract 

The Riccati equation method is used to establish new strict oscillatory criteria 

for systems of two linear First order ordinary differential equations. These criteria 

can be used for detection of oscillating linear matrix Hamiltonian systems. 

1. Introduction 

Let ( ) ( )2,1, =kk jta j  be real-valued continuous functions on 

[ ).,0 ∞+t  Consider the linear system 
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and associated with it the Riccati equation 

( ) ( ) ( ) ,,0 021
2

12 tttaztBztaz ≥=−++′   (1.2) 

where ( ) ( ) ( ) ., 02211 tttatatB ≥−=  The solutions ( )tz  of this equation, 

existing on an interval [ ) ( )+∞≤<≤ 21021 ,, ttttt  are connected with 

solutions ( ) ( )( )tt υ/φ ,  of the system (1.1) by the relations (see [1]) 
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[ )., 21 ttt ∈  Let ( )tz0  be a solution of Equation (1.2) with ( ) .00 itz =  It 

was shown in [2] that ( )tz0  exists on [ ).,0 ∞+t  Set: ( ) ( ),00 tztx Re≡  

( ) ( ) .,Im 000 tttzty ≥≡  Then for every real-valued solution ( ) ( )( )tt υ/φ ,  of 

the system (1.1) we can write the equalities (see [2]) 
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where ν,µ  are some real constants, ( )
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Definition 1.1. A connected component of the set of zeroes of ( )tφ  

( )( )tυ/  of a real-valued solution ( ) ( )( )tt υ/φ ,  of the system (1.1) is called a 

null-element of ( ) ( )( )tt υ/φ  and is denoted by ( ) ( )( ).υ/φ NN  
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Definition 1.2. Two null-elements ( )φ1N  and ( ) ( ( )υ/φ 12 NN  and 

( ))υ/2N  of ( ) ( )( )tt υ/φ  of a solution ( ) ( )( )tt υ/φ ,  of the system (1.1) are called 

congenerous if for every ( ) ( ( )) 2,1, =/∈φ∈ jNNt jjj υ  the inequality 

( ) ( ) ( ) ( ) [ ],,, 21121012
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is satisfied, where ( ) ( ) ( )tztzty 111 ,Im≡  is a solution of the Riccati 

equation 

( ) ( ) ( ) ,,0 012
2

21 tttaztBztaz ≥=−−+′  

with ( ) .01 itz =  

The congeniality relation is an equivalence (see [2]). 

Definition 1.3. An equivalence class of congenerous null-elements of 

( ) ( )( )tt υ/φ  of a solution ( ) ( )( )tt υ/φ ,  of the system (1.1) is called a null-class 

of ( ) ( )( )tt υ/φ  and is denoted by ( ) ( )( ).υ/φ nn  

Definition 1.4. The system (1.1) is called oscillatory if for its every 

real-valued non trivial solution ( ) ( )( )tt υ/φ ,  the functions ( )tφ  and ( )tυ/  

have arbitrary large zeroes. 

Definition 1.5. The system (1.1) is called strict oscillatory if for its 

every real-valued non trivial solution ( ) ( )( )tt υ/φ ,  the functions ( )tφ  and 

( )tυ/  have infinitely many null-classes. 

Notice that from the strict oscillation of the system (1.1) it follows its 

oscillation, but from the oscillation of the system (1.1) does not follow its 

strict oscillation (see [2]). 

In this paper, we use the Riccati equation method for establishing 

some new strict oscillatory criteria for the system (1.1). They can be used 

for, e.g., detection of oscillating linear matrix Hamiltonian systems (see 

[3]). 
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2. Auxiliary Propositions 

Hereafter we will assume that the coefficient functions ( )ta12  and 

( )ta21  have unbounded supports (the case when one of them has a 

bounded support is trivial). 

Definition 2.1. A real-valued solution of Equation (1.2) is called 

regular-1t  if it exists on [ ).,1 ∞+t  

Definition 2.2. A real-valued solution ( )tx  of Equation (1.2) is called 

,normal-1t  if there exists a neighbourhood ( )( ) ( ( ) ( ) )δ+δ−≡δ 111 , txtxtxU  

of ( )1tx  such that every solution ( )tx~  of Equation (1.2) with 

( ) ( )( )11
~ txUtx δ∈  is regular.-1t  Otherwise it is called .extremal-1t  

Denote by ( )1treg  the set of all ( ) ,0 R∈x  for which the solutions ( )tx  

of Equation (1.2) with ( ) ( )01 xtx =  are regular.-1t  

Lemma 2.1. If ( ) 012 ,0 ttta ≥≥  and Equation (1.2) has a regulart -1  

solution for some ,01 tt ≥  then it has the unique extremalt -1  solution 

( )tx∗  and ( ) ( )[ ).,11 ∞+= ∗ tytreg  

See the proof in [4]. 

