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Abstract 

In this paper, a brief survey of the asymptotic theory of hypotheses testing is 

presented and some of the author’s recent results are given. The survey is not 

intended to be complete; it contains mainly results related to the author's 

interests (for detailed proofs, see [51]). A detailed review of this field can be 

found in Pfanzagl [45], Pfanzagl and Wefelmeyer [46, 47], Chibisov [23], and 

Götze and Milbrodt [25]. 

We consider the asymptotic approach with the probabilities of errors of first 

and second kind being bounded away from zero and therefore we study the 

power of tests against local alternatives. Special attention is paid to 

asymptotically efficient tests for testing a simple hypothesis concerning a 

univariate parameter. We shall consider only “regular” families for which local 

alternatives approach the hypothesis at a rate of .21−n  
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1. First-Order Asymptotic Theory 

Let { }1, RP ⊂Θ∈θθ  be a family of probability measures on a 

measurable space ( )AX ,  having densities ( )θ,xp  with respect to a 

finite-σ  measure .ν  Assuming without loss of generality that 1R⊂Θ  

contains an interval [ ] .0,,0 >εε  Suppose we have independent and 

identically distributed valued-X  observations ( )nXX ,,1 ⋯  distributed 

according to { }., 1RP ⊂Θ∈θθ  Our problem is to test the hypothesis 

.0:against0: 10 >θ=θ HH  

Note that alternative hypothesis is composite. This is a most general one-

sided hypothesis that we need to consider. The test 000 ,: θθ=θH  

specified against ,: 01 θ>θH  can be reduced to the above case by 

considering the family { }., 1
0

RP ⊂Θ∈θθ+θ  By a test (or critical 

function) for the sample size n we mean a measurable map 

[ ].1,0: →Ψ n
n X  

If nΨ  assumes the values 0 and 1 only, the set 

{ ( ) }1: =Ψ∈ xx n
n
X  

will be called critical region. 

We denote 0,nP  and θ,nP  the joint distributions of ( )nXX ,,1 ⋯  

under 0H  and ,1H  respectively. The respective expectations will be 

denoted by 0,nE  and θ,nE  (with subscript n dropped when applied to a 

function of single iX ). 
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A test nΨ  is of level ( )1,0∈α  if 

.0, α=ΨnnE  

The power of a test nΨ  is defined by 

( ) ., nnn Ψ=θβ θE  

It is well-known that for a fixed test size ( )1,0∈α  and a fixed alternative 

θ  this definition is not so useful, since the power of every reasonable test 

will tend to 1 (consistency of a test), i.e., 

( ) 1Lim =θβ
∞→

n
n

 

for every .0>θ  Indeed (see also Hettmansperger [32], Subsection 1.3), 

for every 0>θ  according to the Neyman-Pearson fundamental Lemma, 

the most powerful test for 0H  rejects 0H  if 

( ) ( ) ( )( ) ,,0

1

θθ

=

>−=θΛ ∑ nii

n

i

n cXlXl  

where ( ) ( )θ=θ ,log xpxl  and θ,nc  is defined by 

{ ( ) } .,0, α=>θΛ θnnn cP  

(We tacitly assume continuity of the corresponding distribution). 

By the Central Limit Theorem 

( )
( ),1,00

0

0 NL →








σ

µ−θΛ
H

n

nn  

where 

( ) ( )( ) ( ) ( )( ),, 1010
2
010100 XlXlXlXl −=σ−=µ θθ DE  

with 0D  stands for variance under .0H  
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Hence 

,00, ⋯+µ+σ= αθ nnucn  (1.1) 

where ( )α−Φ= −
α 11u  denotes the upper point-α  of the standard 

normal distribution and ( )xΦ  stands for the standard normal distribution 

function. 

Now we are in a position to prove that 

( ) { ( ) } .1,, →>θΛ=θβ θθ nnnn cP  

Let θµ  and 2
θσ  be the expectation and the variance of ( ) ( )101 XlXl −θ  

under ,1H  respectively. Applying once again the Central Limit Theorem 

to ( ),θΛn  we obtain 

( )
( ).1,01 NL →









σ

µ−θΛ

θ

θ H
n

nn  

Therefore, in view of (1.1) 

( ) { ( ) } ( )11
,

,, o
n

nc
c

n
nnnn +









σ

µ−
Φ−=>θΛ=θβ

θ

θθ
θθP  

 
( )

( ).100 o
un

+








σ

σ−µ−µ
Φ=

θ

αθ   (1.2) 

Application of Jensen's inequality to 0µ  and θµ  yields 

( )
( )

( )
( )

.0
0,

,
log,0

0,

,
log

1

1

1

1
00 >

θ
=µ<

θ
=µ θθ Xp

Xp

Xp

Xp
EE  

It follows that 

( ) ,0 +∞→µ−µθn  
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and due to (1.2) 

( ) { ( ) } .1,, →>θΛ=θβ θθ nnnn cP  

Any reasonable test should be consistent. If a test is not consistent for a 

reasonable set of alternatives, it should be rejected as defective. 

This result is not sufficiently informative for the comparison of tests 

performance because such an evaluation would require knowledge of the 

rate of convergence of their powers to 1. This, however, is a complicated 

matter and we will not consider this problem here (see, e.g., Chernoff      

[19, 20], Bahadur [7, 8, 9], Groeneboom and Oosterhoff [26, 28], 

Groeneboom [27], Kallenberg [34, 35] and Nikitin [38]). 

