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Abstract

The aim of this note is to study the limit behaviour of the ratio of the
arithmetic mean and the geometric mean of the first n terms of some general
sequences. In fact, this note generalizes some of the previously known results
and extends the results to several well-known sequences in number theory.
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1. Introduction
Suppose that a,, is a sequence of positive real numbers and let
A, = Alay, ag, ..., a,),

and
G, = Glay, ag, ..., a,)

denote the arithmetic and geometric means of the numbers

ai, ag, ..., a,,respectively.

The limiting behaviour of the ratio of A, and G, have attracted the
attention of many mathematicians in recent years, and interesting results
have been obtained for some special sequences of positive numbers. For
example, consider the sequence of the first n positive integers. The well-

2nn"n
en

lim A, 2,...,n) e
nom G, 2, ,n) 2

known Stirling’s approximation n!~ implies that

As a generalization of this limit, Kubelka [11] proved that for any o > 0,

. AQ%, 2% ..., n%) e
lim .
noe G(1%, 2%, ..., n%) O+l

Recently, similar results have been considered for the sequence p, of

prime numbers. In his paper [3], Hassani established some inequalities

A(py, pe, ..., Py)

that led to
G(p1, P2, s D)

and asymptotic formulas for the ratio

. A(py, Y e
lim (p1, P2 Pn) -
n—wo G(p1, Pg, ..., Pp) 2

For more inequalities and asymptotic formulas for the ratio

A(py, P2 -5 Py)
G(pla p27 ey pn)

, see also [1].
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eoc
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Our interest in this paper is to show that the ratio (with

o > 0) appears surprisingly in studying the limit behaviour of the ratio

of the arithmetic and geometric means of the first n terms of some
general sequences. Furthermore, we show that the general results of this

paper apply to some well-known sequences in number theory, for example

to the sequence of k-free numbers (k = 2), the sequence of k-full numbers

(k¥ = 2), the sequence of prime numbers, the sequence of numbers with

k > 2 prime factors in their prime factorization and the sequence of

perfect powers.
2. Main Results

Theorem 2.1. Let A, be a strictly increasing sequence of positive
integers such that
A, ~cn’, (1)

where ¢ > 0 and s > 1 are fixed real numbers. The following limits hold

forall o> 0

24

) W et
7}1—1330 1 T as+1’ @
[T o)
i=1 !
Z A%
Ain l
. P(x) e®
1 =
xl—rgo 1 as+1’ 3)

M.+
A;<x l

where V(x) is the counting function of the sequence. Namely, ¥(x) = Z Ao b
i<
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Proof. We have the following general proposition [13, page 332]. Let

) ) . o Qa;
Zi:l a; and Zi:l b; be two series of positive terms such that -+ — 1. If

b;
n
o D a
Zi—l b; diverges, then we have ==— — 1.
= n
1=1
Therefore, we have (see (1))
n n n o os+1
ZA;X ~ co‘Zio‘s = co‘jo x*dx + O(n™) = —coc:+ T+ O(n*®)
1=1 1=1
o os+l o os+l s\ o
_c’n L O(n%) ~ £ :(cn)nNAnn'
as +1 as +1 as +1 as+1
(4)
Equation (1) gives
InA, =Inc+slnn+o(l), (5)
/ n
and the Stirling’s formula n!~ 21t+\/; gives
e
n
Zlni=nlnn—n+0(n). (6)

i=1
Equations (5) and (6) give
n
ZlnAi =nlnc+s(nlnn-n+o(n))+o(n)
i=1
=nlnc+snlnn-sn+o(n).