For any continuous function ( )tu  on [ )∞+,0t  set 

( ) ( ) ( ) ( ) ( )[ ] .,2exp 01212 ttddssBsusaat
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Theorem 2.1. Let ( ) ,,0 012 ttta ≥≥  and let Equation (1.2) have a 

regulart -1  solution ( ).tx  In order that ( )tx  is normalt -1  it is necessary 

and sufficient that ( ) .1 +∞<txν  

See the proof in [4]. 
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Furthermore, we will assume that the set ([ ) ( )) ∩tasuppt 121 , �∞+  

([ ) ( ) ( ))ttBsuppt �∞+,1  has a null measure. Denote by Ω  the set of all 

positive and continuously-differentiable on [ )∞+,0t  functions ( )tf  on 

[ )∞+,0t  for which the set ([ ) ( )) ([ ) ( ) ( ))ttfsuppttasuppt ′∞+∞+ �� ,, 1121 ∩  

has a null measure. Finally for arbitrary functions ( )tu  and ( )tv  on 

[ )∞+,0t  set 

( )
( )

( )
( )

( )

( )







=

=/
≡








.0if,0

,0if,

0
tv

tv
tv

tu

tv

tu
 

Lemma 2.2. Let ( )tx  be a regulart -1  solution of Equation (1.2) and 

let ( ) .,0 012 ttta ≥≥  Then for every ,Ω∈f  the following inequality is 

valid. 
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Proof. By (1.2), we have 

( ) ( ) ( ) ( ) ( ) ( ) .,0 121
2

12 tttatxtBtxtatx ≥=−++′  

Multiply both sides of this equality by ( ) ( )Ω∈tf  and integrate from 1t  to 

.t  We obtain ( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ( ) ( ) ( ))ττττττ fBfxaftxtftxtf
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( ) ( ) ( )] .,0 121 ttdafx ≥=− ττττ  Allocating a full square under the 

integral of the obtained equality and dividing both sides of it by ( )tf  we 

obtain 
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From here it follows (2.1). The lemma is proved. 
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Lemma 2.3. Let ( ) .,0 012 ttta ≥≥  Then if the system (1.1) is not strict 

oscillatory, then Equation (1.2) has a regulart -1  solution for some .01 tt ≥  

Proof. From the nonnegativity condition on ( )ta12  it follows that the 

integral ( ) ( ) τττ dya

t

012

0

∫
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 converges (recall that ( ) ).,0 00 ttty ≥>  

Indeed if ( ) ( ) ,012
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+∞=∫
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 then for some solution ( ) ( )( )tt υ/φ ,  of the 

system (1.1) the function ( )tφ  has infinite many null-classes. Then by 

virtue of Lemma 4.2 from [2] the system (1.1) is strict oscillatory which 

contradicts one of the conditions of the lemma. So the integral 

( ) ( ) τττ dya

t

012

0

∫
∞+

 is convergent. Therefore from (1.4), it follows that for 
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some real-valued solution ( ) ( )( )tt 0, υ0 /φ  of the system (1.1) ( ) 10 ,0 ttt ≥=/φ  

for some .01 tt ≥  By (1.3) from here it follows that ( )
( )
( ) 1

0

0
0 , tt

t

t
tx ≥

φ

/
≡
υ

 is 

a regular-1t  solution of Equation (1.2). The lemma is proved. 

In Equation (1.2) substitute 
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We obtain 
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12 tttQytay ≥=+λ++′   (2.3) 

or 

( ) ( ) ( ){ } ( ){ } ,,02 0
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12
2
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For arbitrary R∈λ  set 

( )( ){ }.0:0 ≥+λ±≥≡±
λ tQttA  

Lemma 2.4. Let the following conditions be satisfied: 

