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Abstract 

A modified fractional sub-equation method is used for constructing exact 

travelling wave solutions of nonlinear stochastic fractional Hirota-Satsuma 

Coupled KdV Equations with Conformable Derivatives. The main idea of this 

method is to take full advantage of the fractional Riccati equation, which has 

many exact solutions. Abundant white noise functional solutions are obtained 

for the Wick-type stochastic fractional Hirota-Satsuma coupled KdV equations 

via Hermite transform and white noise analysis. Eventually, by an application 

example, we show how the stochastic solutions can be given as Brownian 

motion functional solutions. 

1. Introduction 

The nonlinear fractional differential equations (FDEs) are 

constructed by mathematical modelling of some complex physical 

phenomena. The study of such nonlinear physical models through wave 

solutions analysis corresponding to their FDEs, has a dynamic role in 

applied sciences. This work is devoted to investigate the stochastic 

fractional Hirota-Satsuma coupled equation with conformable 

derivatives:  
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where ( ) +×∈ RRtx,  and .10 ≤α<  While, ( ) ( )tGtF ,  and ( )tH  are 

non-zero integrable functions from +
R  to the Kondrative distribution 

space ( ) 1−S  which was defined by Holden et al. in [30] as a Banach 

algebra with the Wick-product “ � ”. Equation (1.1) is the perturbation of 

the variable coefficients fractional Hirota-Satsuma coupled KdV equation 

with conformable derivatives: 
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where ( ) ( )tgtf ,  and ( )th  are non-zero integrable functions on .+R  

Equation (1.2) is a general model which describes shallow water waves of 

small amplitude and long wavelength [28]. Moreover, if Equation (1.2) is 

considered in a random environment, we have a random fractional 

Hirota-Satsuma coupled KdV equation. In order to obtain the exact 

solutions of the random fractional Hirota-Satsuma coupled KdV equation, 

we only consider it in a white noise environment, that is, we will discuss 

the Wick-type stochastic fractional Hirota-Satsuma coupled KdV 

Equation (1.1). Many important phenomena in electromagnetics, 

acoustics, viscoelasticity, electrochemistry, cosmology, and material 

science can be better described by fractional partial differential equations 

FPDEs [36, 38, 39]. Consequently, considerable attention has been given 

to the solution of the FPDEs. There are many methods for calculating the 

approximate solutions for nonlinear FPDEs such as the variational 

iterations method [41], Adomian decomposition method [7, 8], the 

homotopy perturbation method [23, 24] and the Exp-function method    

[35, 43-45, 52]. The exact solutions for nonlinear FPDEs are still under 

study until now. Li and He [34] introduced complex transform for 

reducing FPDEs into ordinary differential equations, so that all analytical 

methods for advanced calculus can be easily applied to fractional calculus. 

It is well known that the solitons are stable against mutual collisions and 

behave like particles. In this sense, it is very important to study the 

nonlinear equations in random environment. However, variable 

coefficients nonlinear equations, as well as constant coefficients 

equations, cannot describe the realistic physical phenomena exactly. 

Wadati [42] first answered the interesting question, “How does external 

noise affect the motion of solitons ?” and studied the diffusion of soliton of 
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the KdV equation under Gaussian noise, which satisfies a diffusion 

equation in transformed coordinates. Ghany et al. [13-20] studied more 

intensely the white noise functional solutions for some nonlinear 

stochastic PDEs. There are many studies have done for the definition and 

properties of the conformable derivative. Conformable forms of the chain 

rule, Gronwalls inequality, exponential functions, Taylor power series 

expansions, integration by parts and Laplace transform have been 

presented by Abdeljawad in [1]. Benkhettoua et al. [3] have been 

expressed the calculus of the conformable time-scale. The heat equation 

with conformable derivatives was investigated by Hammad and Khalil in 

[25]. Chung [6] used the conformable derivative and integral to study the 

fractional Newtonian mechanics. Moreover, the deterministic 

conformable partial differential equations (PDEs) became an important 

subject in mathematical physics. So, there are many scholars paid more 

attention to their approximate and analytical solutions. The existence 

and uniqueness theorems for linear sequential differential equations with 

conformable derivatives was proved by Gokdogan et al. in [22]. Eslami 

and Rezazadeh [9] gave a set of analytical solutions to Wu-Zhang system 

with conformable derivative via the first integral method. The stochastic 

travelling wave solutions for the fractional coupled KdV and 2D KdV 

equations are obtained by the modified fractional sub-equation method in 

[18] and [21], respectively. 

