Transnational Journal of Mathematical Analysis and Applications
Vol. 10, Issue 1, 2022, Pages 1-25

ISSN 2347-9086

Published Online on February 22, 2022

© 2022 Jyoti Academic Press

http://jyotiacademicpress.org

TRAVELLING WAVE SOLUTIONS FOR STOCHASTIC
FRACTIONAL HIROTA-SATSUMA COUPLED
KdV EQUATIONS WITH CONFORMABLE
DERIVATIVES

HOSSAM A. GHANY!, ASHRAF FATHALLAH?
and R. BOSHNAQE?

1Department of Mathematics
Helwan University
Cairo

Egypt
e-mail: h.abdelghany@yahoo.com

2Department of Mathematics
Misr International University
Cairo 11341

Egypt
e-mail: ashraf.abdhady@miuegypt.edu.eg

3Department of Mathematics
College of Science and Arts
Al Mithnab, Qassim University (931)
Buridah 51931
Kingdom of Saudi Arabia

2020 Mathematics Subject Classification: 60H30, 60H15, 35R60.

Keywords and phrases: Hirota-Satsuma coupled KdV equations, conformable derivative,
fractional calculus, Riccati equation, white noise, Hermite transform.

Received January 03, 2022



2 HOSSAM A. GHANY et al.

Abstract

A modified fractional sub-equation method is used for constructing exact
travelling wave solutions of nonlinear stochastic fractional Hirota-Satsuma
Coupled KdV Equations with Conformable Derivatives. The main idea of this
method is to take full advantage of the fractional Riccati equation, which has
many exact solutions. Abundant white noise functional solutions are obtained
for the Wick-type stochastic fractional Hirota-Satsuma coupled KdV equations
via Hermite transform and white noise analysis. Eventually, by an application
example, we show how the stochastic solutions can be given as Brownian

motion functional solutions.
1. Introduction

The nonlinear fractional differential equations (FDEs) are
constructed by mathematical modelling of some complex physical
phenomena. The study of such nonlinear physical models through wave
solutions analysis corresponding to their FDEs, has a dynamic role in
applied sciences. This work is devoted to investigate the stochastic
fractional Hirota-Satsuma coupled equation with conformable

derivatives:
DfU = F(t)o D3*U + G(t)o U o DU + H(t) o DX(V o W),
DV = - D3%V + 3U o D2V, (1.1)

DEW = — D3“W + 3U o DOW,

where (x,¢)e RxR, and 0 < o <1. While, F(t), Gt) and H(¢) are

non-zero integrable functions from R* to the Kondrative distribution

space (S)_; which was defined by Holden et al. in [30] as a Banach

algebra with the Wick-product “¢”. Equation (1.1) is the perturbation of
the variable coefficients fractional Hirota-Satsuma coupled KdV equation

with conformable derivatives:
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Dfu = f(t)D3% + g(t)uD%u + h(t)D (vw),
Dfv = — D% + 3uD%, (1.2)
Dfw = - D3%w + 3uD%w,

where f(t), gt) and h(t) are non-zero integrable functions on R,.

Equation (1.2) is a general model which describes shallow water waves of
small amplitude and long wavelength [28]. Moreover, if Equation (1.2) is
considered in a random environment, we have a random fractional
Hirota-Satsuma coupled KdV equation. In order to obtain the exact
solutions of the random fractional Hirota-Satsuma coupled KdV equation,
we only consider it in a white noise environment, that is, we will discuss
the Wick-type stochastic fractional Hirota-Satsuma coupled KdV
Equation (1.1). Many important phenomena in electromagnetics,
acoustics, viscoelasticity, electrochemistry, cosmology, and material
science can be better described by fractional partial differential equations
FPDEs [36, 38, 39]. Consequently, considerable attention has been given
to the solution of the FPDEs. There are many methods for calculating the
approximate solutions for nonlinear FPDEs such as the variational
iterations method [41], Adomian decomposition method [7, 8], the
homotopy perturbation method [23, 24] and the Exp-function method
[35, 43-45, 52]. The exact solutions for nonlinear FPDEs are still under
study until now. Li and He [34] introduced complex transform for
reducing FPDEs into ordinary differential equations, so that all analytical
methods for advanced calculus can be easily applied to fractional calculus.
It is well known that the solitons are stable against mutual collisions and
behave like particles. In this sense, it is very important to study the
nonlinear equations in random environment. However, variable
coefficients nonlinear equations, as well as constant coefficients
equations, cannot describe the realistic physical phenomena exactly.
Wadati [42] first answered the interesting question, “How does external