(1) ( ) ;,0 012 ttta ≥≥  

(2) ( ) ( )( ) ;
2

12 +∞=+λ∫ dttQta  

(3) ( ) ;12 +∞=∫

+
λ

−
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A
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(4) Equation (2.3) has a regulart -1  solution for some .01 tt ≥  Then for 

the unique extremalt -1  solution ( )ty∗  of Equation (2.3) the equality 

( ) −∞=∗
∞→=

ty
t
lim  (2.5) 

is satisfied. 
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Proof. By virtue of Lemma 2.1 from (4) it follows that Equation (2.1) 

has the unique extremal-1t  solution which we denote by ( ).ty∗  By (2.3) 

we have 

( ) ( ) ( ) ( ) ( )( ) ., 1
2

121

1

ttdQyatyty

t

t

≥+λ+−= ∗∗∗ ∫ ττττ   (2.6) 

From here and from the nonnegativity of ( )ta12  it follows that ( )ty∗  is 

non increasing on [ ).,1 ∞+t  Suppose (2.5) is false. Then there exists a 

finite limit ( ) ( ).lim tyy
t

∗
+∞→

∗ =∞+  Two cases are possible 

(a) ( ) ,0≥∞+∗y   

(b) ( ) .0<∞+∗y  

It follows from (2.6) that 

( ) ( ) ( ) ( )( ) .
2

121

1

+∞<+λ+≡ ∗

∞+
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t

  (2.7) 

Assume the case (a) takes place. Then from (2) it follows that ( ) ,1 +∞=tI  

which contradicts (2.7). If the case (b) takes place then from (3) it follows 

that again ( ) ,1 +∞=tI  which contradicts (2.7). So (2.5) is valid. The 

lemma is proved. 

Lemma 2.5. Let the conditions (1) and (4) of Lemma 2.4 and for some 

R∈λ  and 1≥α  the following conditions be satisfied: 
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(6) ( ) ( ) ( )[ ] ;inflim
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Then (2.5) is valid. 

Proof. Assume (2.5) is false. Then there exists a finite limit  

( ) ( )tyy
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∗ ≡∞+ lim  from here and from (2.6) it follows, that 
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Set ( ) (( ) ( ) ., 1ttytyt ≥∞+−≡ρ ∗∗  Obviously 
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Due to (2.9) chose 12 tt >  so large that 
( )

( )
.,

2

12
2tt

y

t
≥<

∞+

ρ

∗
 Then taking 

into account the conditions (5) and (6) from (2.10) we obtain (from 5) it 
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From here and from (7) it follows that ,0>I  which contradicts (2.8). The 

obtained contradiction proves (2.5). The lemma is proved. 

3. Strict Oscillation Criteria 

For any Ω∈f  set: 
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Theorem 3.1. Let ( ) ,,0 012 ttta ≥≥  and let for some Ω∈f  the 

following relations be satisfied: 

( )1A  
( )

( )
;12

0

+∞<∫
∞+

τ
τ

τ
d

f

a

t

 

( )1B  ( ) .0 +∞=tI f  

Then the system (1.1) is strict oscillatory. 

Proof. Suppose, that the system (1.1) is not strict oscillatory. Then by 

Lemma 2.3 from the nonnegativity of ( )ta12  it follows that Equation (1.2) 

has a regular-1t  solution for some .01 tt ≥  By Lemma 2.1 from here and 

from the nonnegativity of ( )ta12  it follows that Equation (1.2) has a 

normal-1t  solution ( ).0 tx  Then by virtue of Theorem 2.1, we have 

( ) .10
+∞<txν   (3.1) 

By Lemma 2.2, we get 
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From here and from the conditions ( )1A  and ( )1B  of the theorem it 

follows that ( ) ( ) ,000
+∞=≥ tMIt fxν  where 
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which contradicts (3.1). The obtained contradiction completes the proof of 

the theorem. 

Theorem 3.2. Let ( ) 012 ,0 ttta ≥≥  and let for some Ω∈f  the 

conditions 

( )1B  ( ) ;0 +∞=tI f  
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as well as for some R∈λ  the conditions 

( )2B  ( ) ;12 +∞=∫
−
λ

ττ da

A

 

( )2C  ( ) ( )[ ] +∞=+λ∫
+
λ

τττ dQa

A

12  

be satisfied. Then the system (1.1) is strict oscillatory. 