Recently, many research work have done to investigate the 

conformable PDEs and their exact solutions via various methods. In [50], 

a conformable sub-equation method was proposed to construct exact 

solutions of the space-time resonant nonlinear Schrdinger equation. 

Using the generalized exponential rational function method, new periodic 

and hyperbolic soliton solutions were constructed to the conformable 

Ginzburg-Landau equation with the Kerr law nonlinearity [11]. Also, a 

family of exact solutions were obtained for space-time conformable 

generalized Hirota-Satsuma-coupled KdV equation and coupled mKdV 

equation using the Atangana’s conformable derivative and conformable 
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sub-equation method [47]. The analysis of the first integral method was 

given in [48, 49] to construct exact solutions of the nonlinear PDEs 

described by beta-derivative. Moreover, new optical, dark, complex and 

singular soliton solutions were obtained for some nonlinear PDEs with   

M-derivative [2, 12]. The investigation of exact and approximate solutions 

of nonlinear evolution equations plays an important role in the study of 

nonlinear physical phenomena. Our aim in this work is to obtain new 

stochastic soliton wave solutions for the variable coefficients fractional 

Hirota-Satsuma coupled KdV equation and Wick-type stochastic 

fractional Hirota-Satsuma coupled KdV equation with conformable 

derivatives. Using white noise theory and Hermite transform, the Wick-

type stochastic fractional Hirota-Satsuma coupled KdV equation with 

conformable derivatives can be transformed to a deterministic fractional 

Hirota-Satsuma coupled KdV equation containing conformable 

derivatives. Using some symbolic computation and the software program 

“Mathematica”, we can find soliton and periodic wave solutions for the 

variable coefficients fractional Hirota-Satsuma coupled KdV equation 

with conformable derivatives. Under pronounced conditions, we can apply 

the inverse Hermite transform to obtain stochastic soliton and periodic 

wave solutions for the Wick-type stochastic fractional Hirota-Satsuma 

coupled KdV equation with conformable derivatives. Finally, by an 

application example, we show how the stochastic solutions can be given 

as Brownian motion functional solutions. This paper is organized as 

follows: In Section 2, we recall the definitions and some properties of the 

conformable derivative and integral, some requisites from Gaussian white 

noise analysis and the main steps for solving the conformable nonlinear 

PDEs. In Section 3, we use the sub-eqution method, white noise theory 

and Hermite transform to obtain new stochastic soliton wave solutions for 

the Wick-type stochastic fractional Hirota-Satsuma coupled KdV equation 

with conformable derivatives. In Section 4, we give an example to show 

that the stochastic solutions can be given as Brownian motion functional 

solutions. Section 5 is devoted to conclusion. 
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2. Preliminaries 

In this section, we recall the definitions and some properties of the 

conformable derivative and integral. 

Definition 2.1 ([32, 5]). Let f  be a function from ( )∞,0  into .R  For 

( ],1,0∈α  we define the con formable derivative of f  of order α  as 

follows: 

( )
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Definition 2.2 ([32, 5]). Let f  be an econformabl-α  differentiable 

function for ( ) 0,,0 >∈ aat  and ( )tfDtt

α
→ +0

lim  exists. Then, 

( ) ( )tfDfD ttt
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+=
0

lim0  and the conformable integral of the function f  

beginning from 0≥a  is given by 
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where the integral in the right hand side is the classical improper 

Riemann integral and ( ].1,0∈α  

The following theorems gives some sustainable properties for the 

conformable derivative. 