noise affect the motion of solitons ?” and studied the diffusion of soliton of
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the KdV equation under Gaussian noise, which satisfies a diffusion
equation in transformed coordinates. Ghany et al. [13-20] studied more
intensely the white noise functional solutions for some nonlinear
stochastic PDEs. There are many studies have done for the definition and
properties of the conformable derivative. Conformable forms of the chain
rule, Gronwalls inequality, exponential functions, Taylor power series
expansions, integration by parts and Laplace transform have been
presented by Abdeljawad in [1]. Benkhettoua et al. [3] have been
expressed the calculus of the conformable time-scale. The heat equation
with conformable derivatives was investigated by Hammad and Khalil in
[25]. Chung [6] used the conformable derivative and integral to study the
fractional Newtonian mechanics. Moreover, the deterministic
conformable partial differential equations (PDEs) became an important
subject in mathematical physics. So, there are many scholars paid more
attention to their approximate and analytical solutions. The existence
and uniqueness theorems for linear sequential differential equations with
conformable derivatives was proved by Gokdogan et al. in [22]. Eslami
and Rezazadeh [9] gave a set of analytical solutions to Wu-Zhang system
with conformable derivative via the first integral method. The stochastic
travelling wave solutions for the fractional coupled KdV and 2D KdV
equations are obtained by the modified fractional sub-equation method in

[18] and [21], respectively.

Recently, many research work have done to investigate the
conformable PDEs and their exact solutions via various methods. In [50],
a conformable sub-equation method was proposed to construct exact
solutions of the space-time resonant nonlinear Schrdinger equation.
Using the generalized exponential rational function method, new periodic
and hyperbolic soliton solutions were constructed to the conformable
Ginzburg-Landau equation with the Kerr law nonlinearity [11]. Also, a
family of exact solutions were obtained for space-time conformable
generalized Hirota-Satsuma-coupled KdV equation and coupled mKdV

equation using the Atangana’s conformable derivative and conformable
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sub-equation method [47]. The analysis of the first integral method was
given in [48, 49] to construct exact solutions of the nonlinear PDEs
described by beta-derivative. Moreover, new optical, dark, complex and
singular soliton solutions were obtained for some nonlinear PDEs with
M-derivative [2, 12]. The investigation of exact and approximate solutions
of nonlinear evolution equations plays an important role in the study of
nonlinear physical phenomena. Our aim in this work is to obtain new
stochastic soliton wave solutions for the variable coefficients fractional
Hirota-Satsuma coupled KdV equation and Wick-type stochastic
fractional Hirota-Satsuma coupled KdV equation with conformable
derivatives. Using white noise theory and Hermite transform, the Wick-
type stochastic fractional Hirota-Satsuma coupled KdV equation with
conformable derivatives can be transformed to a deterministic fractional
Hirota-Satsuma coupled KdV equation containing conformable
derivatives. Using some symbolic computation and the software program
“Mathematica”, we can find soliton and periodic wave solutions for the
variable coefficients fractional Hirota-Satsuma coupled KdV equation
with conformable derivatives. Under pronounced conditions, we can apply
the inverse Hermite transform to obtain stochastic soliton and periodic
wave solutions for the Wick-type stochastic fractional Hirota-Satsuma
coupled KdV equation with conformable derivatives. Finally, by an
application example, we show how the stochastic solutions can be given
as Brownian motion functional solutions. This paper is organized as
follows: In Section 2, we recall the definitions and some properties of the
conformable derivative and integral, some requisites from Gaussian white
noise analysis and the main steps for solving the conformable nonlinear
PDEs. In Section 3, we use the sub-eqution method, white noise theory
and Hermite transform to obtain new stochastic soliton wave solutions for
the Wick-type stochastic fractional Hirota-Satsuma coupled KdV equation
with conformable derivatives. In Section 4, we give an example to show
that the stochastic solutions can be given as Brownian motion functional

solutions. Section 5 is devoted to conclusion.
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2. Preliminaries
In this section, we recall the definitions and some properties of the
conformable derivative and integral.

