Transnational Journal of Mathematical Analysis and Applications
Vol. 10, Issue 1, 2022, Pages 75-93

ISSN 2347-9086

Published Online on December 13, 2022

© 2022 Jyoti Academic Press

http://jyotiacademicpress.org

STRICT OSCILLATION CRITERIA FOR FIRST-
ORDER TWO DIMENSIONAL LINEAR SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS

G. A. GRIGORIAN

Institute of Mathematics NAS of Armenia
Armenia
e-mail: mathphys2@instmath.sci.am

Abstract
The Riccati equation method is used to establish new strict oscillatory criteria
for systems of two linear First order ordinary differential equations. These criteria

can be used for detection of oscillating linear matrix Hamiltonian systems.

1. Introduction

Let aj(¢) (j, k =1,2) be real-valued continuous functions on

[ty, +0). Consider the linear system

0 = a1 ()0 + ara(t)y,
(1.1)

P = agy ()0 + agg(t)v, t =ty
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and associated with it the Riccati equation
2+ alg(t)zz + B(t)Z - a21(t) = 0, t 2> to, (12)

where B(t) = a11(t) — agylt), t =1ty. The solutions z(¢) of this equation,
existing on an interval [t;, t3), (g <t < g < +) are connected with

solutions (¢(¢), v(t)) of the system (1.1) by the relations (see [1])

¢
() = ¢(t1)exp{ [ lans () + B(T)]dT}, 0(0) % 0, 1) = 2)0(0), (1.3
i
t € [t;,t3). Let zy(t) be a solution of Equation (1.2) with zy(ty) = i. It
was shown in [2] that z,(¢) exists on [ty, +o). Set: x((t) = Re z¢(¢),
yo(t) = Im z((¢t), t = ¢y. Then for every real-valued solution (¢(¢), »(¢)) of
the system (1.1) we can write the equalities (see [2])
Isp®) |
00) = n L= sin| [ arp(r)yo(r)dr + v, (a4

Vyo(t) i

t

J
¥ (t) = uyxg () + ¥ (1) 5/20) cos j ar2(T)yo(T)dr + v —ag(t) |,  (1.5)
to

Vyo(t)

JE a1 (1) + agy(7) d’l’},

where p, v are some real constants, Jg/(t) = exp{ 3

to

t t
xo( ) = arctan xo( )

0 (t) = arcsin ———————x—
x39t0+y§(t) Yo()

b2 t.

Definition 1.1. A connected component of the set of zeroes of ¢(t)
(p(#)) of a real-valued solution (¢(¢), v(¢)) of the system (1.1) is called a
null-element of ¢(t) (v(¢)) and is denoted by N(¢) (N(v)).
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Definition 1.2. Two null-elements N;(¢) and Ny(0) (Ny(v) and
Ny(p)) of o) (v(¢)) of a solution (0(t), v(t)) of the system (1.1) are called

congenerous if for every t; € N;(¢) (€ N;(»)), j =1, 2 the inequality

t t
[azs0mar| < a| |[ an@nmar| < x| reln. ta),
4 H

is satisfied, where y;(t) = Imz(t), z;(¢) is a solution of the Riccati

equation
Z'+ (121(t)z2 - B(t)z — a;9(t) = 0, t = ¢,
with z (¢y) = i.
The congeniality relation is an equivalence (see [2]).
Definition 1.3. An equivalence class of congenerous null-elements of

o(2) (p(t)) of a solution (¢(¢), v(¢)) of the system (1.1) is called a null-class
of ¢(¢) (v(t)) and is denoted by n(d) (n(p)).

Definition 1.4. The system (1.1) is called oscillatory if for its every
real-valued non trivial solution (¢(¢), »(¢)) the functions ¢(t) and (t)

have arbitrary large zeroes.
Definition 1.5. The system (1.1) is called strict oscillatory if for its
every real-valued non trivial solution (0(z), »(f)) the functions ¢(t) and

y(t) have infinitely many null-classes.

Notice that from the strict oscillation of the system (1.1) it follows its
oscillation, but from the oscillation of the system (1.1) does not follow its

strict oscillation (see [2]).