Theorem 2.1 ([32, 5]). Assume that ( ] f,1,0∈α  and g  are 

econformabl-α  differentiable functions at ( )∞∈ ,0t  and f  is 

differentiable (in the usual sense) with respect to .t  Then, 

(1) ( ) ,gDbfDabgafD ttt
ααα +=+  for all ,, R∈ba  

(2) ( ) ,α−α = aa
t tatD  for all ,R∈a  

(3) ( ) ,fgDgfDfgD ttt
ααα +=  
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(5) ( )( ) ( ),1 tfttfDt ′= α−α  

where ′  denotes the usual derivative with respect to .t  

Theorem 2.2 ([33]). Assume that the function f  is a differentiable 

and econformabl-α  differentiable function on ( ).,0 ∞  Also, assume that g  

is differentiable function defined on the range of .f  Then, 

( ) ( ) ( )[ ] ( ) ( ( )) .
11

gttt tfDtgtgttgfD =
α−αα−α ′=�  (2.5) 

Now, we outline the main idea of the modified fractional sub-equation 

method. Many authors considered nonlinear FPDE, say, in two variables 

( ) ,10,0,,,,, ≤α<=αα
…uDuDuuuP txtx   (2.6) 

where P  is a nonlinear function with respect to the indicated variables. 

To determine the solution ( )txuu ,=  explicitly, we first introduce the 

following transformation: 

( ) ( ),,, txuu ξ=ξξ=  (2.7) 

which converts Equation (2.6) into a fractional ordinary differential 

equation 

( ) .0,,,,, 2 =′′′ α
ξ

α
ξ …uDuDuuuQ  (2.8) 

Next we introduce a new variable ( )ξ= YY  which is a solution of the 

fractional Riccati equation 

,10,2
210 ≤α<α+α+α=α

ξ YYYD  (2.9) 

where ,, 10 αα  and 2α  are arbitrary constants. Equation (2.9) is the 

fractional Riccati differential equation, where α  is a parameter 

describing the order of the fractional derivative. In the case of ,1=α  

Equation (2.9) is reduced to the classical Riccati differential equation. The 
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importance of this equation usually arises in the optimal control 

problems. The feed back gain of the linear quadratic optimal control 

depends on a solution of a Riccati differential equation which has to be 

found for the whole time horizon of the control process [37, 51]. Then we 

propose the following series expansion as a solution of Equation (2.6): 

( ) ( ) ( ) ( ) ( ) ( ),,,,

10

ξ+ξ=ξ= −

==
∑∑ k

k

k

k
k

k
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nn

 (2.10) 

where ( ) ( )nbna ,,1,,,1,0 …… == kk kk  are functions to be determined 

later and n  is a positive integer which can be determined via the 

balancing of the highest derivative term with the nonlinear term in 

Equation (2.8). Inserting Equation (2.10) into Equation (2.8) and using 

Equation (2.9) will give an algebraic equation in powers of .Y  Since all 

coefficients of kY  must vanish, this will give a system of algebraic 

equations with respect to ka  and .kb  With the aid of Mathematica, we 

can determine ka  and .kb  According to the recent paper by Zhang et al. 

[51], we can deduce the following set of solutions of Equation (2.9): 
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with the generalized hyperbolic and trigonometric functions 
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 For more 

details about the generalized exponential, hyperbolic and trigonometric 

functions, see [39]. 

3. Travelling Wave Solutions for Equation (1.2) 

This section is devoted to give the exact travelling wave solutions for 

fractional Hirota-Satsuma coupled KdV equation with conformable 

derivative. We apply white noise analysis, Hermite transform and 

modified fractional sub-equation methodto explore exact travelling wave 

solutions for Equation (1.2). Taking the Hermite transform of Equation 

(1.1), we get the deterministic system 

� ( ) �( ) �( ) �( ) �( ) �( )
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(3.1) 

where ( ) ( )czzz N
C∈= …,, 21  is a vector parameter. To look for the 

travelling wave solution of Equation (3.1), we make the transformations 
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( ) �( ) ( )( ) ( ) �( ) ( )( ), , : , , , , , , , : , , , , ,u x t z U x t z x t z v x t z V x t z x t z= = φ ξ = = ξ/υ  

and ( ) �( ) ( )( ), , : , , , , ,w x t z W x t z x t z= = χ ξ  with 

( ) ( ) ,,,,
0
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where s,k  and c  are arbitrary constants which satisfy ( )ztls ,,0=/k  is a 

non-zero functions of the indicated variables to be determined. So, 

Equation (3.1) can be changing into the form 
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where ( ) �( ) ( ) �( ), : , , , : ,f t z F t z g t z G t z= =  and ( ) � ( ), : , .h t z H t z=  Balancing 

the highest order linear terms and nonlinear terms in Equation (3.2), 

gives the following ansatzes: 
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where ( )ξY  satisfies the fractional Riccati equation (2.9). By substituting 