Definition 2.1 ([32, 5]). Let f be a function from (0, ) into R. For
o e (0,1], we define the con formable derivative of f of order o as

follows:

1-a
DEf(0) = Jim f(”hth )= (2.3)

Definition 2.2 ([32, 5]). Let f be an a-conformable differentiable

function for te (0,a),a >0 and limt_>0Jr DPf(t) exists. Then,

D/f(0) = lim o DPf(t) and the conformable integral of the function f

beginning from a > 0 is given by

¢ T
1% 9(p) = J' fl(_i dr, (2.4)
aT

where the integral in the right hand side is the classical improper

Riemann integral and o € (0, 1].

The following theorems gives some sustainable properties for the

conformable derivative.

Theorem 2.1 ([32, 5]). Assume that o e (0,1], f and g are
o-conformable differentiable functions at te (0,) and f is

differentiable (in the usual sense) with respect to t. Then,
(1) Df*(af +bg) = a D}f +b DXg, forall a, be R,
(2) DX(t*) =a t* %, forall a € R,

(3) D(fg) = fD*g + gD}Mf,
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g2

@ Dtu(éj _ &b -1 Dlg
(5) DX(f(t) = ' “F (1),

where ’ denotes the usual derivative with respect to t.

Theorem 2.2 ([33]). Assume that the function f is a differentiable
and o-conformable differentiable function on (0, «). Also, assume that g

is differentiable function defined on the range of f. Then,

D (f o g)(t) = t' " *[g(&)]* " g’(t) (Dff(t));— - (2.5)

Now, we outline the main idea of the modified fractional sub-equation

method. Many authors considered nonlinear FPDE, say, in two variables
P(u, uy, u;, DYu, D*u,...) =0, 0 <o <1, (2.6)

where P is a nonlinear function with respect to the indicated variables.

To determine the solution u = u(x, t) explicitly, we first introduce the

following transformation:
u=u(), &=_gx1), 2.7)

which converts Equation (2.6) into a fractional ordinary differential

equation
Qu, u', v, Dgu, D%au, ...)=0. (2.8)

Next we introduce a new variable Y = Y(§) which is a solution of the

fractional Riccati equation
DY =0g + oY + oY%, 0<a<l, (2.9)

where o, 0y, and og are arbitrary constants. Equation (2.9) is the
fractional Riccati differential equation, where o is a parameter
describing the order of the fractional derivative. In the case of o =1,

Equation (2.9) is reduced to the classical Riccati differential equation. The
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importance of this equation usually arises in the optimal control
problems. The feed back gain of the linear quadratic optimal control
depends on a solution of a Riccati differential equation which has to be
found for the whole time horizon of the control process [37, 51]. Then we

propose the following series expansion as a solution of Equation (2.6):

n n

u(x, 1) = ul®) = Y aplx, OVFE)+ D b, Y ), (2.10)
k=0 k=1
where a;(k =0,1, ..., n), b.(k =1, ..., n) are functions to be determined

later and n 1is a positive integer which can be determined via the
balancing of the highest derivative term with the nonlinear term in
Equation (2.8). Inserting Equation (2.10) into Equation (2.8) and using

Equation (2.9) will give an algebraic equation in powers of Y. Since all

coefficients of Y* must vanish, this will give a system of algebraic
equations with respect to a; and b,. With the aid of Mathematica, we

can determine a; and b,. According to the recent paper by Zhang et al.