In this paper, we use the Riccati equation method for establishing
some new strict oscillatory criteria for the system (1.1). They can be used

for, e.g., detection of oscillating linear matrix Hamiltonian systems (see

[3]).
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2. Auxiliary Propositions

Hereafter we will assume that the coefficient functions a;9(¢) and
ag1(t) have unbounded supports (the case when one of them has a

bounded support is trivial).

Definition 2.1. A real-valued solution of Equation (1.2) is called
t;-regular if it exists on [t;, +).

Definition 2.2. A real-valued solution x(t) of Equation (1.2) is called
t;-normal, if there exists a neighbourhood Ug(x(¢;)) = (x() — 8, x() + 8)
of x(t;) such that every solution X(;) of Equation (1.2) with
X(t) € Us(x(ty)) is ¢ -regular. Otherwise it is called ¢; -extremal.

Denote by reg(t;) the set of all x(g) € R, for which the solutions x(z)
of Equation (1.2) with x(¢;) = x(g) are ¢ -regular.

Lemma 2.1. If a14(t) = 0, ¢ 2 ty and Equation (1.2) has a &, -regular
solution for some t; 2> ty, then it has the unique t;-extremal solution
x*(t) and reg(tl) = [y*(t1)7 +°°)-

See the proof in [4].

For any continuous function u(¢) on [¢y, +) set

—+oo

v, (0) = J’ ayo(7) exp |- J’ [2ay5 (s)u(s) + Bls)lds bdr, ¢ > ¢q.
t t

Theorem 2.1. Let a;9(f) 2 0, t > ¢y, and let Equation (1.2) have a
t;-regular solution x(t). In order that x(t) is t;-normal it is necessary

and sufficient that v, (t;) < +oe.

See the proof in [4].
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Furthermore, we will assume that the set ([¢;, + «)\suppa;5(t)) N
([t;, +)\suppB(¢t) (t)) has a null measure. Denote by Q the set of all
positive and continuously-differentiable on [t, +) functions f(¢) on
[tg, +o0) for which the set ([¢;, +0)\suppa;s(t)) N ([t;, +)\suppf (¢) (¢))
has a null measure. Finally for arbitrary functions u(f) and v(f) on

[to , +°°) set

(u(t)j ~ %, if v(t) # 0,
ul(t) Jo B .

0, if v(t) = 0.

Lemma 2.2. Let x(¢) be a ¢ -regular solution of Equation (1.2) and
let a;9(t) 2 0,t >1ty. Then for every f e Q, the following inequality is
valid.

C(tl ) x)

Sar)

t
L f(1)a1s(7) ( £(1)B(r) = f()Y’
+ f(t)z[{f(T)am(TH I ( ) ag () )O:Id’l', t>t, (2.1)

where

| 7AN2
- _ . - f(t)aia(7) ( f(7)B(r) - f'(7) -
clt, %) = f(t)elt) tjo {f( Jaay (r) + L0 (LB =L Md .
Proof. By (1.2), we have
x'(t) + ag (t)x2(t) + Bt)x(t) — agy (t) = 0, ¢ >1t;.

Multiply both sides of this equality by f(t)(€ Q) and integrate from ¢; to

t
t. We obtain f(O)x(t) ~ £t x() + [ [f(D)arg(r)e®() + (f(1)B(x) - £7))

141
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x(7) = f(t)agy(t)ldT = 0, ¢ >1¢. Allocating a full square under the
integral of the obtained equality and dividing both sides of it by f(¢) we

obtain

t -
Y LGD RN B AP R fOB) - @) | s
w0 - L 5 [ 1t )60+ AE

[\

ft) 2f(1)ayo(T)

t -
C L mrans (1) + FD a0 (f@BE) - F Y|,
f(t)JO {f( Janie) + G LEZEE jo_d

From here it follows (2.1). The lemma 1s proved.