Equation (3.3) along with Equation (2.9) into Equation (3.2), collect the 

coefficients of ( )5,,4,5 …−−=kkY  and set them to be zero, we will 

obtain a system of algebraic equations in the unknowns 

( ) ( )2,1,,,2,1,0,, == kk kkkkkk fdbeca  and l  of the form 
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   (3.4) 

where 20110122112211000 , aGaGaGbGbHaHaGa ++=ζ++++=ζ φφφφφφφφφ
 

φφφφφφφφφφφ +=ζ+++=ζ++ 2130331021120232211 ,, GaGaGbGaGaGaGbGbH  

φφφφφφφφφφφ +++=η=ζ+=ζ+ 0132211013252231412 ,,, GbHaHaHaGaGaGaGa  

,,, 122130311023120212
φφφφφφφφφφ ++=η+++=η+ HbHbHaHbGbHaHaGb  

,,, 2211221100032522314
φφφφφ/φφφφφ ++++=ζ=η+=η GdGdHcHcGcHbHbHb υ  

,, 31021120232211201101
φφφφ/φφφφφ/ +++=ζ++++=ζ GdGcGcGcGdGdHcGcGc υυ  

φφ/φ/φφ/φφφ/ +=η=ζ+=ζ++=ζ 21101325223141221303 ,,, HcHcGcGcGcGcGcGc υυυυ  

1303110231202120132 ,, dHcHdGdHcHcGdGdHc +=η+++=η+++ φ/φφφφ/φφφ υυ  

+++=ζ=η+=η+ φφφχφ/φφ/φφ
221100032522314122 ,,, HeHeGeHdHdHdHdH υυ  

211202322112011012211 ,, eGeGeGfGfHeGeGeGfGf ++=ζ++++=ζ+ φφχφφφφφχφφ  
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01325223141221303310 ,,,, eGeGeGeGeGeGeGfG =η=ζ+=ζ++=ζ+ χφχφφχφφφχφφ  