Usually, the following Pitman's approach (see Pitman [48] and 

Noether [39]) is used: the test size ( )1,0∈α  remains fixed but instead of 

a fixed alternative 0>θ  we consider so called local or contiguous 

alternatives { }nθ  for which 0→θn  as ∞→n  at such rate that the 

power tends to a limit which lies strictly between α  and 1. Under natural 

regularity conditions (see, e.g., (1.2)), it can be easily shown that the class 

of these sequences is the class of sequences nθ  for which 

,Lim tn n
n

=θ
∞→

 

for some constant t with .0 ∞<< t  In justification of this approach, we 

might argue that large sample sizes would be relevant in practice only if 

the alternatives of interest were close to the null hypothesis and thus 

hard to distinguish with only a small sample. Relation (1.2) shows that 

we are concerned with nθ  such that 

( ).21
0

−
θ =µ−µ nO  

So for any 0,0 >≤< CCt  we will consider testing 

.0,:against0: 10 Cttn ≤<=θ=θ τHH   (1.3) 



V. E. BENING 42 

Throughout the paper, we use the abbreviation 

,21−= nτ  

and we denote 0,nP  and tn,P  the distributions of ( )nXX ,,1 ⋯  under 0H  

and ,1nH  respectively. Obviously, they have densities 

( ) ( ) ( ) ( ),,and0,

1

,

1

0, txppxpp i

n

ntni

n

nn τ∏∏ == xx   (1.4) 

with respect to the corresponding product measure, ( ).,,1 nn xx ⋯=x  

The respective expectations will be denoted by 0,nE  and tn,E  (with 

subscript n omitted when applied to a function of single iX ). Denote by 

( ) ,, ntnn t Ψ=β E   (1.5) 

the power of a test  nΨ  for 0H  against the local alternative .:, ttn τ=θH  

Considered as a function of t, this sequence converges for every 

reasonable test to a monotone continuous function assuming its values in 

( )1,0  (see (1.14)). Using the argument from Pfanzagl [45, p.43], we note 

that this reparametrization is not only a matter of technical convenience. 

In meaningful applications of tests, we know which alternatives we wish 

to discriminate from the hypothesis with high probability, say, ,γ  and we 

choose the sample size accordingly. Hence it is reasonable to compare the 

power of different tests for alternatives with maximal rejection 

probability ,γ  irrespective of the sample size. Exactly this is achieved if 

we compare the power functions ( )tnβ  for fixed t. 

Assume that all measures tn,P  are mutually absolutely continuous. 

Consider the log-likelihood ratio 

( ) .loglog
0,

,

0,

,

n

tn

n

tn
n p

p

d

d
t ==Λ

P

P
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Then by (1.4) 

( ) [ ( ) ( )].0

1

iit

n

i

n XlXlt −=Λ ∑
=

τ  (1.6) 

By the Taylor series expansion, 

( ) ( ) ( )( ) ( ) ( )( ) .
2

1 221
0 ⋯++=− iiiit XltXtlXlXl τττ  (1.7) 

Here and in what follows the k-th derivative of a function with respect to 

θ  will be denoted by the superscript .k  For a function of θ  at ,0=θ  the 

argument θ  will be often suppressed, e.g., 

( )( ) ( ) .

0
2

2
2

=θ

θ
θ∂

∂
= xlxl  

Denote 

( ) ( )( ) ( ) [ ( )( ) ( )( )] ⋯,, 1
2

0
2

1

21

1

1 XlXlLXlL i

n

i

ni

n

i

n E−== ∑∑
==

ττ  (1.8) 

The sums are centered by the corresponding ns;expectatio-0E  the first 

sum contains no centering because 

( )( ) .01
1

0 =XlE  

Further, denote by I the Fisher information 

( ( )( )) .
2

1
1

0 XlI E=  

It is well-known that 

( )( ) .1
2

0 IXl −=E  

With this notation, putting (1.7) into (1.6) yields 

( ) ( ) ( ) .
2

1

2

1 2221
⋯++−=Λ nnn LtIttLt τ  (1.9) 
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The first two terms in the right-hand side of (1.9) express the local 

asymptotic normality (LAN) of the family of distributions. In the case of 

one-parameter family, a simple and sufficient condition for LAN was 

obtained in Hájek [29]. 

The omitted terms in (1.9) include the nonrandom term 

( )( )1
3

0
3

6

1
Xlt Eτ  

and the terms of higher order than .τ  

The Neyman-Pearson test, i.e., the most powerful size-α test for 0H  

against ttn τ=θ:,H  rejects 0H  when 

( ) tnn ct ,>Λ  

with tnc ,  defined by (assuming continuity of the corresponding distribution) 

{ ( ) } .,0, α=>Λ tnnn ctP  

Using (1.9) and the Central Limit Theorem, we obtain 

( )( ) .,
2

1 22
0 






−→Λ ItIttn NL H  (1.10) 

Hence 

,21 2
, ItuItcc ttn −=→ α  (1.11) 

( ) .1 α−=Φ αu  

The power of this most powerful test is 

( ) ( ( ) ).,, tnntnn ctt >Λ=β∗ P   (1.12) 

It is well-known from the LAN theory (see also (1.9)) that 

( )( ) .,
2

1 22
, 






→Λ ItItt tnn NL H  (1.13) 
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Thus (1.11)-(1.13) yield 

( ) ( ) ( ).α
∗∗ −Φ=β→β uItttn   (1.14) 

These results have been obtained by Wald [50]. 