Set

t
_(_B® a4 B0 4
Q) = (Zalz(t))o " 2[{(121( )+ [4a12(T)]0:|d > P2l

Lemma 2.3. Let a;5(t) 2 0, t > ty. Then if the system (1.1) is not strict

oscillatory, then Equation (1.2) has a t;-regular solution for some t; = i.

Proof. From the nonnegativity condition on a;49(t) it follows that the

+ oo

integral I a1a(T)yo(T)dT converges (recall that yy(¢) >0, ¢t > ¢;).
to
400

Indeed if j a15(7) yo(T)dr = +eo, then for some solution (¢(t), p(t)) of the
to

system (1.1) the function ¢(¢) has infinite many null-classes. Then by

virtue of Lemma 4.2 from [2] the system (1.1) is strict oscillatory which
contradicts one of the conditions of the lemma. So the integral

—+ oo
I a19(T)yo(T)dT is convergent. Therefore from (1.4), it follows that for
to
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some real-valued solution (¢, (t), vo(¢)) of the system (1.1) 0q(¢) # 0, ¢ = #;

for some #; > tg. By (1.3) from here it follows that x(¢) = é’g—g;, t 21t is
a t;-regular solution of Equation (1.2). The lemma is proved.
In Equation (1.2) substitute
RS
z=y+A+ j {[4%2(7)}0 + a21('r):|dﬂr, t > 1. (2.2)
to
We obtain
Y+apt)(y+ A+ Q1) =0, ¢t (2.3)
or
Y+ ap@)y? + 20100 + QU+ L + QWY =0, ¢ =1, (2.4)

For arbitrary A € R set
Af ={t 2ty : ¥ + Q(t)) = O}.
Lemma 2.4. Let the following conditions be satisfied:

(1) a2(t) 20, t = ty;
@ [ap (0 + QU)?dr = +eo;

A
(3) j ay9(t)dt = +oo;
Ay
(4) Equation (2.3) has a t-regular solution for some t; = ty. Then for

the unique t;-extremal solution y.(t) of Equation (2.3) the equality

lim y.(¢) = —oo (2.5)
t =00

is satisfied.
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Proof. By virtue of Lemma 2.1 from (4) it follows that Equation (2.1)
has the unique ¢;-extremal solution which we denote by y.(t). By (2.3)

we have

t
20 = ) - a4 h+ Q) dr 2. @6

i
From here and from the nonnegativity of a;9(t) it follows that y,(¢) is
non increasing on [¢;, +o). Suppose (2.5) is false. Then there exists a

finite limit y,(+o) = tlim y.(t). Two cases are possible
—> oo

(a) y*(+°°) 2 0’
(b) y.(+e0) < 0.

It follows from (2.6) that

+oco
1) = [ a0 + 2+ Qr)Pdr < 4o @7
i
Assume the case (a) takes place. Then from (2) it follows that I(¢;) = +oo,

which contradicts (2.7). If the case (b) takes place then from (3) it follows
that again I(f;) = +e, which contradicts (2.7). So (2.5) is valid. The

lemma is proved.

Lemma 2.5. Let the conditions (1) and (4) of Lemma 2.4 and for some

A e R and o =1 the following conditions be satisfied:

T

®) Toalz(t)exp —a f ayy (1) dr -2 jt B(r)dr—4 jt ayy (1) dr j ayy (s)ds

1) to to to i

t T 92
- I alZ(T)dTJ‘(aBT((SS%]OdS}dt < +oo;

to to
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(6) hm 1nf I a9 () (t — )% Un + Q(r)]dr < +oo;

t
(7) lim sup— I apo(t) @ - 7)%dT > 0.

t—>oo
)

Then (2.5) is valid.