03110231202120132211 ,, eHfGfHeHeGfGfHeHeH =η+++=η++++ χφφφφχφφφφφ  

υυυ ///φχφφχφφφ ++=ρ=η+=η++ 221100
1
03252231412213 ,,, HeHeGeHfHfHfHfHfH  

υυυυυυυυυ ///////// +=ρ++++=ρ++ 1120
1
23221120110

1
12211 ,, GeGeGfGfHeGeGeGfGf  

,,,, 32
1
52231

1
4122130

1
33102

υυυυυυυυ //////// =ρ+=ρ++=ρ++ GeGeGeGeGeGeGfGe  

,, 11023120
1
21201322110

1
1

υυυυυυυυυ ///////// +++=λ++++=λ HfGfHeHeGfGfHeHeHe  

χχ////// +=ρ=λ+=λ++=λ 1100
2
032

1
52231

1
4122130

1
3 ,,, HcGcHfHfHfHfHfHe υυυυυυ  

χχχχχχχχχ =ρ++++=ρ+++ 20
2
23221120110

2
1221122 ,, GcGdGdHcGcGcGdGdHc  

,,, 2231
2
4122130

2
3310211

χχχχχχχχ +=ρ++=ρ+++ GcGcGcGcGcGdGcGc  

χχχχχχχχχ ++=λ++++=λ=ρ 023120
2
21201322110

2
132

2
5 ,, GdHcHcGdGdHcHcHcGc  

χχχχχχ +=λ++=λ+ 2231
2
4122130

2
311 ,, HdHdHdHdHcHd  and ,32

2
5

χ=λ Hd  

,2,2,2, 223122121120112100 ahGahahGahahGbhahG =+=+=−= φφφφ  

,2,2,2, 223122121120112100 chGchchGchchGdhchG =+=+=−= //// υυυυ  

,2,2,2, 223122121120112100 ehGehehGehehGfhehG =+=+=−= χχχχ  

( ) ( ) ( 2212031021211221 2,2,2,2 dhHbhHbhbhHbhbhH −=−=+−=+−= /φφφ υ  

) ( ) ( ),22,2, 112212031021211 fhfhHdhHdhdhHdh +−=−=+−=+ χ// υυ  

( ) ( ) ( 2211200020310212 22,2,2 hhGhGhhKfhHfhfhH ++=−=+−= φφφχχ
 

) ( ) ( ),2232, 1120112213001112
φφφφφφφφ ++++=+ GhGhhGhGhGhhKHhH  

( ) ( ) ( ),2232233 112021221301223102
φφφφφφφφ ++++++= GhGhhGhGhGhhGhGhhK  

( ) ( ) ,12233232 3202231112213023
φφφφφφφ +++++= GhhGhGhhGhGhGhhK  

( ) ( υυ //φφφφφφ ==++= 20003
2
25321223124 2,12,12233 GhhKGhKGhhGhGhhK  

) ( ) ( ) ( υυυυυυυυ //////// +++=+++ 201122130011122211 2232,2 GhhGhGhGhhKHhHhhGh  

) ( ) ( ) ( 02122130122310211 2232233, hhGhGhGhhGhGhhKGh +++++=+ /////// υυυυυυυ  



TRAVELLING WAVE SOLUTIONS FOR STOCHASTIC …  13 

) ( ) ( ) 12233232, 2231112213023112 +++++=+ //////// υυυυυυυυ GhGhhGhGhGhhKGhG  

( ) 003
2
25321223124320 ,12,12233, hKGhKGhhGhGhhKGhh ==++= χ/////// υυυυυυυ  

( ) ( ) ( )χχχχχχχχ ++=+++ 12213001112221120 232,22 GhGhGhhKHhHhhGhGh  

( ) ( ) ( 22130122310211201 232233,2 hGhGhhGhGhhKGhGhh ++++=++ χχχχχχχ  

) ( ) ( ) ( χχχχχχχχ +++=++ 31112213023112021 33232,2 GhhGhGhGhhKGhGhhG  

) ( ) 2
2532122312432022 12,12233,122 hKGhhGhGhhKGhhGh =++=++ χχχχχχχ  

( ) ( ) (33,2232, 2211221102132213 hLHhHhhHhHhHhhLG =++++= φφφφφφφχ
 

) ( ) ( ),22322 1122010213212031
φφφφφφφ ++++++ HhHhhHhHhHhhHhHh  

( ) ( ) ,12233232 3202031110213203
φφφφφφφ +++++= HhhHhHhhHhHhHhhL  

( ) ( υυυ ///φφφφφφ +==++= 2132213
2
05301203104 232,12,12233 HhHhhLHhLHhhHhHhhL  

) ( ) ( ) ( υυυυυυυ /////// ++=+++ 3212031221122110 32233,2 HhhHhHhhLHhHhhHh  

) ( ) ( )υυυυυυυυ //////// ++=++++ 10213203112201021 232,22 HhHhHhhLHhHhhHhHh  

( ) ( ) υυυυυυυ /////// ++=+++ 30120310432020311 12233,12233 HhhHhHhhLHhhHhHhh  

( ) ( ),2232,12 11221102132213
2
05

χχχχχχ// ++++== HhHhhHhHhHhhLHhL υυ  

( ) ( ) ( χχχχχχχ +++++= 2201021321203122 2232233 HhhHhHhHhhHhHhhL  

) ( ) ( ) 12233232, 203111021320311 +++++=+ χχχχχχχ HhHhhHhHhHhhLHh  

( ) .12,12233, 3
2
05301203104320

χχχχχχχ =++= HhLHhhHhHhhLHhh  

In the remaining part of this section we investigate and solve our problem 

for some particular cases for the fractional Riccati equation (2.9) as 

follows. 