Note that ( ),tn
∗β  known as the envelope power function (i.e., the 

supremum over all α-size  tests of the power at tτ ), is not the power 

function of a single test. The envelope power function renders a standard 

for evaluating the power function of any particular test. For each ,0>t  it 

is the power of the most powerful test against tn,H  based on ( ).tnΛ  Thus 

it provides an upper bound for the power of any test for 0H  against 

.0:1 >tH  

It is well-known that there are many (first order) asymptotically 

efficient tests, i.e., tests whose power function ( )tnβ  converges to the 

same limit as ( ).tn
∗β  So are, for example, tests based on ( ),1

nL  on ( )0tnΛ  

with an arbitrary ,00 >t  on the maximum likelihood estimator ,ˆ
nθ  on a 

certain linear combination of order statistics; on a certan ;statistics-U  for 

θ  location parameter there are asymptotically efficient rank tests (see 

Section 4). Hence, there is an abundance of tests fulfilling 

( ) ( ) ,0, >β→β ∗ tttn   (1.15) 

i.e., of tests which are most powerful for 0H  against tn,H  up to an error 

( )1o  for every .0>t  They can be compared with each other by higher 

order terms of their power. We even have the result (see Pfanzagl [41], 

p.31, Theorem 6) that if (1.15) is satisfied for one 0>t  then (1.15) holds 

for all 0>t  (efficiency up to ( )1o  for one 0>t  implies efficiency up to 

( )1o  for all 0>t ). 
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Before proceeding to the higher-order theory, we will derive some 

simple formulas to be used in the sequel. 

Denote by ( )xp t,0  and ( )xp t,1  the limiting densities of ( )tnΛ  under 

0H  and tn,H  respectively, which correspond to the normal distributions 

in (1.10) and (1.13). Note that they are related to each other by 

( ) ( ),,1,0 xpxpe tt
x =  

which follows from the properties of the log-likelihood ratio or can be 

verified directly. We will need expressions for ( )tt cp ,0  and ( ).,1 tt cp  

Putting (1.11) into the explicit expressions for normal densities (1.10), 

(1.13) yields 

( ) ( ) ( ) ( ).1
,

1
,1,0 Itu

It
cpu

It
cp tttt −ϕ=ϕ= αα  (1.16) 

Next, suppose instead of tnc ,  we use another critical value ,, tnc  say, 

which also converges to tc  (see (1.10), (1.11)). Then the test with the 

critical region 

( ) tnn ct ,>Λ  

has size nα  and power ( )tn
∗β  converging to α  and ( ),t∗β  respectively. Let 

us now have two such sequences tnc ,  and tnc ,
~  converging to tc  with 

,0~
,, →−=δ tntnn cc  

and we need expressions for the differences of the corresponding sizes 

and powers up to ( ).no δ  Assuming certain regularity, so that the 

distribution functions of ( )tnΛ  under 0,nP  and tn,P  have Edgeworth 

expansions, it is easy to see that these differences are entirely determined 

by the leading terms of these expansions, because the next terms will 
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contribute at most ( ) ( ).nn oO δ=δτ  The leading terms are the normal 

distributions we have just discussed. Thus, it is readily seen that 

( ) ( ) ( ) ( ),~
,0 n

n
nttnnn ou

It
ocp δ+ϕ

δ
=δ+δ=α−α α  (1.17) 

( ) ( ) ( ) ( ) ( ) ( ).~
,1 n

n
nttnnn oItu

It
ocptt δ+−ϕ

δ
=δ+δ=β−β α

∗∗  (1.18) 

2. Second Order Efficiency 

Typically, an asymptotically efficient test statistic (suitably 

normalized) has the score function ( )1
nL  as its leading term, so that it has 

the form 

( ) ,1
⋯++= nnn QLT τ   (2.1) 

with nQ  bounded in probability. For example (see (1.9)), ( )0tnΛ  is 

equivalent to 

( ) ( ).
2

1 2
0

1
nnn LtLT τ+=  

For rank statistics (R-statistics) and linear combinations of order 

statistics (L-statistics) nQ  can be written as a quadratic functional of the 

empirical process (centered and normalized empirical distribution 

function) (see Bening [11, 12]). 

In 70-ies for the power functions ( )tnβ  of various asymptotically 

efficient tests an expansion in τ  to terms of order 2
τ  was obtained. The 

purpose was to study the deficiencies (see Section 3) of the corresponding 

tests, which we will briefly discuss later on. Writing down such 

expansions in an explicit form required very involved calculations. For 

“parametric” test statistics first a “stochastic expansion” of the form (2.1), 

but containing also the 2
τ  term was derived. It was used to obtain the 
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Edgeworth expansions for the distributions of nT  under 0H  and ., tnH  

For rank statistics a different technique based on a certain conditioning 

was used by Albers et al. [1] and Bickel and Van Zwet [17]. The 

Edgeworth expansion under 0H  was used to obtain an expansion in τ  for 

the critical value na  defined by 

{ } .0, α=> nnn aTP  

Then the Edgeworth expansion for 

( ) { }nntnn aTt >=β ,P  

was derived by the substitution of the expansion for na  into the 

Edgeworth expansion under ., tnH  The Edgeworth expansions for ( )tn
∗β  

with error terms ( )τo  and ( )2
τo  have been obtained independently by 

Chibisov ([21], p.40, Theorem 9.1; [22], Section 9) and Pfanzagl ([40], 

Section 4; [41], pp.223 and 225). 

Though the Edgeworth expansions for the distributions of various 

asymptotically efficient test statistics and of ( )tnΛ  differ by terms of 

order ,τ  it was observed that their powers ( )tnβ  differ from each other 

and from ( )tn
∗β  by ( )τo  (and typically by ( )2

τO ), so that “first-order 

efficiency implies second-order efficiency”(see Pfanzagl [44]), the latter 

meaning that the power agrees with ( )tn
∗β  up to terms of order .τ  The 

approach of comparing the expansions for ( )tn
∗β  and ( )tnβ  described 

above gave no insight into the nature of this phenomenon. A simple and 

intuitively clear proof of this general property was given by Bickel et al. 