Hence

1
n n
In HAi =lnc+slnn-s+o0(),
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and consequently

and

1
. 1
{H A?"Jn ~ %™ ~ An ) (7)
- 3 s
1=

Equations (4) and (7) give Equation (2).
Since ¥(A,,) = n, Equation (4) can be written in the form

3 oA~ A4, ®

as +1
Ai SAn

If x €[4, A,.1), then ZAL»SA” Ai“ = ZAin A% and consequently we

1

have (see (8))

> ag oAy A%
- A; <A, l < A;<x l < A; <A, t 51

w(An) r(}+l - w(x)xoc - w(An )Ar(zC
as +1 as +1 as +1

since, by Equation (1), A,.; ~ 4,. Therefore by the compression

theorem we have

o p(x)x
Z 4 as+1 " ©)
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Analogously if x € [4,,, A,,;) Equation (7) gives

1 1

a \9(4,) o |blx)
1 (HAisAn 4, j (HAin 4 j

<
as

e Ap x®
1
(I_I q)1%An)
AiSAn l 1
S Aa — eTS )
n
and therefore we have
1
(H Aa)w(x)
. 13
Jim A= —ASE -1 (10)
T—>oo X 2

Equations (9) and (10) give Equation (3). The theorem is proved.

Theorem 2.2. The equation

(11)

is equivalent to

. (12)



ON THE RATIO OF THE ARITHMETIC AND GEOMETRIC ... 73

Proof. Clearly (12) implies (11) if we substituting x = A,, into (12).
On the other hand, Equation (11) can be written in the form

A, ~ c(v(4,))°. That is, Wb(iln) — 1, and consequently if x € [A4,,, A4,,,1)
Aj
1
cS
we have
L w(zlﬁln) < w(olc) < w(Aln) Y
A, o A
1 1 1
cs cs c®

since A, ~ A, 1. Therefore, by the compression theorem we obtain (12).
That is, (11) implies (12). The theorem is proved.

Example 2.3. The sequence A, =n satisfies Theorem 2.1, since
A, =n ~n. In this case we obtain the result by Kubelka (see the

introduction)

1% +2% +... + n%

lim n =_¢
5 1 o+1
" (1%9% L p% Y,

o

since in this case s = 1.
In general, all sequence A, with positive density p > 0, that is,
P(x) ~ px, satisfies Theorem 2.1. For example, the sequence of square-

free numbers and in general the sequence of k-free numbers (k > 2),

since (as it is well-known) they have positive density L, where (k)

g(k)
denotes the zeta function (see, for example, [8]). The sequence of square-

full numbers and in general the sequence of k-full numbers (k > 2) also

satisfies Theorem 2.1, since if y(x) is the number of k-full numbers not

1
exceeding x then (as it is well-known) y(x) ~ cx*, where the constant ¢

depends of k (see, for example, [9]).
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The sequence A, = P, of perfect powers also satisfies Theorem 2.1,

since (as it is well-known) P, ~ n? (see, for example, [10]) etc.

The following definition was established in [4].

Definition 2.4. Let f(x) be a function defined on the interval [a, o)
such that f(x) > 0, lim,_,., f(x) =~ and with continuous derivative
f’(x) > 0. The function f(x) is of slow increase if and only if the following

condition holds:

lim L&) _ g 13
) . ) 2 In x
Typical functions of slow increase are ln x, In“ x, In In x, hinx’ ete.

The functions f(x) of slow increase have the following property (see

[4]): for all a > O the following limit holds:

lim 1) =0.

x—oo 5O
Besides, if f(x) is of slow increase then cf(x) and f(x)* are also
functions of slow increase, where ¢ > 0 and a > 0 are real numbers (see

[4]).
Theorem 2.5. Let A, be a strictly increasing sequence of positive
integers such that

An ~ nsf(n), (14)

where s > 1 is a real number and f(x) is a function of slow increase. The

following limits hold for all o > 0

n A0
Zizl v
—_— os

1i n -° 15
el 1 as+1 (15)

T4
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Z A%
Ain l

. P(x) ™
1 = 16
xgrio 1 oas+1° (16)

M.
Ain !

where y(x) is the counting function of the sequence. Namely, y(x) = z A <z 1.
i<

Proof. In [4, Theorem 22] is proved the following formula:

n o
> A~ nAy (17)

’ as+1’
1=1

and in [4, Theorem 24] is proved the following formula:

1

I

lim ) (18)
n—oo A,‘? eas
Equations (17) and (18) give Equation (15).
In [4, Theorem 22] is also proved the following formula:
o )
AZ;C 4, as+1"’ (19)
and the formula
1
(H Aq)w(x)
. 13
lim = A _ (20)

o as
X —>o0 X e

can be proved from Equation (18) in the same way as in Theorem 1.1.