 

 



HOSSAM A. GHANY et al. 14 

Case A. If we set 0,1 210 =α=α=α  in Equation (2.9), and use 

Mathematica to solve the resulting system, we will obtain the following 

set of solutions: 

Set 1. ( )
g

f

K

sl

g
afeedcbaa

71
,0 022122221 −========= α

 

( ) ,
2

,6,24,
2

13

,1
8

3
1

2
1

3
00

2

h
c

g

f
bfe

h

g

f

c
g

f

gh

α
αα

α

α −==−=






 −

=−+
k

kk

k

k  

 .7,
2

3 2
3

11
αα

α

+±===
g

f
i

s
l

gh
fd

kk
 

Substituting these values in Equation (3.3) and using Equation (2.11), we 

obtain the following exponential decay wave solution of Equation (3.1): 

( )
( )

( )

( )
( )

( ) ( )( )

( ) ( )zthztg

ztfztg

ztg

ztf

ztg

sl
ztxu

,,8

,,3

,

,7

,
,,

2

2

1
−

+−=
α

α

α
k

k

 

( )
( )

[ ( )],,,
,

,6
1

1
1

2

ztxY
ztg

ztf
ξ+ −

α
k

  (3.5) 

( )
( ) ( )( )
( ) ( ) ( )

( )[ ]ztxY
zthzthztg

ztfztg
ztxv ,,

,

2

,,2

,,3
,, 111 ξ−

−
=

αα
kk

 

( )
( ) ( )

[ ( )],,,
,,2

,3
1

1
1 ztxY

zthztg

ztf
ξ+ −

α
k

  (3.6) 

( ) ( )
( )

( ) ( )
[ ( )],,,

,,2

,3
,24,, 1

1
11 ztxY

zthztg

ztf
ztfztxw ξ+−= −

α
α k
k   (3.7) 

with 

( )
( )
( )

.
,

,
7,, 1

0

32

1 cd
zg

zf

s

i
xztx

t

++±=ξ α
α

∫ τ

τ

τk
k  
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Case B. If we set 0, 12
1

20 =α=α−=α  in Equation (2.9), and use 

Mathematica to solve the resulting system, we will obtain the following 

sets of solutions: 

Set 2. 
( )

,
32

,0
2

012112111 q

p
afeedccba

α+
=========

k
 

( )
.

2
,,

3
2,

3

1
3

2
22

2

22

2

00

α










 +
===

−
===−=

α

α
α

αα

s

p
ldf

q

p
ba

p
ec

k
k

kk
 

Substituting these values in Equation (3.3) and using Equation (2.11), we 

obtain the following soliton wave solutions of Equation (3.1): 

( )
( )( )

( )
( )

( )
( [ ( )]ztxY

ztq

ztp

ztq

ztp
ztxu ii ,,2

,2

,3

,

,32
,, 2

2
22

ξ−
+

=
αα

kk
 

[ ( )]),,,2
2 ztxYi ξ+ −   (3.8) 

( )
( )

[ ( )],,,
3

,
,, 2

22
2

ztxY
ztp

ztxv ii ξ+= −α
α

k
k

  (3.9) 

( )
( )

[ ( )],,,
3

,
,, 2

22
2

ztxY
ztp

ztxw ii ξ+= −α
α

k
k

  (3.10) 

with 3,2=i  and 

( ) ( )( ) .,2,, 2
0

3
2

1
cdzpxztx

t

+++=ξ α∫ ττkk  

Set 3. 
( )

,
42

,0
2

0121121121 q

p
afeedccbaa

α+
==========

k
 

( )
.

2
,,

2

3
,

3

1
3

2
22

2

2

2

00

α










 +
===

−
==−=

α

ααα

s

p
ldf

q

p
b

p
ec

k
k

kk
 

Substituting these values in Equation (3.3) and using Equation (2.11), we 

obtain the following soliton wave solutions of Equation (3.1): 
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( )
( )( )

( )
( )

( )
[ ( )],,,

,2

,3

,

,42
,, 2

2
22

2 ztxY
ztq

ztp

ztq

ztp
ztxu ii ξ−

+
= −

αα

+
kk

  (3.11) 

( )
( )

[ ( )],,,
3

,
,, 2

22
2

2 ztxY
ztp

ztxv ii ξ+= −
α

+ k
k

  (3.12) 

( )
( )

[ ( )],,,
3

,
,, 2

22
2

2 ztxY
ztp

ztxw ii ξ+= −
α

+ k
k

  (3.13) 

with .3,2=i  

Case C. If we set 0,1
4

1
120 =α=α=α  in Equation (2.9), and use 

Mathematica to solve the resulting system, we will obtain the following 

set of solutions: 

Set 4. ========== 0211211211 ,0 affeddcbba  

( )
,64,

3
,

96
,

9

43132 2
22

2

00

2

2

22
α

αααα

===−=−=−
+

k
kkkk

ec
p

ec
q

p
a

r

q

p
 

( )
.