[18]. We outline here that proof adapted to the present setup. 
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The idea was, first, to treat directly the difference 

( ) ( )tt nn β−β∗  

and, secondly, to adjust the test statistic to the log-likelihood ratio (rather 

than to adjust test statistics and the log-likelihood ratio to ( ) ,)1
nL  so that 

the difference 

( )tS ntntn Λ−≡∆ ,,   (2.2) 

is small. For example, (2.1) as a test statistic is equivalent to 

IttTS ntn
2

, 2

1
−=  

(note that this transformation does not influence the test function, and 

hence, the power) and then (see (1.9)) 

( ) .
2

1 22
, ⋯+






 −−=∆ nntn tQLtττ  

(We state this expression to show that tn,∆  is of order τ  and do not need 

its particular form). Throughout the rest of this section we mostly 

suppress the subscript and argument t. Let nc  and nb  be the 

corresponding critical values defined by 

{ } { } .0,0, α=>=>Λ nnnnnn bSc PP   (2.3) 

Then the corresponding powers are 

( ) { } ( ) { }., ,, nntnnnntnn bStct >=β>Λ=β∗ PP  

Their difference is 

( ) ( )
{ } { }

tn
bS

tn
c

nn ddtt
nnnn

,, PP ∫∫ >>Λ

∗ −=β−β  

,,, tn
A

tn
A

dd PP ∫∫
−+

−=  (2.4) 
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where 

{ } { }.,,, nnnnnnnn bScAbScA >≤Λ=≤>Λ= −+   (2.5) 

Since 

,0,, ntn ded n PP
Λ=  

and by (2.3) 

{ } { }
,00,0, =− ∫∫ >>Λ

n
bS

n
c

dd
nnnn

PP  

we can rewrite (2.4) as 

( ) ( ) ( ) .0,n
c

AA
nn deett nn P−








−=β−β Λ∗ ∫∫

−+

 (2.6) 

Using (2.2) rewrite (2.5) as 

{ } { }., nnnnnnnn cbAbcA ≤Λ<∆−=∆−≤Λ<= −+   (2.7) 

Since n∆  is of order ,τ  so is the difference of distribution functions of nΛ  

and ,nS  hence so is .nn bc −  Thus nΛ  in (2.6) varies in the layer (2.7) 

having of order .τ  Moreover, the integrand in (2.6) vanishes on one side 

of this layer, namely, on the surface ,nn c=Λ  so that it remains ( )τO  in 

the domain of integration. Its integration over the thin layer results in 

( ) ( ) ( ).τott nn =β−β∗   (2.8) 

An argument of this type was used in Bickel et al. [18] to obtain (2.8) 

under very general conditions, in particular, on the magnitude of .n∆  

When n∆  is of order ,τ  it is seen from the above argument that the 

difference in (2.8) is likely to be ( ).2
τO  
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Thus asymptotically efficient tests can be compared to each other by 

considering the higher order terms of their power and one may ask 

whether there exists an asymptotically (up to ( )2
τo ) most powerful test 

and, if not, whether one can find a sufficiently small asymptotically 

complete class. This problem was solved by Pfanzagl [42] and Pfanzagl 

and Wefelmeyer [43] who showed that, under suitable regularity 

conditions, the family of tests based on 

( ){ }0, ≥Λ ssn  

forms an asymptotically complete class. This means that for any sequence of 

size- α  tests having powers ( ),tnβ  there exists a sequence 0≥ns  such that 

( ) ( ) ( ),2
, τott

nsnn +β≤β ∗  

for all .0>t  Here ( )t
nsn

∗β ,  stands for the power of the size-α test based 

on ( ).nn sΛ  It was shown in Chibisov [23] (p.1069, Example 2.2) that 

( ) ( ) ( ),
2

,2
, α

∗∗ −ϕ=β−β uIt
It

D
tt

st
snn τ  

where 

( ) ( )( ) ( ( )( ) ( )( ))( ).,
4

1
1

2
1

12
0

1
1

2
0

22
, XlXlIXlsttD st CovVar −−−=  

These formulas show that the log-likelihood ratio tests for different s do 

not dominate each other and their powers differ by terms of order ,2
τ  

unless stD ,  vanishes. It does so when { }1, RP ⊂Θ∈θθ  is an exponential 

family because then a uniformly most powerful test exists and ( )tsn
∗β ,  

does not depend on .0≥s  
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3. Power Loss 

The difference 

( ) ( )tt nn β−β∗  

is closely related to the deficiency of the corresponding test, which is the 

number of additional observations needed for this test to achieve the 

same power as the most powerful test. This notion was introduced by 

Hodges and Lehmann [33]. Deficiencies of various tests were extensively 

studied in 70-ies by Albers et al. [1] (for rank tests), by Chibisov [23], 

Pfanzagl [45] (for “parametric” tests), Bender [10], Albers [2, 3], Klaassen 

and Van Zwet [36] and Bening and Chibisov [16] (for the test theory with 

nuisance parameters) and others. 

When the limit 

( ) ( ( ) ( ))ttntr nn
n

β−β= ∗

∞→
Lim:   (3.1) 

exists, the asymptotic deficiency is finite and can be directly expressed 

through this limit. We will not state this relationship here. Rather, we 

will directly deal with the quantity (3.1), which we will refer to as the 

power loss. This quantity was actually the object of the studies on 

deficiency. As we pointed out, its derivation was very involved. 