Proof. Assume (2.5) is false. Then there exists a finite limit
Yy(+oo0) = tlim y4(¢) from here and from (2.6) it follows, that
>0

t
0<1I= thm i.[alQ(“r)(y*("r)+7»+Q(T))
oo 0 A

+oo

< lim X j am(T)(t‘T)a_l(y*(T)+x+Q(T))2dT 0.

t—+oo L t
i

Set p(t) = y.((t) — y«(+o0), t > t;. Obviously
p(t) = 0, for t — +oo, (2.9)

Then we have

t
I = lim supt% J' are (1) (t = )% L (u(Ho0) + 1 + Q(7) + p(1))2dr

t—>+oo
i

- Tim sup| 2 )Ja (1) (¢ — 1) 1[ 2p(7) j‘d’l‘

t—+oo Vs (+00)

t
4 20ulte) f ay9(7) (¢ = 7)* A + Q(r) ldr

o
t i

t
* ti [ a2+ Q) + pir)Par
|
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9 t
. Vi (+00)_[ (x—1|: 2p(7) }
2 lim sup| =——= | ao(T) (-7 1+ == |dr
t%+°°p t“ 12( )( ) yx(+<>°)
4
0 t
+ # j aya(T) (@t - T)a_l A+ Q(T)]dr. (2.10)
t i
2p(t) 1 .
Due to (2.9) chose ¢y > t; so large that P <3 t 2 tg. Then taking

into account the conditions (5) and (6) from (2.10) we obtain (from 5) it
follows that, y,(+) < 0)

I > lim sup M ]g a (’T) (t _ T)(X—].l:]_ 4 Zp(*r) }d’]’
2 |00 t(x ) 12 . (+oo)
1

2 L 2 L
# 20 ) - ar | = timsup 2 [y ) ¢ - ) Tan
2t* e
1 1

From here and from (7) it follows that I > 0, which contradicts (2.8). The
obtained contradiction proves (2.5). The lemma is proved.

3. Strict Oscillation Criteria

For any f € Q set:

t

5 = a5(1) TT
Q0= 5y er]

1(F0BE-F@OV ], T .
|:2f(s)a21(s)+ : (—f(T)am 5 Mds + tj B(r)dr;

i

+o0

If = Jalz('r)exp{— Qf(t; T)}d’l‘, t 2ty
¢
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Theorem 38.1. Let ap9(t) >0, ¢ >ty, and let for some fe Q the

following relations be satisfied:

+w012(7) T < oo
(A1) Z[) o) dr < +oo;

(By) Iy(tg) = +oo.
Then the system (1.1) is strict oscillatory.

Proof. Suppose, that the system (1.1) is not strict oscillatory. Then by
Lemma 2.3 from the nonnegativity of a,5(¢) it follows that Equation (1.2)
has a ¢;-regular solution for some #; > ;. By Lemma 2.1 from here and
from the nonnegativity of ap5(t) it follows that Equation (1.2) has a

t;-normal solution x(¢). Then by virtue of Theorem 2.1, we have
on (tl) < oo, (31)

By Lemma 2.2, we get

t

t
.[ [2a15()xq (1) + B(r) ldr < 2¢(ty; x) all’%T(;) dr
i

1

t T
a19(7) 1(f(1)B() = ()
“[4F5 dTi {Zf‘s)“21(s)+z( Fars (1) Mds

From here and from the conditions (A;) and (Bj) of the theorem it

follows that v, (tg) 2 MIf(t) = +eo, where
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+o0

1
M = exp {ZC(tl; xg) 12(T)dt J. B(t)dr

f(7)

141

f(t)aia(T)

t T
ay5(7) 1(f(n)B) - f()\
_ J’ }1%) dr J; {2f(s)a21(s)+§(—)o}ds >0,

to

which contradicts (3.1). The obtained contradiction completes the proof of
the theorem.

Theorem 3.2. Let ap5(t) =2 0,¢ 21ty and let for some f[e Q the

conditions

(By) Iy(tg) = +es;

t 2
(1)
(Ay) hrn 1nf{{ |:4a21('r)+( 2(7)) :ld'r

0

t
L [()B()~ [ () 2}
27 | |4 (Tag (1) + f(T)arz(r) drp < 4o
0 tfo [ ( )O

f(t)aa(T)

as well as for some A € R the conditions

(By) [ arp(r)dr = +eo;
A7

(C3) [ ara(m)r+Q(Mdr =
A
be satisfied. Then the system (1.1) is strict oscillatory.