32
1

3 α










 −
=

α

α

s

p
l

k
  

Substituting these values in Equation (3.3) and using Equation (2.11), we 

obtain the following periodic wave solutions of Equation (3.1): 

( )
( )( )

( )
( )

9

,4

,

,3132
,,

22

2

αα

+ −
+

=
kk ztr

ztq

ztp
ztxui  

( )
( )

[ ( )],,,
,

,96
3

2
2

ztxY
ztq

ztp
i ξ−

α
k

  (3.14) 

( )
( )

[ ( )],,,64
3

,
,, 3

22
2

2 ztxY
ztp

ztxv ii ξ+= −α
α

+ k
k

  (3.15) 

( )
( )

[ ( )],,,64
3

,
,, 3

22
2

2 ztxY
ztp

ztxw ii ξ+= −
α

+ k
k

  (3.16) 
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with 5,4=i  and 

( ) ( )( ) .32,,, 3
0

3
3

1
cdzpxztx

t

+−+=ξ α∫ ττkk  

At the end of this section we should remark that, there exists an infinitely 

number of exact travelling wave solutions for Equation (1.2); these 

solutions come from solving the system (3.4) with regard to the fractional 

Riccati equation (2.9). The above mentioned cases are just to clarify how 

far our technique is applicable. 

4. White Noise Functional Solutions of Equation (1.1) 

In this section, we use the inverse Hermite transform and [30, 

Theorem 4.1.1] to obtain white noise functional solutions for Equation 

(1.2). The properties of generalized exponential, hyperbolic and 

trigonometric functions yield that there exists a bounded open set 

0,, >∞<×⊂ + nmG RR  such that the solution { ( ) ( ),,,,,, ztxvztxu  

( )}ztxw ,,  of Equation (3.1) and all its fractional derivatives which are 

involved in Equation (3.1) are uniformly bounded for ( ) ( ),,, nKGztx m×∈  

continuous with respect to ( ) Gtx ∈,  for all ( )nKz m∈  and analytic with 

respect to ( ),nKz m∈  for all ( ) ., Gtx ∈  From [30, Theorem 4.1.1], there 

exist ( ) ( ) ( ) ( ) 1,,,,, −∈ StxWtxVtxU  such that ( ) �( ) ( ), , , ,u x t z U x t z=  

( ) �( ) ( ), , , ,v x t z V x t z=  and ( ) �( ) ( ), , ,w x t z W x t z=  for all ( ) ∈ztx ,,  

( )nKG m×  and ( ) ( ) ( ){ }txWtxVtxU ,,,,,  solves (in the strong sense in 

( ) )1−S  Equation (1.2) in ( ) .1−S  Hence, for ( ) ( ) ( ) ,0=/tRtQtP  the white 

noise functional solutions of Equation (1.2) can be obtained by applying 

the inverse Hermite transform to Equations (3.5)-(3.16) as follows: 
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• Stochastic exponential decay wave solution: 

( )
( )

( )

( )
( )

( ) ( )( )

( ) ( )

( )
( )

( )[ ],,
6

8

37
, 11

2

2

2

1 txY
tG

tF

tHtG

tFtG

tG

tF

tG

sl
txU Ξ+

−
+−= −

αα

α

α
�

�
�

kk

k

 

(4.1) 

( )
( ) ( )( )

( ) ( ) ( )
( )[ ]txY

tHtHtG

tFtG
txV ,

2

2

3
, 111 Ξ−

−
=

αα
�

�

kk
 

( )
( ) ( )

( )[ ],,
2

3
11 txY

tHtG

tF
Ξ+ −

α
�

�

k
  (4.2) 

( ) ( )
( )

( ) ( )
( )[ ],,

2

3
24, 111 txY

tHtG

tF
tFtxW Ξ+−= −

α
α �

�

k
k   (4.3) 

with 

( )
( )
( )