An elaboration of the argument given in the previous section leads to 

the following formula for the power loss. Suppose that 

( )tS ntntn Λ−=∆ ,,  

as in (2.2) is of order τ  in a somewhat stronger sense then it was meant 

before. Namely, assume that 

( ( ))tn ntn Λ∆ ,,  
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converges in distribution under 0,nP  to a certain bivariate random 

variable. Denoting 

,,, tntn n∆=∏  

we write it as 

( ( )) ( ).,
0,

, Λ∏→Λ∏
n

tntn

P

  (3.2) 

In all regular cases Λ  is a normal random variable (see (1.10)). Denote its 

distribution function and density by ( )xt,0Φ  and ( ).,0 xp t  Let tc  be the 

limiting critical value defined by 

( ) .1,0 α−=Φ tt c  

Then 

( ) ( ( ) ( )) ( ) [ ].
2

1
Lim ,0 ttt

c
nn

n
ccpettntr t =Λ∏=β−β= ∗

∞→
Var  (3.3) 

Note that (see (1.10)-(1.13), (1.16)) 

( ) ( ),,1,0 tttt
c

cpcpe t =  

where ( )xp t,1  is the limiting density of ( )tnΛ  under tn,P  and 

( ) ,
2

21
,

2

1 2

,0
2










 +
ϕ=−= α

It

Itx

It
xpItuItc tt  (3.4) 

( ) ( ) .
2

2
,

2

21 2

,0

2

,1 








 +
Φ=Φ









 −
ϕ=

It

Itx
x

It

Itx

It
xp tt  (3.5) 

Combined with (3.3) and (1.16) these relations imply 

( ) ( ) [ ].
2

1
tcItu

It
tr =Λ∏−ϕ= α Var  (3.6) 
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Example 3.1. Let ( )nXX ,,1 ⋯  be independent identically distributed 

(i.i.d.) observations with distribution function ( )θ,xF  and density 

( ) θθ ,,xp  ranging over an open set 1R⊂Θ  containing 0. Let the 

hypothesis 

0:0 =θH  

be tested against a sequences of local alternatives 

.,0,: 21
1

−=≤<=θ nCttn ττH  

Consider an asymptotically efficient test based on 

( )( ) ( ),11

1

ni

n

i

n LXlT == ∑
=

τ  (3.7) 

( )( ) ( ) .,log
0

1

=θ
θ

θ∂

∂
= xpxl  

Writing out the Taylor expansion of ( )tnΛ  as described in Section 1 (see 

(1.8) for the notation and (1.9)) we have 

( ) ( ) ( ) ,
3

1

2

1

2

1
3

2221
⋯+






 ++−=Λ tmLtIttLt nnn τ  (3.8) 

( )( ) .,2,1,10 ⋯== k
k

k Xlm E  

We introduce 

.
2

1 2
, IttTS ntn −=  

Assume that the joint distribution of 

( ) ( )( )21 , nn LL  

converges under 0H  to a normal one. Denote by 

( ) ( )( )21 , LL  

a random vector in 2R  having this limiting distribution. 
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Then (3.2) holds with 

( ) ,
3

1

2

1
3

22
, ⋯+






 +−=∆ tmLt ntn τ  (3.9) 

( ) ( ) .
3

1

2

1
,

2

1
3

2221






 +−=∏−=Λ tmLtIttL  

Then we have (see (3.4), (3.6)) 

( ) ( ) [ ( ) ]αα =∏−ϕ= uILItu
It

tr 1

2

1
Var  

( ) ( )( ) ( )( ) ( )( )( ).
8

1
2

1
12

0
1

1
2

0

3

XlXlIXlItu
I

t
EVar −

α −−ϕ=  (3.10) 

In the above argument we assumed that the tests have exactly size ,α  

but the formula (3.3) remains valid when the sizes converge to α  and 

equal each other up to ( ),2
τo  i.e., 

{ ( ) } { } ( ).2
0,,0, τoaTct nnntnnn =>−>Λ PP  

The formula (3.3) demonstrates, in particular, that the power loss (hence 

the deficiency) is determined by the terms of order τ  of the 

asymptotically efficient test statistic. 

The formula (3.3) was proved by Chibisov [24] for statistics admitting 

a stochastic expansion in terms of sums of independent identically 

distributed random variables (which is typical for “parametric” problems) 

subject to certain conditions. Bening [11, 12, 13] proved the formula (3.3) 

for rank statistics, linear combinations of order statistics and U-statistics 

(see Section 4). 
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4. Tests Based on L-, R- and U-Statistics 

In this section, a heuristic derivation of explicit formulas for Λ∏ ,  

and ( )tr  (see (3.1), (3.2) and (3.6)) related to L-, R- and U-tests is given. 

Its justification under suitable regularity conditions along with some 

details of derivation is given in Bening [11, 12, 13, 14]. 

Let ( )nXX ,,1 ⋯  be independent identically distributed random 

observations with distribution function ( )θ,xF  and density ( ) θθ ,,xp  

ranging over an open set 1R⊂Θ  containing 0. Let the hypothesis 

0:0 =θH   (4.1) 

be tested against a sequences of local alternatives 

,0,0,:1 >≤<=θ CCttn τH   (4.2) 

where .21−= nτ  We will write ( )xF  for the hypothesized distribution 

function ( ).0,xF  

4.1. L-test 

Consider an asymptotically efficient L-test based on 

,:

1

1 niin

n

i

n XbT ∑
=

= τ  (4.3) 

where ( )nnn XX ::1 ,,⋯  are the order statistics of ( )nXX ,,1 ⋯  

( ) ( ) ( )( ) ( ) ,,2,1,,log,,log,

0

…=θ
θ∂

∂
=θ=θ

=θ

ixpxlxpxl
i

i
i  

( )
( ) ( ) ( ( )( )) ( ) { },,2,1,, 11

1
⋯=∈′== −=

−∫ NxlsJdssJnb
sFx

ni

ni
in k

k

k (4.4) 

( ) ( ){ },:inf1 sxFxsF ≥=−  

and a prime denoting differentiation with respect to x. 
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Given ( ),1,0∈α  we need to find 

( ) ( ( ) ( )),Lim 11 ttntr nn
n

β−β= ∗

∞→
 

where ( )tn1β  and ( )tn
∗β  are the powers of the size ( )1,0∈α  tests based 

on 1nT  and on 

( )
( )
( )

,
0,

,
log

1 i

i
n

i

n Xp

tXp
t

τ

∑
=

=Λ  (4.5) 

respectively. 