[61], we can deduce the following set of solutions of Equation (2.9):

Yl({:;):EOL(é)_l’ oy = 0 =1, (03 =0,
Y5(€) = cothy(€) £ eschy (8),

Y3(€) = tanh, (€) * isech, (£), 0y == Oy = 1 o =0, (2.11)

2
Y4(8) = 5 tang(20),
Y3(8) = 5 cot(28), G =tay =10 =0,

with the generalized hyperbolic and trigonometric functions

Sinha(x) = Ea(xa)_gEa(_ xa) , COSha(x) = Ea(xa)+2E06(_ xa) ,

sinh, (x)
cosh (x)

cosh (x)

tanhg (x) = sinh(x)’
o

, cothy (x) =



TRAVELLING WAVE SOLUTIONS FOR STOCHASTIC ... 9

1

1
cschy(x) = ————, sechy(x) = m,

sinh, (x)

E,(ix*) - Eo(—ix®) E (ix®) + Ey (- ix®)

sing (x) = 5 , €08y (x) = 5 ,
_ cosg(x) _ sing(x)
cotq(x) = sing (x)’ tang (x) = cosy (x)’
1 1
cscq(x) = sing (x)’ secq(¥) = cosy (x)’

- J
defined by the Mittag-Leffler function E,(y) = Zj: 0 m. For more

details about the generalized exponential, hyperbolic and trigonometric

functions, see [39].
3. Travelling Wave Solutions for Equation (1.2)

This section is devoted to give the exact travelling wave solutions for
fractional Hirota-Satsuma coupled KdV equation with conformable
derivative. We apply white noise analysis, Hermite transform and
modified fractional sub-equation methodto explore exact travelling wave
solutions for Equation (1.2). Taking the Hermite transform of Equation

(1.1), we get the deterministic system
DXU (x, t, 2) = F(t, 2) D2*Ulx, t, 2) + G(t, 2) U(x, t, 2)DOU(x, ¢, 2)
+ H(t, 2)D%(V(x, t, 2W(x, t, 2) ),

DtaV(x, t,2) = — D;’O‘V(x, t, 2) + 3(7(35, t, 2) DgV(x, t, 2),

DtaW(x, t,z2) = — D;’O‘W(x, t, 2) + Sﬁ(x, t, 2) DgW(x, t, 2),
3.1)

where z = (z;, 29, ...) € ((CN)C is a vector parameter. To look for the

travelling wave solution of Equation (3.1), we make the transformations
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u(x, t, z) = U(x, t, z2) = 0 (x, t, 2)), v(x, t, 2) = \7(x, t,z2) =v(E(x,t, 2)),

and w(x, t, 2) = W(x, t, 2) = x&(x, ¢, 2)), with
t
E(x,t, 2) = kx + SI I(r, 2)dT +c,
0

where k, s and ¢ are arbitrary constants which satisfy ks # 0, I(¢, z) is a

non-zero functions of the indicated variables to be determined. So,

Equation (3.1) can be changing into the form
(s))* D¢ = k>*pDE%0 + k*qODEd + k*rDE (1),
(sD)™DEp = — K*DE% + 3k%0DEp, (3.2)
(s)*Dgy = - k3°‘D§’0‘x + 3k*ODE,

where f(t, 2) = F(t, 2), g(t, 2) = G(t, z) and h(t, z) = H(t, z). Balancing
the highest order linear terms and nonlinear terms in Equation (3.2),

gives the following ansatzes:
ulx, t, z) = aglt, 2) + a1 (t, 2)Y(E) + ag(t, 2)Y2(E)
+ by (¢, 2)Y THE) + ba(t, )Y TR(E),
v(x, t, 2) = colt, 2) + ¢1(t, 2)Y(E) + coft, 2)Y2(§)
(3.3)
+dy(t, 2)Y L E) + dylt, 2)Y 2(E),

w(x, t, z) = ey(t, 2) + e1(t, 2)Y(§) + eslt, z)Yz(&,)

+ AL Y THE) + folt, DY),

where Y(€) satisfies the fractional Riccati equation (2.9). By substituting
Equation (3.3) along with Equation (2.9) into Equation (3.2), collect the
coefficients of Yk(k: =-5,-4,...,5) and set them to be zero, we will

obtain a system of algebraic equations in the unknowns
ag., Cr, ek(k = 0, 1, 2), bk’ dk’ fk(k = ]., 2) and [ of the form
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- K* K} +3¢! =0, i=4,5,