Proof. Suppose the system (1.1) is not strict oscillatory. Then by
Lemmas 2.1 and 2.3 from the nonnegativity of ap5(t) it follows that
Equation (1.2) has a #;-extremal solution for some # > ¢y. Then by (2.2)

Equation (2.3) has a ¢, -extremal solution y,(¢), and

3= 5.0~ [ @)+ 1+ Q(r) Par, ¢24.

i
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By Lemma 2.4 from the conditions (By) and (Cy) it follows that

lim y,(t) = —oo. (3.2)

t—>+oo
From the condition (A,) it follows that there exists an infinitely large

sequence {On};:l such that

6,
=g [ oo (253 Jor

to
)
L atmran () (o[ TOBO = POV L
o tj {m Ja 1)+ fr)ara(r)| LD Md <t
Then due to (3.2) chose 5 = 8,, so large that
yilty) < — A= S/4. 3.3

Let x(¢) be a solution of Equation (1.2) with

_ 1 f()ars(r) ( F(D)B() - £
xo(to)—@z[)lif(T)a21(T)+ I ( ara (V) jo:ldﬂr. (3.4)

Let x.(¢) be the ¢ -extremal solution of Equation (1.2). In virtue of (2.2)

we have
)
B*(1)
xy(tz) = y*(t2)+ A+ ( J + a21(’l')}d’l’
;[ 4ayy(1) 0

From here and from (3.3), we obtain

4aja(7)

D)
xalty) < A+ H BZ(T)J +a21(7):|d7—k—8/4
0

to

4 aro(T)f(T) )y

br N2
< f ey, (1) + LD 120) (me(T) - f (T)) } 0 = x0(1y).
0



88 G. A. GRIGORIAN

By Lemma 2.1 from here it follows that x((t) is ¢y9-normal. Then by

virtue of Theorem 2.1

on (tz) < Hoo, (35)

By Lemma 2.2 taking into account (3.4), we have

t

1| fryann (1) 4 FD@2() (FOBE) - FOY |
x‘)“)sf(t)ﬂf‘ R e Md’ Ll

to

From here we get

t
= 2ay5(t)xo(t) - B(t) 2 —Za#i)(t) I |:f(T)a21(T)
to

f(Dare () (OB = FOV |,
+ 1 [ g (V) )0:|d’1' B(t), t=t.

Hence

+oo t T
agta) = My [ ap(®exp {— %‘))d [ {21‘(8)&21(8)

151 i

1(f©BE) - F&V .
¥ 2(—f(s)a12(s) jo:lds Z[B(’T)d’l'}dt,

ty
where M; = exp{j [Zalz(s)xo(s)+b(s)]ds} > 0. From here and from
)

(B;) it follows that Y, (tg) = 40, which contradicts (3.5). The obtained

contradiction completes the proof of the theorem.
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Theorem 3.3. Let a;5(t) = 0,t >ty and let for some fe Q, Ae R

and o =1 the following conditions be satisfied:
(By) If(tg) =+

t

- B(r) \?
(Ag) lﬁﬂiﬁf{i {4(121“) i [am(T)JO}dT

t

1 e () 4 F Yo ([ TOB@ = FOV L
ﬂﬂiPﬂmmm+ﬂﬁm({ ﬂﬁmﬁ)de}<+’

+oo ¢ ¢ ¢ T
(A3) | alz(t)exp{—@» ay5(T)dr=2 [ B(r)dr—4 [ ay5(r)dr [ a:(s)ds

to to to to to

t T
B*(s) .
_ j ayy (7)dr j (alz (s)jods dt < +oo;

to to

t
(By) liminf L [ a13(r) (¢ = 1) A + Q()ldr < +oo;
t

t
(C3) lim sup% j ap9(7) (t = T)*dT > 0.
t—+o0 1 %

Then the system (1.1) is strict oscillatory.