Let ( )snΓ  denote the empirical distribution function of ( ) ,,1 ⋯XF  

( ),nXF  i.e., 

( ) [ ) ( )( ),
1

,0

1

is

n

i

n XF
n

s I∑
=

=Γ  

and let 

( ) ( )( ) [ ].1,0, ∈−Γ= sssnsB nn  

Put 

( ) ( ) ( ) ( ) ( )( ) .,, 10
1

1

0
NXlasdFsBsJL nn ∈=−= −∫ k

k

kk

k E  (4.6) 

Then, as is readily seen, 

( )( ) ( ) .,

1

NanLXl ni

n

i

∈+=∑
=

kk
kk

τ  (4.7) 

In a regular case, when the identity 

( ) Θ∈θ≡θ∫ ,1, dxxp  
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can be differentiated under the integral sign, we have 

,,0 21 Iaa −==  

where 

( )( )( ) .
2

1
1

0 XlI E=  

Using the Taylor’s formula in (4.5), one has 

( ) ( ) ( ) .
622 3

3
2

22
1











++−≈Λ a

t
L

t
I

t
tLt nnn τ  (4.8) 

Let ( )sB  stand for a Brownian bridge on [ ],1,0  i.e., ( )tB  is centered 

Gaussian process with covariances 

( ) ( ) ( ) [ ],1,0,,,min ∈−= ussuusuBsBE  

and having continuous paths and ( )kL  be defined by (4.6) with ( )sBn  

substituted by ( ).sB  Then since 

( ) ( )sBsB
D

n →  

so (see (4.8)) 

( ) ( ) .
2

1 21 IttLt
D

n −=Λ→Λ   (4.9) 

Thus, as above, (3.4) and (3.5) are valid. 

Now we will express statistic 1nT  in terms of ( )snΓ  (cf. Helmers      

[30, 31]). Put 

( ) ( ) ( ) ,, 1

1

0
1

0
1 dssJAdssJsAsJ

s

∫∫ =−=  (4.10) 

.

1

1 i

n

i

n XAM ∑
=

= τ  
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Then (cf. (4.3) and (4.4)) 

( ) ( ) 11

1

1 1 ni

n

i

n MsJdXnT
n
i

n
i

+−= ∫∑ −
=

 

( ) ( ) ( )( ) 111

1

1

nii

n

i

MXXniJn +−= +

−

=
∑  

( )( ) ( ) .1
1

1

1

0
nn MsdFsJn +Γ= −∫  

Writing the argument of 1J  as ( ) ( )sBss nn τ+=Γ  and expanding 

( )( )sJ nΓ1  by the Taylor formula, one obtains 

( ) ,
2

1
1

1
1 nnnn MKLT ++≈ τ  (4.11) 

( ) ( ) ( ),12
1

1

0
1 sdFsBsJK nn

−′−= ∫  (4.12) 

( ) ( ) .1
1

1

0
dssJsFnMn

−∫=  

Therefore, one has from (4.8) and (4.11) 

( ) ( ) ( ) ,
22

2
2

1,11 









−−≈Λ−≡∆ nnntnn L

t
K

t
tSt τ  (4.13) 

with 

.
62

, 3

32

,,1,1 ntntnntn tMa
t

I
t

bbtTS −+−=+= τ  

Define 1K  by (4.12) with ( )⋅nB  substituted by ( ).⋅B  It is seen from (4.8) 

and (4.13) that 

( ) ( )( ) ( ),,, 12 Λ∏→Λ∆
D

nn ttn  
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with 

( )2
2

11 22
L

t
K

t
+−=∏  

and Λ  as in (4.9). Then by (3.6) 

( ) ( ( ) ( ))ttntr nn
n

11 lim β−β= ∗

∞→
 

 ( ) ( ) ( )[ ].
8

12
1 IuLtLKItu

I

t
αα =−−ϕ= Var   (4.14) 

The latter conditional variance has the form: 

( ) ( )[ ] ,2
210

12
1 tvtvvIuLtLK ++==− αVar  (4.15) 

where 

( ) ( ) ( ),1422 111
2
1

2
11221

2
20 IIuIIIIv −−++−= α  

( ),4 011101 IIIuv −= α  

,2
00012 IIv −=  

( ) ( ) ( ) ( ) ;1,0,11
2

1

0
=µ= −+

−∫ isdFssJI ii
ii  

( ) ( ) ( ),1 1
1

1

0
2 sdFsssJI −−′= ∫  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),, 1111
22

1

0

1

0
tdFsdFtsKtstJsJI lljlij

j
i

iijl
−−+−+−

−−
µµ= ∫∫  

;2,1;1,0, == lji  

( ) ( ) ,,min, sttstsK −=  (4.16) 

( ) ( )( ( )) .
1 11

0
dttFl

I
s

s
−∫=µ  
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4.2. R-test 

Assume now that θ  is a location parameter, ( ) ( ),, θ−=θ xpxp  and 

density ( )xp  is symmetric, ( ) ( ).xpxp =−  Consider an asymptotically 

efficient rank test (R-test) for testing 0H  against 1nH  based on 

( ) ( ),sgn

1

2 ii

n

i

n XRaT +

=
∑= τ  (4.17) 

where ( )++
nRR ,,1 ⋯  is the vector of ranks of ( )nXX ,,1 ⋯  and 

( ) ( ) ( ) .
2

1
with

1
11















 +

=







+
= − s

FlsI
n

i
Iia  (4.18) 

Denote the powers of the size ( )1,0∈α  tests based on 2nT  and ( )tnΛ  by 

( )tn2β  and ( ),tn
∗β  respectively. As above, (3.4), (3.5), (4.8) and (4.9) are valid. 