- K**L! +3n} =0, i=4,5,

- K* K]+ 3C% =0, i=4,5,

- KLY + 3n¥ =0, i=4,5,
(sD*G} = - K**K} + 3k°¢?, i=0,123
(sD*HY = - £*“L? + 3k, i=123
(s)*G¥ = - K*K¥ + 3k¢Y, i=0,1,238, oy
(s)*H¥ = - K**L¥ + 3k, i=123,
KK + g0? + hp; +p7) = 0, i=4,5,
K**fLY + gn? + h(X; + A7) = 0, i=4,5,
(sD*G? = kKD + k%gL? + k“h(p} + p}), i=0,12 3,
(sD*H? = KLY + k%gn? + k*R(A} +23), i=123

where Cg = aOGg + ale’ + aQHS + ble) + bng, Cf = aOGf’ + ang + ay
HY +5,GY +b5GY, €8 = agGY + a1GY + ayGY + byGY, €8 = aoGY + a,G)
+ a2Gf’, Ci = ang’ + a2Gg, Cg = ang’, nf = aOHf’ + ang + azHg’ + bng
+0yGY, MY = agHS + ayHY + byGY + by HY MY = agHY + b HY + byHY,
ny = b HY + byHY, m8 = boHY, (= oGl + ¢ HY + coHY + diG? + dyGY,
C = G + G + coHY + diGY + daGY, §) = oGS + ¢,GY + ¢oGY + diGY,
Ch = cGY + 1GY + ¢9GY, ) = ¢1GY + ¢oGY, L)L = coGY, ) = ¢oHY + ¢;HY
+ eoHY + diGY + doG?, Y = coHY + ¢ HY + doGY + diHY, MY = coHY + dy
HY + dyH? ) = diHS + doHI, mE = dyHY, (% = egGY + e, HY + e HY +

AGY + £,GY, CF = egGY + e1GY + e HY + AGY + £,GY, (% = eoGY + e1GY + ey
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Gy + AGY, Gk = egGY + e,GY + e3GY, Uk = e1GY + 3Gy, (X = e;GI, L = ¢
HY + e HY + egHY + AG + .G, % = eoHY + e HY + f,GY + RHY, m} = e
HY + fH + foHY % = HS + f,HY, % = fL,HY, oy = oG + ey HY + exH)
+ G} + £2GY, pl = eoG) + e,G) + eoH! + fiGY + f,GY, pb = oGy + e,GY
+ e9GE + [1GY, ph = egGY + e,G) + esGY, pY = €,GY + eyGY, pt = €3G,
N = eoHY + e HY + exHY + AGY + .G, Ny = egHY + et HY + ,G} + fHY,
Ny = eoHY + AHY + foH!, Ny = AH) + LHY, Xy = foHY, p§ = coG¥ + ¢ HF
+coH% + diG} + doG¥, p? = oGl + Gt + coHY + dG¥ + doG¥, p3 = oG
+ ,G¥ + oGk + diG%, p3 = cgGE + |G + c,GE, pi = ¢|G¥ + c,GE,
pE =cyGE 03 = coHY +c;HY +coHY + dyGE +dyGF, 0% = coH% + ¢, HY + dyG¥
+d HY, 03 = coHY + dyHY + doHY, 33 = diHY + dyHY and 3} = doHY,
Gy = hgay — hoby, G = 2hgay + May, G = 2hay + hoay, GY = 2hyay,

Gé“ = hge; — hody, Gly“ = 2hyey + ey, G; = 2hjcy + hgcy, Gzlf = 2hgey,
GY = hge; — hofy, G¥ = 2hgey + hyey, G¥ = 2hey + hgey, G = 2hgey,
HY =~ (2hgby + Myby), HY =~ (2hby + hoby ), HS = — 2hgby, HY =~ (2hyd,

+ mdy), H) = - 2hdy + hody), HY = — 2hody H = — (2hefy + Iyfy),

HY = — (2Mfy + hofy), HE = = 2hofo, KO = ho(2hoGY + MGy ) + hy(2hy

HY + mHY), K = 2ho(3hoGY + 2GS + hyGP) + hy(2hoGY + mGY),
K3 =3ho(3mG +2h9GY )+ 2k (3ho G +2h G + hoGY )+ hy(2hoGY + M GY),
K9 = 2hy(3hoGY + 2mGY + hyGY) + 3y (8MGY + 2hyGY) + 12hghyGY,
K = 3hy(3MGY + 215GY) + 12mnyGY, KP = 12h3GY, K} = hy(2hoGY