Equations (19) and (20) give Equation (16). The theorem is proved.
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Example 2.6. Let p,, be the n-th prime number. The prime number
theorem is p, ~ nlnn. Therefore the sequence of primes A4, = p,
satisfies Theorem 2.5. In this case s =1 and f(x) = In x. Consequently,

we have the limits (where 7(x) denotes the prime counting function)

n

o
iz Pi "
li n = 21
nl—I}:o 1 a+1’ @D
n a\n
(Hizl bi J
o
Zpin pi
. (x) e
1 = 22
xl—I}:o 1 a+1’ (22)

o |(x)
(Hpin pL )

Equation (21) with o = 1 was proved by Hassani (see the Introduction).

The sequence A, of numbers with k£ prime factors in their prime

factorization, where k 1is an arbitrary but fixed positive integer, also
satisfies Theorem 2.5 (see [4, Example 11]) etc.

In the following theorem we obtain asymptotic expansions for (21)
and (22).

Theorem 2.7. Let o > 0 be and let m be an arbitrary but fixed

positive integer.
The following asymptotic expansion holds:

o

Zpi <x pl

7(x) e Jh ( 1 ]
= + +0 , (23)
1 a+1 4 In” x In™1 x

o \m(x) h=
(Hpiﬁx Pi j

where a method for to determinate the coefficients by p,, depending of a., is

given below (in the proof).
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The following asymptotic expansion holds.

n

o
. D
1=1

Pt At S o m-—1
n _er Z n (lnhln n) N o[ 1 J 24)
1 o+l In"n In n

n h=1
)
i=1

where the f(x) are polynomials. A method for to determinate the

polynomials f,(x) is given below (in the proof).

Proof. We have the following Taylor’s polynomial
. :1+Zﬁ+o(x”) (x = 0). (25)
k=1

On the other hand, we have the following asymptotic expansion (see
either [6] or [7]):

1),xoc+1 (xowl ] 06
Zp Zoc+1)lkx+0 m 26

pex 7 ( In™ x

We also have the following formula well-known [14], where a is a positive

constant.

Z logp =X+ O(F] =X+ O(ﬁj, (27)

p=x

and the following Panaitopol’s asymptotic expansion [12]:

1 Inx 1 <o a 1
™ —;+Z 2 +o( — ], (28)

= xIn" x xIn™ x

where the coefficients a; can be obtained recursively (see [12]).
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Now, we have

Zpi sx p‘q
M(x) = n(x) -1 [Z p“]exp(i a a)ﬁ(x)j. (29)
psx

1 ()

a |nlx)
(Hpiﬁx Pi )

Substituting (25), (26), (27) and (28) into (29) we obtain

m

(k-1)!x® x® - a 1
M(x) = Inx -
. [; (o + 1) In* x ' O(lnm x]][ S ; In* x ’ O(lnm xj]
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m

_ o 1 (k —1)! & k-1
e[O“rl+Z(oc+1)klnk_1x+(Z(0c+1)klnkx]

k=2 k=1

boc,h 1
w—+ O(lnm_l xj (30)

That is, Equation (23).
We have the following Taylor’s formula:
n

1ix 1+ kz:;(_ xh +o(x”) (x> 0). (31)

Cipolla [2] proved the following asymptotic expansion for In p,, where

D,, denotes the n-th prime number,

r
lnpn=lnn+lnlnn+2gi(lnlnn)+0( 1 j, (32)

~ In'n In" n

where the g;(x) are polynomials of degree i and rational coefficients.

Cipolla [2] gives a recursive method to obtain the polynomials g;(x).

