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Abstract

Let us consider a strictly increasing sequence of positive integers a, such that

A(x) is the distribution function of the sequence. That is, A(x) = z 1.

a, <x

We prove the asymptotic formula z - {i} = CA(x) + o(A(x)), where Cis
a, <x

an
a constant depending of the sequence a,. The distribution functions A(x)

considered are very general. The methods used are very elementary.

1. Introduction and Main Results

It is well-known the formula proved by Dirichlet in 1849.

Z{%} = (1 - y)x + olx),

n<x

where n denotes a positive integer and 7y is Euler’s constant.
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In 1898, de la Vallée Poussin [1] obtained some generalizations of the
Dirichlet’s formula doing some restrictions on the divisors n, equation (1)
is also known as de la Vallée Poussin’s formula. De la Vallée Poussin [1]
consider numbers in arithmetic progression and prime numbers.
Pillichshammer [9] obtained another generalization of the Dirichlet’s
formula also doing a restriction on the divisors n. Pillichshammer [9]

consider k-th powers, where k£ > 2 is a positive integer. In this article,
we prove that all these restrictions are particular cases of more general
theorems. The proofs are simple, short and very elementary.

Let us consider a strictly increasing sequence a,, of positive integers.
We shall denote a positive integer in this sequence a. Let A(x) be the
number of a not exceeding x, that is, A(x) is the distribution function of

the sequence aq,, A(x) = Za<x1. In this article we study the more

X

general sum Za Sx{g}. We shall prove that ZGSX{E} = CA(x) +

o(A(x)), where C is a constant depending of the sequence a,. The
distribution functions A(x) considered are very general (see below).

We shall need the following well-known theorem (Abel summation).

Theorem 1.1. Let c,(n > 1) be a sequence of real numbers. Let us

consider the function

n<x

Suppose that f(x) has a continuous derivative f'(x) on the interval

[1, ], then the following formula holds:

> cufn) = A@Y @) - [~ AOF @)

n<x
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Proof. See ([2], Chapter XXII).
We also shall need the following definition.
Definition 1.2. Let us consider a positive function f(x) such that
f’(x) is positive, strictly decreasing and lim, _,, f(x) = «. The function
f(x) is of slow increase if and only if the following limit holds:

af)
)

Typical functions of slow increase are log x, log log x, bi, etc. The
log log x

functions of slow increase are studied in [7]. We shall need the following

properties of the functions of slow increase:

lim M =0,
x—>00 4O
for all o > 0 and
Jin 6y = ®
for all C > 0.
Note that

Sfe}--gt- 22

asx <x
We have the following general theorem.
Theorem 1.3. We have the equation

> [2]-(%a(3))-3) 2

%<a£x
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Proof. Note that if —~— < a < ﬁ., then LﬁJ = j. Consequently,
J+1 J a
k-1
X (. (x X
23 2i43)-45)
<asx J=

(35 i)

J
The theorem is proved.

More precise formulas can be obtained if we have more information

on A(x). We have the following theorem.

Theorem 1.4. Suppose that ¢ > 0,0 <o <1 and f(x) is a function

of slow increase. If A(x) ~ cx®, then

Z L%J = {i% - k%}cxa +o(x?). (5)

It A(x)N;C(—z),then
> -(rEm ) e
xome Y o ke ) f)
ot

Proof. Equation (5) is an immediate consequence of Equation (4).
Equation (6) is an immediate consequence of Equation (4) and the limit

)

lim, _,., —==% =1 (see Equation (2)). The theorem is proved.

f(x)
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Theorem 1.5. Suppose that A(x) ~ cx, where ¢ > 0. If k> 2 is an

arbitrary but fixed positive integer, then

3 %} _ [1 _ [i“% ~log kD cx + o(x)

X
<X
k

k
- [1 - [z% ~ log k]] A(x) + o(A(x)). (D
1=1

Proof. We have

21 = A(x).

asx

If we put f(x) = % and apply Theorem 1.1, then we obtain

Sloawls Ix@dt.

asx 1Lt

Therefore

x [*A®)
a A(x) -{A(x)."% 2 dt} A(x). (8)
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Now, we have

A9(Cx) J'f t(t) dt = ( (1))J' ct J;zo(t) di = ( + 0(1))Cj.:%dt

k

N (1 . 0(1)) j ;0(1)%0” = log k + o(1). ©)

c

Substituting (9) into (8) and using (3) and (5) we obtain (7). The theorem

is proved.

Theorem 1.6. Suppose that A(x) ~ %, where f(x) is a function of

slow increase. If k > 2 is an arbitrary but fixed positive integer, then

> {2} [1-[ bt o)

X 1
2ea<lx
k

k
= [1 - [Z% — log kDA(x) + o(A(x)). (10)
=1

Proof. As in Theorem 1.5 we have Equation (8). Now, we have

t) ¢+ olt)
x) dt=(1+o0 ())f(x)J% - dt

_ 1+ o(1))f(x)J‘;% dt + (1 + o(1))f (x)j; 0(1)% d

=log k + o(1). (11)

Since (see Equation (2))

log k + o(1) =%J‘:1 < f(x)J.xidt < /(x)
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and consequently,

* 1
f(x)J%W dt = log k + o(1),

Substituting (11) into (8) and using (3) and (6) we obtain (10). The
theorem 1s proved.