+ MG )+ hg(2hoHY + h HY ), K = 20 (3hgGY +2mGY + hyGY )+ hy (2hoGY

+ hlG]ib ), KVJ = 3h0(3h1G§) + ZhQG; ) + 2h1(3h0G§) + 2h1G§ + hQGfJ ) + h2(2h0
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Gy + MG ), KY = 2hy(3hGY + 2mGY + hoGY' ) + 3y (8m GY + 2heG)) ) + 12
hohoGY, KJ = 3ho(3mG) + 2hyGY ) + 12mhyGY, K) = 12h3GY, K% = hy
(2hoG% + MG} ) + hy(2hoHY + b HY ), KI = 2ho(3hoG% + 21 G + hoGY)
+ hy(2hoG% + MGY), K% = 3ho(3mG¥ + 2hyG¥ ) + 2k (3hoG% + 2R G% + hy
GL) + hy(2hoG% + M GY), K% = 2hy(3hoG% + 2mG% + hoGl) + 3hy (31 G%
+ 2h9GE) +12hohyGE, K* = 3hy(3hGE + 2hyG¥ ) + 120 hoGE, KX = 12h3
G, LY = 2hy(3hoHY + 2h HY + hoHY ) + hy(2hoHY + M HY), LY = 3hy(3
MHS + 2hoHS) + 2k (3hoHS + 2mH + hoHY) + ho(2hoeHY + M HY),
LY = 2ho(3hoHY + 2mHYS + hoHY) + 3hy (3 HYS + 2hoHY) + 12hohy HY,
LY =3ho(8h HY +2hoHY ) +12mhoHY, L =12hG HY, LY = 2hy(3ho HY +2h HY
+ hoH') + hy(2hoHY + M HY), L} = 3ho(3h HY + 2hoH} ) + 2y (3ho HY
+ 2 HY + hoH') + ho(2hoHY + i H) ), LY = 2ho(3heHY + 20 HY + hoH')
+ 3 (8m HY + 2hgHJ) ) + 12hgho HY | LY = 3ho(3hyHJ + 2hoH} ) + 120 hoHY
LY =12hHY, IX = 2hy(3hoHY + 2l H¥ + hogHY) + hy (2he H¥ + M HY),
L% = 3hy(3h HY + 2hoHY ) + 2hy (3hgHY + 20 HY + hoHY ) + ho(2he HY
+ mHY), IX = 2ho(3hoH% + 2h HY + hoHY ) + 3hy (3hy H% + 2hgH% ) +12
hohoHY, I = 3ho(3h HY + 2hoH% ) + 12mhoHY, LK = 12h3HY.

In the remaining part of this section we investigate and solve our problem
for some particular cases for the fractional Riccati equation (2.9) as

follows.



14 HOSSAM A. GHANY et al.

Case A. If we set 09 =07 =1, 09 = 0 in Equation (2.9), and use

Mathematica to solve the resulting system, we will obtain the following

set of solutions:

Set 1. al=a2=b2=(32=d2=€1=€2=f2=0,a()=§

f

8 1 sie(1-£) f
k2a+ (1——),00 =—g,60=—24k3af,b1=6/€2aE,Cl

Sgh' g oh

— — — + %’7
dl = ’1 = 7 , =% S l + =.

L (sl

Substituting these values in Equation (3.3) and using Equation (2.11), we

obtain the following exponential decay wave solution of Equation (3.1):

(sD*  T*f(, 2) N 3(g(t, 2) - f(t, 2))
Kogt, z) 8 2) 8g2(t, 2)h(t, 2)

ul(xa t7 Z) =

. 6k2%f(¢, 2)

g(t, Z) Yl_l[él(x’ t 2)]’

_ 3k%(g(t, 2) -~ f(t, 2) __2k"
Ul(x, t, Z) = Zg(t, Z)h(t, Z) - h(t, 2) Y]_[E_,l(x, t, Z)]

3k%f(¢, 2)

* e bt 2 e b )

wy(x, t, 2) = — 24k%f(¢, 2) + 341 (t, 2) )Yl_l[ﬁl(x, t, 2)],

2g(t, 2)h(t, z

2007,3 ot
ik J‘ [ f(x, 2)
g]_(x7 ta Z) kx— _S Ou7+—g(’r, Z)dT+Cl.