.7, 1
0

32

1 cd
G

F

s

i
xtx

t

++±=Ξ α
α

∫ τ

τ

τk
k  

Stochastic soliton wave solutions: 

( )
( )( )

( )
( )

( )
( ( )[ ]txY

tQ

tP

ztQ

tP
txU

ii ,2
2

3

,

32
, 2

2
22

Ξ−
+

=
αα

�
�

kk
 

( ) ( )[ ]),,2
2

txY
i

Ξ+ −�
  (4.3) 

( )
( ) ( ) ( )[ ],,

3
, 2

22
2

txY
tP

txV
ii Ξ+= −α

α
�

k
k

  (4.4) 

( )
( ) ( ) ( )[ ],,

3
, 2

22
2

txY
tP

txW
ii Ξ+= −α

α
�

k
k

  (4.5) 

( )
( )( )

( )
( )

( )
( ) ( )[ ],,

2

342
, 2

2
22

2 txY
tQ

tP

tQ

tP
txU

ii Ξ−
+

= −
αα

+
�

�
kk

  (4.6) 

( )
( ) ( ) ( )[ ],,

3
, 2

22
2

2 txY
tP

txV
ii Ξ+= −α

α

+
�

k
k

  (4.7) 

( )
( ) ( ) ( )[ ],,

3
, 2

22
2

2 txY
tP

txW
ii Ξ+= −α

α

+
�

k
k

  (4.8) 
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with 3,2=i  and 

( ) ( )( ) .2, 2
0

3
2

1
cdPxtx

t

+++=Ξ α∫ ττ
�

kk  

Stochastic periodic wave solutions: 

( )
( )( )

( )
( ) ( )

( )
( )[ ],,

96

9

43132
, 3

2
222

2 txY
tQ

tPtR

tQ

tP
txU

ii Ξ−−
+

=
ααα

+
�

�
kkk

 

(4.9) 

( )
( ) ( ) ( )[ ],,64

3
, 3

22
2

2 txY
tP

txV
ii Ξ+= −α

α

+
�

k
k

 (4.10) 

( )
( ) ( ) ( )[ ],,64

3
, 3

22
2

2 txY
tP

txW
ii Ξ+= −α

α

+
�

k
k

 (4.11) 

with 5,4=i  and 

( ) ( )( ) .32, 3
0

3
3

1
cdPxtx

t

+−+=Ξ α∫ ττ
�

kk  

We observe that for different forms of ( ) ( )tGtF ,  and ( ),tH  we can 

get different solutions of Equation (1.2) from Equations (4.1)-(3.12). 

5. Summary and Discussion 

Our first interest in this work is to implement new strategies that 

give white noise functional solutions of the variable coefficients Wick-type 

stochastic fractional Hirota-Satsuma coupled KdV equations. The 

strategies that will be pursued in this work rest mainly on Hermite 

transform, white noise theory and modified fractional sub-equation 

method, all of which are employed to find white noise functional solutions 

of Equation (1.1). The proposed schemes, as we believe, are entirely new 

and introduce new solutions in addition to the well-known traditional 

solutions. The ease of using these methods are showed its power to 

determine shock or solitary type of solutions. Obviously, the planner 

which we have proposed in this paper can be also applied to other 
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nonlinear PDEs in mathematical physics such as KdV-Burgers, modified 

KdV-Burgers, Sawada-Kotera, Zhiber-Shabat and Benjamin-Bona-

Mahony equations. Note that, if ,1=α  Equation (1.1) is reduced to the 

stochastic generalized Hirota-Satsuma coupled KdV equations. Also, if 

5.0,1 ==α f  and ,3=−= hg  Equation (1.2) is reduced to the 

generalized Hirota-Satsuma coupled KdV equations. Hence, our results 

can be considered a generalization of the work due to Ghany [13] and Wu 

[46]. Moreover, there is a unitary mapping between the Gaussian white 

noise space and the Poisson white noise space, this connection was given 

by Benth and Gjerde [4]. Hence, with the help of this connection, we can 

derive some Poisson white noise functional solutions, if the coefficients 

( ) ( )tGtF ,  and ( )tH  are Poisson white noise functions in Equation (1.1). 
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