Let us approximate 2nT  by a functional of ( ).⋅nB  Let ( ) ( ) 12 −= xFxF  

be the distribution function of 1X  and let ( ) ( )xFxF nn ,  and ( )xnΓ  be the 

empirical distribution functions of ,,,1 nXX ⋯  of nXX ,,1 ⋯  and 

( ) ( ),,,1 nXFXF ⋯  respectively. One has 

( ) ( ) ( ) ( )( )( ).iiniini XFXFXFnXFnR −+==+  

The Taylor series expansion of ( ) ( ( ))1+= ++ nRIRa ii  in (4.17) yields 

( )( ) ( )ii

n

i

n XXFIT sgn

1

2 ∑
=

≈ τ  

( )( ) ( ) ( )( ) ( ).sgn

1

iiini

n

i

XXFXFXFI −′+ ∑
=

τ  (4.19) 

Notice that, by definition (4.18), 

( )( ) ( ) ( )( ).sgn 1
iii XlXXFI =  
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Hence the first term in the right hand side of (4.19) is ( )1
nL  (cf. (4.7)). In 

the second term, we use formulas 

( ) ( ) ( ) ,0, ≥−−= xxFxFxF nnn  

( ) ( ( )) ( ) ( ( )),1, 11 sFFssFFs nnnn
−− −=−Γ=Γ  

and integration by part, which yields 

( ) ,
2

1
2

1
2 nnn KLT τ+≈  (4.20) 

where 

( ) ( ) ( )( ) ( ),10

1

0

2 sdBsBsBsJK nnnn −−′= ∫  (4.21) 

( )
( )

( ( ))
.

1
1

0
sFp

sJ
sJ

−
−=′  

Therefore (4.8) and (4.20) imply 

( ) ( ) ( ) ,
22

2
2

2,22 









−−≈Λ−≡∆ nnntnn L

t
K

t
tSt τ  (4.22) 

with 

.
2

1 2
2,2 IttTS ntn −=  

Define 2K  by (4.21) with ( )⋅nB  substituted by ( ).⋅B  Then (4.8) and (4.22) 

imply 

( ) ( )( ) ( ),,, 22 Λ∏→Λ∆
D

nn ttn  

with 

( )2
2

22 22
L

t
K

t
+−=∏  

and Λ  as in (4.9). 
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Using (3.6), we have 

( ) ( ( ) ( ))ttntr nn
n

22 lim β−β= ∗

∞→
 

( ) ( ) ( )[ ].
8

12
2 IuLtLKItu

I

t
αα =−−ϕ= Var  (4.23) 

The latter conditional variance is given by 

( ) ( )[ ] ,2
210

12
2 twtwwIuLtLK ++==− αVar  (4.24) 

where 

( )( ) ( )dssssIw −′= ∫ 14
2

1

0
0  

( ) ( ) ( ) ( ) ( ) ( ) ,,1
4

1

0

1

0

2 dsdttsKtIsItIsIu
I

′′−+ ∫∫α  

( ) ( ) ( ) ( ) ,,
2

1

0

1

0

1 dsdttsKtgsIsI
I

u
w ′−= ∫∫α  

( ) ( ) ( ) ,,
4

1
1

0

1

0

2 dsdttsKtgsgw ∫∫=  

( )
( ) ( )( )( )

( )( )( )
,

21

21
1

13

sFp

sFl
sg

+

+
=

−

−

 

with ( )⋅⋅,K  and ( )⋅I  defined by (4.16) and (4.18). The expression for ( )tr2  

given by (4.23), (4.24) agrees with formula (6.3) in Albers et al. [1]. 

4.3. U-test 

Finally, let us now consider an asymptotically efficient U-test for 

testing 0H  versus 1nH  (cf. (4.1) and (4.2)) based on 

( ),,

1

3 ji

nji

n XXhT ∑
≤<≤

=  (4.25) 
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where ( )yx,Ψ  is measurable and symmetric in its two arguments, i.e., 

( ) ( ),,, xyyx Ψ=Ψ  real function, 

( )[ ] a.s.0, 1210 =Ψ XXXE  (4.26) 

and 

( ) ( )( ) ( )( ) ( ).,, 11 yxylxlyxh Ψ++=   (4.27) 

Denote the powers of the size ( )1,0∈α  tests based on 3nT  and ( )tnΛ  by 

( )tn3β  and ( ),tn
∗β  respectively. As above, (3.4), (3.5), (4.8) and (4.9) are 

valid. 