with

(3.5)

(3.6)

(3.7
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Case B. If we set og = — a9 = %, o = 0 in Equation (2.9), and use

Mathematica to solve the resulting system, we will obtain the following

sets of solutions:

20

Set 2. C“1=bl=01=c2=011=6’1=€2=f1=0,ato=(2+3qp)k g

1

20 _ 200 30\

Co =— € = k:; ’az:2b2:%9f2:d2:k2a,l:[(2+z)k ]
s

Substituting these values in Equation (3.3) and using Equation (2.11), we

obtain the following soliton wave solutions of Equation (3.1):

2+ 3p(t, 2)k**  3p(t, 2™

ui(x, t, 2) = . 2) 240, 2) (2Y?[Ea(x, ¢, 2)]
+ Y72 [y (x, 8, 2)]), (3.8)
0yl 4, 2) = M ROV (v, 4, 2)], (3.9
wi(x, 1, 2) = M ROV (v, 4, 2)], (3.10)

with i = 2, 3 and

t
Eo(x, t, 2) = kx + kSIO @+ plr, 2)Jadr + cy.

20
Set3.a1=a2=b1=cl=cz=d1=e1=e2=f1=0,a0=%,
2 2 3a o
pk™* - 3pk=* 2 (2 + pk°* |
CO 2—60 :—,b2 :—, fz :d2 :k ,l: - .
3 2q s

Substituting these values in Equation (3.3) and using Equation (2.11), we

obtain the following soliton wave solutions of Equation (3.1):
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20 200
Uisolx, 1, 2) = G ARG 2T B3P 2T yoape (o Ly (310

q(t, 2) 2q(t, 2)
t, 2)k2% _
Vipo(x, t, 2) = % + szi 2[§2(x, t, 2)], (3.12)
t, 2)k2 _
Wiolx, t, 2) = % + szi 2[§2(x, t, 2)], (3.13)
with ¢ = 2, 3.

Case C. If we set o = %ocz =1, a; =0 in Equation (2.9), and use

Mathematica to solve the resulting system, we will obtain the following

set of solutions:

Set 4. a1=b1=b2=cl=d1=d2=e1=f1=f2=0,a0=

20, 200 200 200
(32 + 3qlp)k - 47‘]; 5 (12 = ——96qu , CO = - eO = pk3 , Cz = 62 = 64]€2a,

. ((p — 32)k° J%
s* .

Substituting these values in Equation (3.3) and using Equation (2.11), we

obtain the following periodic wave solutions of Equation (3.1):

(32 + 31p(t, 2)k** _ 4r(t, 2)k*

Ui+2(x, (3 Z) = q(t, Z) 9
96p(t, 2)k2% 9
- WYL [&3(35’ Z, Z)]9 (314)
200
Viol(x, t, 2) = % + 64k2°‘YL~_2[§3(x, t, 2)], (3.15)
200
Wwiolx, t, z) = plt, 2k + 64k2Yi_2[&3(x, t, 2)], (3.16)

3
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with i = 4, 5 and

t 1
Esl(x, ¢, 2) = kx + i3 I (p(1, 2) — 32)adT + c3.
0
At the end of this section we should remark that, there exists an infinitely
number of exact travelling wave solutions for Equation (1.2); these
solutions come from solving the system (3.4) with regard to the fractional
Riccati equation (2.9). The above mentioned cases are just to clarify how

far our technique is applicable.
4. White Noise Functional Solutions of Equation (1.1)

In this section, we use the inverse Hermite transform and [30,
Theorem 4.1.1] to obtain white noise functional solutions for Equation
(1.2). The properties of generalized exponential, hyperbolic and
trigonometric functions yield that there exists a bounded open set
G c RxR,, m <o, n>0 such that the solution {u(x, ¢, z), v(x, ¢, z),
w(x, t, z)} of Equation (3.1) and all its fractional derivatives which are
involved in Equation (3.1) are uniformly bounded for (x, ¢, z) € G x K,,,(n),