Proof. Suppose the system (1.1) is not strict oscillatory. Then by
Lemmas 2.1 and 2.3, Equation (1.2) has a ¢;-extremal solution for some
t; = tg. Then by (2.2), Equation (2.3) has a #;-extremal solution y,(t),

and

t
320 = 3.0 - [ @) 6.0+ 2+ QUIdr, 2 4.

i
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By Lemma 2.5 from the conditions (Ag)-(C3) it follows that

lim y,(t) = —eo. Further as in the proof of Theorem 3.2. The theorem is

t—>-+oo

proved.
Theorem 3.4. Let the following conditions be satisfied:

t
(C3) hmsup—jalz ()t -7)%dr >0, o>1;

t—>+oo

t
(Ay) limsup L j app ()t -1)* A —e+Q(r)dr 2 0,e >0, A e R;
t—+o0 1
to

(By) I alz(q—)exp{47uj B(s)ds+I B(s)d J‘I:am(g (4(1 (%é))] :l &}
t

to to to
dT = Hoo.

Then the system (1.1) is strict oscillatory.
Proof. Suppose the system (1.1) is not strict oscillatory. Then by
Lemmas 2.1 and 2.3, it follows from the nonnegativity of apy(t) that

Equation (1.2) has a ¢;-extremal solution for some #; > #;. Then by (2.2),

Equation (2.3) has also a #; -extremal solution y,(t) and

t
30 = 3.0) - [ @@ (0-()+ 2+ QEdr, L2, (O
|
From the condition (B,) it follows that y.(¢) = 0, ¢ > t5 for some t9 > ;.
Without loss of generality, we can take that ¢ty =¢;. Then from (3.6), it

+oo
follows that I apo (1) (ve(T) + A + Q(1))?dt < +oo. From here we have
a1
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t

0< I =limsupL | aja(r) (¢ - 1) (3:(7) + & + Q1)) dr
t—+oo 1
ul

< lim + j am(t - T)(H[y*(T) A+ Qdr = 0.

But on the other hand from the nonnegativity of y,(t), from (2.1), (A4)
and (B,) it follows that I; > 0. We come to the contradiction. The

theorem is proved.

Theorem 3.5. Let a;5(t) 2 0, t > ¢, and let the following conditions

be satisfied:
(By) Ir(tg) = +o

t

(45) lim igf{ [ {4%2(7){&)2}&

0 a12(7) Jg

1 f@OBE) - F OV, | _
- m Z[) |:4f('1')a21(7) + f(t)aa(7) (WJO dtp = —oo,

Then the system (1.1) is strict oscillatory.

Proof. Suppose the system (1.1) is not strict oscillatory. Then by
virtue of Lemmas 2.1 and 2.3 from the nonnegativity of a;5(t), it follows
that Equation (1.2) has a ¢ -extremal solution for some ¢ 2 ¢.
Therefore by (2.2), Equation (2.3) has also a ¢;-extremal solution y,(¢)

and

t
320 = 32lt) = [ ann(@) () + 1+ QU ¢ 2 1.

141
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Consequently y.(t) < y.(¢;), ¢ 2 ¢;. From here and from the condition

(Aj), it follows that for some ¢y > ¢; the following inequality holds:

yiltg) < — A — Stz /2, 3.7
where
f B(r) Y2
St2 = I 4a12(T)+(a12(T))0 d
to

) , 2
1 e o [ OB = PV
o i) [41‘( Jaan 1)+ flr)ara(r) LB Md .

Let x(¢) be a solution of Equation (1.2) with

)
xolty) = % j [umam(ﬂ + f(T)alz(T)[
0

fOB@ - f @V,
) ] }d |

f(T)GIZ(T) 0

Th - f[2e
en by (2.2) we have x,(ty) = y.(t9) + I da74(7)
to

] + a21(7)} dt, where

x4(¢) is the #9-extremal solution of Equation (1.2). From here and from

(3.5) it follows

to 2
Xi(ts) < A+ tj {azl(T) + (4§1523)J0}m -A-8,,/4
0

to , 2
1 - . . . f(r)B(r) - f'(7) -
= 7) J;l:‘lf( Jagy (1) + f(T)aga( )(—f(’r)am(’r) jo:ld x¢ (t2).

Hence by Lemma 2.1 x((t) is t9-normal. Further as in the proof of

Theorem 3.2. The theorem is proved.
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