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Abstract

We obtain asymptotic expansions for the geometric mean of prime numbers.

1. Main Results

Let p, be the n-th prime and n(x) be the prime counting function.

The following limit was proved in [2] by use of the prime number theorem

p, ~nlnn.
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Almost an immediate consequence of limit (1) is the limit
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where p denotes a generic prime. Really limit (1) and limit (2) are

equivalent, since clearly (2) implies (1) if we put x = p,,.

In this article, we obtain asymptotic expansions for (1) and (2). We

have the following theorem.
Theorem 1.1. Let m be an arbitrary but fixed positive integer.

The following asymptotic expansion holds.
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where a method to determinate the coefficients b; is given below (in the
proof).

The following asymptotic expansion holds.
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where the f;,(x) are polynomials. A method to determinate the polynomials

fn(x) is given below (in the proof).

The following asymptotic expansion holds.
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where the q,(x) are polynomials. A method to determinate the polynomials

qp,(x) is given below (in the proof).
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Proof. We have the following Taylor’s polynomial
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We also have the following well-known formula [4], where a is a positive

constant.

ﬁ(x)=21np=x+0[ aﬁnszx+o(1%j,
e n x
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and the following Panaitopol’s asymptotic expansion [3]
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where the coefficients q;, can be obtained recursively (see [3]).

We have (see (7) and (8))
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Equations (9) and (6) give

1 1
—+ — +o0 . (10)
e ~'In'x (lnm_1 xj

Therefore Equation (3) is proved.

We have the following Taylor’s formula

1ix —1+ ;(— 12k +o(x™)  (x — 0). (11)

Cipolla [1] proved the following asymptotic expansion for In p,

.
lnpn:lnn—i-lnlnn-i-Zgi(ln‘lnn)-i-o( 1 j (12)
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where the g;(x) are polynomials of degree i and rational coefficients.

Cipolla [1] gave a recursive method to obtain the polynomials g;(x).
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Next, we obtain an asymptotic expansion for

Inp, "
If we put
,
‘= Inlnn N gi(lpinn) +o[ 11 j, (13)
Inn ~ In'""'n In"* n

and use Equations (11), (12) and (13) then we obtain
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where the h;(x) are polynomials of rational coefficients. This is the

asymptotic expansion for o, That is,
n
r+1
h;(Inl
1 _ 1 +Zl(r.lnn)+o 1 . (15)
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Substituting x = p,, into (3), we obtain

+ L +0( 11 j (16)
~'In' p, In"" n
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since In p,, ~ In n. Substituting (15) (with r = m — 3) into (16) we find that

1
n

n
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where the f,,(x) are polynomials. This is the asymptotic expansion (4)

that we desired.

Cipolla [1] proved the following asymptotic expansion for p,.

,
pn:nlnn+nlnlnn—n+nzki(ln‘lnn)+o( n j, (18)
~ In'n In" n

where the k;(x) are polynomials of degree i and rational coefficients.

Cipolla [1] gave a recursive method to obtain the polynomials k;(x).
If » = 0, then the Cipolla’s formula is
p, =nlnn+nlnlnn—n+o(n).

If » =1, then the Cipolla’s formula is

p,=nlnn+nlnlnn-n+ (19)

nlnlnn - 2n ( n )
+ 0
Inn Inn

etc.
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Equation (4) gives

1
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h=1

Substituting Equation (18) (with r = m — 2) into Equation (20) we obtain
Equation (5). The theorem is proved.

Example 1.2. We choose m = 3. Equation (10) becomes
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3 (see [3]). Equation (21) is Equation (3) for

since a; = -1 and a9 = -

m = 3. Equation (14) is for r = 0.
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1 Inlnn [ 1 j
= - +o0 . (22)
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Equation (17) becomes (see Equations (21) and (22))
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This is Equation (4) for m = 3.
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Finally Equations (23) and (19) give

1
n

5
n N :ll_ 1 +1nlnn—§+o( 1 )
II v e Inn 2 2
i=1 In“n In“n

x(nlnn+nlnlnn—n+nlnlnn_2n+o( n D
Inn Inn

1 nlnlnn-—=n n
=—|nlnn+nlnlnn-2n+ 2 +0( )
e Inn Inn

This is Equation (5) for m = 3.
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