continuous with respect to (x, ¢) € G for all z € K,,(n) and analytic with

respect to z € K,,(n), for all (x, ¢) € G. From [30, Theorem 4.1.1], there

exist Ulx, t), V(x, t), W(x, t) e (S)_; such that u(x,¢t, 2) = Ulx, ¢)(2),

v(x, t, 2) =V(x,t)(2), and w(x,t, 2z)=W(x,¢)(z) for all (x,¢ 2)e
GxK,,(n) and {Ul(x, ¢), V(x, t), W(x, ¢)} solves (in the strong sense in
(S)_;) Equation (1.2) in (S)_;. Hence, for P(¢)Q(t)R(t) # 0, the white

noise functional solutions of Equation (1.2) can be obtained by applying

the inverse Hermite transform to Equations (3.5)-(3.16) as follows:
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e Stochastic exponential decay wave solution:

Uy (e 1) = (D" TK*F() , 3(GW) - F() , 6K*“F(t) YO [E &, o),

Ge) G0 s6%@)oHE) GO

(4.1)
V(e 1) = 3k§((}c(;t()t<)>;l I(?tgt)) _ 12;(‘:) Y5, (x, 1)]
; % Y, [=, (x, 2], (4.2)
W, (x, £) = — 24k*F(r) + % Y, [=, (x, £)], (4.3)
with
T, (x, ¢) = hx + izo;’“3 I; [Vh i %m o
Stochastic soliton wave solutions:
Usx. 1) = kzag(:, il)?(t)) B 3k22;€)(t) 0 (2Y72[Z, (x, 1)
+ Yy, 1)), (4.3)
Vilx, t) = @ + k2072 Oz, (x, 1)), (4.4)
W(x, {) = ’“m:f ©) 4 j2oy e Dz, (x, 1)), (4.5)
Ui oo, ) = "’2“(2&;)“) ®) 3"’;;5 )(t) oY ey (x, 1)), (4.6)
Violx, t) = @ + k2072 Oz, (x, 1)), 4.7)
Wil ) = PO | p2uye (D, ) 4.9
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with i = 2, 3 and

t 1
o (x, £) = kx + &° IO @2+ P(1)°adr + cs.

Stochastic periodic wave solutions:

_ E**(32+31P(t)  4k*“R(t)  96k*“P(t)

o2 —
Ui+2(x7 t) - Q(t) 9 Q(t) OYi [—'3(36, t)]a
(4.9)
200
Vio(x, £) = & f ®, 64k2%Y 24 (x, 1)), (4.10)
200
W, o(x, t) = "’TP(” +64k20y? A4 (x, 1)), (4.11)

with i = 4, 5 and

t 1
Eq(x, 1) = ka + k3 I (P(7) - 32)° wdr + cs.
0

We observe that for different forms of F(¢), G(t) and H(¢), we can

get different solutions of Equation (1.2) from Equations (4.1)-(3.12).
5. Summary and Discussion

Our first interest in this work is to implement new strategies that
give white noise functional solutions of the variable coefficients Wick-type
stochastic fractional Hirota-Satsuma coupled KdV equations. The
strategies that will be pursued in this work rest mainly on Hermite
transform, white noise theory and modified fractional sub-equation
method, all of which are employed to find white noise functional solutions
of Equation (1.1). The proposed schemes, as we believe, are entirely new
and introduce new solutions in addition to the well-known traditional
solutions. The ease of using these methods are showed its power to
determine shock or solitary type of solutions. Obviously, the planner

which we have proposed in this paper can be also applied to other
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nonlinear PDEs in mathematical physics such as KdV-Burgers, modified
KdV-Burgers, Sawada-Kotera, Zhiber-Shabat and Benjamin-Bona-
Mahony equations. Note that, if o =1, Equation (1.1) is reduced to the
stochastic generalized Hirota-Satsuma coupled KdV equations. Also, if
oa=1f=05 and g=-h =3, Equation (1.2) is reduced to the
generalized Hirota-Satsuma coupled KdV equations. Hence, our results
can be considered a generalization of the work due to Ghany [13] and Wu
[46]. Moreover, there is a unitary mapping between the Gaussian white
noise space and the Poisson white noise space, this connection was given
by Benth and Gjerde [4]. Hence, with the help of this connection, we can
derive some Poisson white noise functional solutions, if the coefficients
F(t), G(t) and H(t) are Poisson white noise functions in Equation (1.1).
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