Theorem 1.7. Suppose that A(x) ~ cx®*, where ¢ >0 and 0 < o < 1.

If k > 2 is an arbitrary but fixed positive integer, then

> {g} _ [1 _ [Z;ia - lkt_o‘dtD ex® + o(x®)

X
=<asx
k

B k 1 k —a
- (1 - (Z—a - L %t || Ax) + o(A(x)). (12)

i=11!
Proof. The proof is the same as the proof of Theorem 1.5. Note that in
this case we have

x (Ye® kK 1

A(x) %tz T l-a 1-«

+o(1) = jlktia dt + o(1).

The theorem is proved.

o
Theorem 1.8. Suppose that A(x) ~ %

slow increase and 0 < o< 1. If k> 2 is an arbitrary but fixed positive

, where f(x) is a function of
integer, then

L - e )

X
=<asx
k

=11

_ &1 boa
- (1 - (Z—a - L %t || Ax) + o(A(x)). (13)
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Proof. The proof is the same as the proof of Theorem 1.6. Note that in

this case we have

X X t‘x kl—oc 1 k 1
A(x) J.% f(t)tz dt = 1-q - 1-—a +O(1) = J. _adt‘i'O(]_).

The theorem is proved.

X

fx)

c>0,0<ac<1land f(x) is a function of slow increase. Suppose also that

Theorem 1.9. Suppose that either A(x) ~ cx* or A(x) ~ , where

Z {ﬁ} = h(k)A(x) + o(A(x)) (k> 2)

a
X <
T <asx

and lim;,_,, h(k) =1 > 0. Then

Z{g} = 1A(x) + o(A(x)).

asx

Proof. We have

That is,
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Note that
Yoexla)
o< ==l oy
A %)
and
A5 4
Alx) o

Therefore given ¢ > 0 arbitrarily small there exists a k£ sufficiently large

such that if x > x., we have

‘zm%}
Alx)

—l|<e+e+e=3 (x2=x).

The theorem is proved.

The Euler’s constant is defined in the form

k k
: 1 : 1 (k1
1 E——l El=1 E—— = =.
kmgo{j_lj og} km‘i’[j_lj 1tdt} Y

In the following theorem we generalize this definition.

Theorem 1.10. If 0 < o < 1, we have

In particular if oo =1, then [ = 1.



84 RAFAEL JAKIMCZUK

Proof. Note that the function g(t) = La is strictly decreasing in the
t

k
interval [1, <] and g(1) = 1. The integral JA ) iadt is the area below the
¢

function g(¢) in the interval [1, k¥]. The sum Zi_ 2% is the sum of the
)

areas of k-1 rectangles of base 1 and height %(jz 2,3, ..., k).
J

L 1s the sum of the areas of the k& —1 figures

k1
Therefore Il t_“ dt — ijz Iz

“as triangles” above of the rectangles. Clearly this sum of areas of figures
“as triangles” is strictly increasing and bounded by 1. Therefore, this

series has sum 0 <1 -/, < 1. The theorem is proved.

Now, we can establish and to prove our main theorem.

Theorem 1.11. Suppose that A(x) ~ cx, where ¢ > 0, then

Z{%} =c(l-7)x +o(x) = (1 - y)A(x) + o(A(x)).

X

f(x)

> {2 = 0-175+ o[ 75 = - DAW) + oA

asx

Suppose that A(x) ~ , then

Suppose that A(x) ~ cx®, where 0 < o < 1, then

Z{g} = c(l =g )x® +o(x™) = (1 - Iy )A(x) + o(A(x)).

o

Suppose that A(x) ~ %

, where 0 < a < 1, then

o

Z{g} -(- za);“(—z) +o (%) = (1= I )JA(x) + 0(A(x)).

asx



AVERAGES OF FRACTIONAL PARTS 85

Proof. It is an immediate consequence of Theorems 1.5, 1.6, 1.7, 1.8,
1.9 and 1.10. The theorem is proved.

Remark 1.12. By use of Theorems 1.5, 1.6, 1.7, 1.8 and 1.11, we can
easily obtain asymptotic formulas for the sum

2{a)

asx
k

Example 1.13. There are many sequences in number theory such
that A(x) ~ cx (c > 0). That is, sequences with positive density. The

sequence a of all positive integers. The sequence a of integers in

arithmetic progression. The sequence a of h-free numbers (A > 2), where

A(x) ~ Lx (see, for example, [5]). In particular, for the sequence of

¢(h)

. 6
squarefree numbers or quadratfrei numbers we have A(x) ~ — % etc.
o

Example 1.14. There are many sequences in number theory such

that A(x) ~ cx®(c >0) (0 < & <1). The sequence a of k-th powers

1
(¥ = 2) where A(x)~ x*. The sequence a of all perfect powers where

1
A(x) ~ x2 (see [4]). The sequence a of h-full numbers (h > 2) since that

1
A(x) ~ cx?, where the constant ¢ depends of h (see, for example, either
[3] or [6], for elementary methods), etc.

Example 1.15. There exist infinite sequences of positive integers in

o
number theory such that A(x) ~ %

function of slow increase. The sequence of prime numbers, the sequence

, where 0 < o<1 and f(x) is a

of prime powers, the sequence of numbers with exactly A prime factors in
their prime factorization and infinite sequences of composite numbers

with certain restrictions on their prime factorization (see [8]), etc.
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