Proof. Suppose the system (1.1) is not strict oscillatory. Then by 

Lemmas 2.1 and 2.3 from the nonnegativity of ( )ta12  it follows that 

Equation (1.2) has a extremal-1t  solution for some .01 tt ≥  Then by (2.2) 

Equation (2.3) has a extremal-1t  solution ( ),ty∗  and 

( ) ( ) ( ) ( ) ( )( ) ., 1
2
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1

ttdQyatyty

t

t

≥+λ+−= ∗∗∗ ∫ ττττ  
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By Lemma 2.4 from the conditions ( )2B  and ( )2C  it follows that 

( ) .lim −∞=∗
+∞→

ty
t

 (3.2) 

From the condition ( )2A  it follows that there exists an infinitely large 

sequence { }+∞
=θ 1nn  such that 
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Then due to (3.2) chose nt θ=2  so large that 

( ) .42 Sty −λ−<∗   (3.3) 

Let ( )tx0  be a solution of Equation (1.2) with 
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Let ( )tx∗  be the extremal-1t  solution of Equation (1.2). In virtue of (2.2) 

we have 
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From here and from (3.3), we obtain 
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By Lemma 2.1 from here it follows that ( )tx0  is .normal-2t  Then by 

virtue of Theorem 2.1 

( ) .20
+∞<txν   (3.5) 

By Lemma 2.2 taking into account (3.4), we have 
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From here we get 
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 From here and from 

( )1B  it follows that ( ) ,20
+∞=txν  which contradicts (3.5). The obtained 

contradiction completes the proof of the theorem. 
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Theorem 3.3. Let ( ) 012 ,0 ttta ≥≥  and let for some R∈λΩ∈ ,f  

and 1≥α  the following conditions be satisfied: 
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τττ dta
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Then the system (1.1) is strict oscillatory. 

Proof. Suppose the system (1.1) is not strict oscillatory. Then by 

Lemmas 2.1 and 2.3, Equation (1.2) has a extremal-1t  solution for some 

.01 tt ≥  Then by (2.2), Equation (2.3) has a extremal-1t  solution ( ),ty∗  

and 

( ) ( ) ( ) ( ) ( )( ) ., 1
2
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1
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t

t

≥+λ+−= ∗∗∗ ∫ τττ  
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By Lemma 2.5 from the conditions ( )3A - ( )3C  it follows that 

( ) .lim −∞=∗
+∞→

ty
t

 Further as in the proof of Theorem 3.2. The theorem is 

proved. 

Theorem 3.4. Let the following conditions be satisfied: 

( )3C  ( ) ( ) ;1,0suplim 12
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Then the system (1.1) is strict oscillatory. 

Proof. Suppose the system (1.1) is not strict oscillatory. Then by 

Lemmas 2.1 and 2.3, it follows from the nonnegativity of ( )ta12  that 

Equation (1.2) has a extremal-1t  solution for some .01 tt ≥  Then by (2.2), 

Equation (2.3) has also a extremal-1t  solution ( )ty∗  and 

( ) ( ) ( ) ( ) ( )( ) ., 1
2

121

1

ttdQyatyty

t

t

≥+λ+−= ∗∗∗ ∫ ττττ   (3.6) 

From the condition ( )4B  it follows that ( ) 2,0 ttty ≥≥∗  for some .12 tt ≥  

Without loss of generality, we can take that .12 tt =  Then from (3.6), it 

follows that ( ) ( ) ( )( ) .
2

12
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+∞<+λ+∗

∞+

∫ ττττ dQya

t

 From here we have  
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( ) ( ) ( ) ( )( ) τττττ dQytaI
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But on the other hand from the nonnegativity of ( ),ty∗  from (2.1), ( )4A  

and ( )4B  it follows that .01 >I  We come to the contradiction. The 

theorem is proved. 

Theorem 3.5. Let ( ) 012 ,0 ttta ≥≥  and let the following conditions 

be satisfied: 
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Then the system (1.1) is strict oscillatory. 

Proof. Suppose the system (1.1) is not strict oscillatory. Then by 

virtue of Lemmas 2.1 and 2.3 from the nonnegativity of ( ),12 ta  it follows 

that Equation (1.2) has a extremal-1t  solution for some .01 tt ≥  

Therefore by (2.2), Equation (2.3) has also a extremal-1t  solution ( )ty∗  

and 
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Consequently ( ) ( ) ., 11 tttyty ≥≤ ∗∗  From here and from the condition 

( ),A5  it follows that for some 12 tt ≥  the following inequality holds: 
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Let ( )tx0  be a solution of Equation (1.2) with 
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( )tx∗  is the extremal-2t  solution of Equation (1.2). From here and from 

(3.5) it follows 
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Hence by Lemma 2.1 ( )tx0  is .normal-2t  Further as in the proof of 

Theorem 3.2. The theorem is proved. 
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