Next, we obtain an asymptotic expansion for

Inp, "
If we put
r
x=_1n1nn_|_ gi(lplnn)+0( 1 j, (33)
Inn : 1nL+1 n 1nr+1 n

1=1
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and use Equation (31) then we obtain

1 _ 1 1
Inp, Innl+x

e B N ) AP TONGY)
Inn
- l-x+x? -+ (1™ 40 1
Inn In"* n
r+l r i
. (In1
L 1+Z(—1)L Inlnn +Zg1(r.llnn) +0(—12 j
Inn — Inn = I/t n It n
r+l
-1 +Zhi(h.lllnn)+o( 12 j, (34)
Inn ~ In'"'n In"** n

where the h;(x) are polynomials of rational coefficients. This is the

asymptotic expansion for 1 . That is,
In p,
r+1
h;(Inl
1 _ 1 +Z ‘(I_llnn)+o( 12 j (35)
Inp, Inn ~ In'"n In" " n

o 1
+0 : (36)
(Hn q) o+l gph g, (lnm_1 nj
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since In p, ~ Inn. Finally, substituting (35) (with r = m — 3) into (36)

we find that

LN
Q m-1 m—2 h
n e h, (Inlnn) 1
= + E +
1 o+l ~ ln n nitl n lnm_l n

n o \n =1
(Hi=lpi j

(37)

where the f,,(x) are polynomials. This is the asymptotic expansion (24)

that we desired. The theorem is proved.

Example 2.8. We choose m = 3. Equation (30) becomes

o
Zpin pi 3
(x)
= +
1 ¢ [oc +1 kZ:

oc+1

(TS R

k=1 ((X +1) In" x

= = In"x In” x
e e%a? 1 a2 +3)?% 1 1
- 21 3 SO
a+l  (g41)* Inx 2@ +1)° In“x In® x
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since ¢ =—1 and a9 =—-3. Now, r =m -3 =0 and Equation (34)

becomes

1 .
11 _i(Inlnny 1
In py —1nn[“z( 1)( Inn )JJFO(lnznj

=1

1 _lnlnn+0[ 1 j
Inn 152, In?n

Finally, Equation (37) becomes

o a
2Pl o« 2 L y(ininn))
n e 1 ;(Unlnn 1
1 _(x+1+z;b°"h(lnn+.zll Init! n ] +O(ln2nj

TP

a 2 h
e 1 Inlnn 1
- a+1+;ba,h(1nn_ lnznj +0(ln2 nj

e%a? e%a®(a + 3)°
2 3
(a0 +1) 2o +1) +o( ; j
In“n

In“n

Theorem 2.9. Let A, be a sequence of positive real numbers (in

particular integers) such that

Ay

- O % F()\B
A Cn*f(n)", (38)

where C > 0, a > 0 and B are fixed real numbers and f(x) is a function

of slow increase.
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The following limit holds.

A4 A A,
—_ + —_ + e +
Ay A Apq o
. n _ e
r}grio 1 o+l (39)
(ﬂﬁ L An jn
Ag A Ay,

Proof. In [5, Theorem 5] was proved the formula

Ay A, A, 1
A - o (40)
An—l

1
(At oo

On the other hand, we have (I’Hospital’s rule and (13))

R )P
hm —_— =

X300 OF1 L
flx)P

Note that the function Cxocf(x)B is strictly increasing from a certain

positive integer a and lim, _,,, Cx*f (x)? = o. Therefore we have

j_(l) . i_f N A*‘:: - Z Citff = ) CifP + Z Ci%f (i)

1=1 1=1 i1=a
a-1
=3 Ci%G6P + | Cx*f(x)Pdx + O(n“f(n)ﬁ)
i=1 @
na+l 8 An n
Coc+1f(n) A, a+1’ (1)

Equations (40) and (41) give Equation (39). The theorem is proved.
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is well-known (see, for instance, [5]) that

R. FARHADIAN and F. JAKIMCZUK

Example 2.10. Let us consider the sequence B,, of Bell numbers. It

B, n
~ ——. Theref
B,, Tnn erefore

Theorem 2.9 is applicable and we have

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

B, By B,
—_— + R + ces +
By B B,
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