Let 

( ) ( ),,33 tSt ntnn Λ−≡∆   (4.28) 

where 

.
621 3

32

3,3 a
tIt

T
n

t
S ntn τ

τ
+−

−
=  

Combining (4.25)-(4.28) and (4.8), we can write 

( ) ( ) ( ) .
2

,
1

2
2

1

3 












−Ψ

−
−≈Λ ∑

≤<≤

nji

nji

n L
t

XX
n

t
t τ  (4.29) 

For the first member of this representation, being the U-statistic with 

degenerate kernal (see (4.27)) and Theorem 4.3.1 from Koroljuk and 

Borovskikh [37] can be applied. It follows that (see also (4.9)) 

( ) ,33 ∏→∆
D

n tn  (4.30) 

with 

( ) ( ) ,
2

1
,

22
212

2

33 IttLL
t

K
t

−=Λ+−=∏  

( ),12

1

3 −ξλ= ∑
∞

=

jj

j

K  (4.31) 
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{ }jξ  are independent identically distributed normal random variables, 

( )( ) ( ),1
1

0
sdBsFe jj

−∫=ξ  

( ) ( ) ( ) ( ),1
2

1

0

2 sdFsBsJL −∫−=  

( ) ( ) ( ) ( ) ( ) ( ( )( )) ( ) ,,, 1
1

1

1

0

1 NxlsJsdFsBsJL
sFx

∈′=−= −=
−∫ k

k

k  

( )sB  stands for a Brownian bridge and { } { }jj e,λ  are the eigenvalues and 

eigenfunctions of the linear operator [ ] [ ]1,01,0: 22 LLS →  

( ) ( ).,: 110 XfxXfS Ψ→ E   (4.32) 

As above, using (3.6), we have 

( ) ( ( ) ( ))ttntr nn
n

33 Lim β−β= ∗

∞→
 

( ) ( ) ( )[ ].
8

12
3 IuLtLKItu

I

t
αα =−−ϕ= D  (4.33) 

The latter conditional variance can be calculated 

( ) ( )[ ] ( ) ( )
2
1

212
3 14 IuIuLtLK αα −==−Var  

( ) ( )( ) ( ) ( )( ),4 2
23

2
21 IItIIIut −+−+ α  (4.34) 

where 

( ) ( ) ( )( ) ( )( ),, 2
1

1
1

210
1

1 XlXlXXII Ψ= − E  

( )
( )( ) ( )( ),1

1
1

2
0

21
2 XlXlII E−=  

( )
( )( )( ) .22

1
2

03 IXlI −= E  
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5. Combined L-Tests 

In this section, we consider combined L-tests in the one-sample 

problem and investigate the difference (power loss) between the power of 

a given combined asymptotically efficient L-test and that of the most 

powerful test. 

Consider a testing problem in which the total sample has been 

divided into 2≥m  subsamples. Suppose that for each of these 

subsamples a separate asymptotically efficient L-statistics can be 

obtained and the best combination of these statistics is then compared to 

the ordinary undivided asymptotically efficient L-statistic. One easily 

sees that, under natural conditions, splitting causes no first order 

efficiency loss. Hence, it becomes interesting to derive second order 

results and it would be nice to obtain more precise results on effect of 

splitting. This subject and related ones have received considerable 

attention in the literature. For earlier works, we refer to Van Zwet and 

Oosterhoff [49], Albers and Akritas [4]. One- and two-sample combined 

rank tests have been considered in Albers [5, 6]. Note again that the used 

method was essentially based on asymptotic expansions. Although the 

basic ideas underlying these papers are simple, the proofs are highly 

technical matter. The method we used for proving our results carries over 

LeCam’s approach to higher order asymptotics and based on the 

likelihood ratio properties. 

Let ( )nXX ,,1 ⋯  be independent identically distributed random 

observations with distribution function ( )θ,xF  and density ( ) θθ ,,xp  

ranging over an open set 1R⊂Θ  containing 0. Let the hypothesis 

0:0 =θH  

be tested against a sequences of local alternatives 

,0,0.:1 >≤<=θ CCttn τH  

where .21−= nτ  We will write ( )xF  for the hypothesized distribution 

function ( ).0,xF  
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Consider an asymptotically efficient L-test based on 

,:

1

1 niin

n

i

n XbT ∑
=

= τ  (5.1) 

where ( )nnn XX ::1 ,,⋯  are the order statistics of ( )nXX ,,1 ⋯  

( ) ( ) ( )( ) ( ) …,2,1,,log,,log,

0

=θ
θ∂

∂
=θ=θ

=θ

ixpxlxpxl
i

i
i  

( )
( ) ( ) ( ( )( )) ( ) ,,, 11

1
NxlsJdssJnb

sFx

ni

ni
in ∈′== −=

−∫ k
k

k  (5.2) 

( ) ( ){ },:inf1 sxFxsF ≥=−  

and a prime denoting differentiation with respect to x. 

Given ( ),1,0∈α  denote ( )tn1β  and ( )tn
∗β  the powers of the size α  

tests based on 1nT  and on 

( )
( )
( )0,

,
log

1 i

i
n

i

n Xp

tXp
t

τ∑
=

=Λ  

respectively. 

Now suppose that our sample has been split into 2≥m  subsamples 

of sizes ,,,1, mlnl ⋯=  

( ) ( ) ,,,,,,,, 1111 nnnXXXX mnnnn m
=+++− ⋯⋯⋯⋯  

and 

.as,1;,,1,0

1

∞→=γ=>γ→ ∑
=

nml
n

n
l

m

l

l
l

⋯  

For each of these samples we obtain the L-statistics 

( )
mlT l

n ,,1,1 ⋯=  

as in (5.1) and (5.2). 
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Consider the combined L-statistic 

( )l
n

m

l

n TT 1

1

1 ∑
=

=  

and the level- ( )1,0∈α  test based on .1nT  Let ( )tn1β  be the power of this 

combined L-test. The purpose of the present section is to find the 

following limits: 

( )( ) ( ( ) ( )),Lim 111 ttntr nn
n

m β−β=
∞→

 (5.3) 

( )( ) ( ( ) ( )).lim 11 ttntr nn
n

m β−β= ∗

∞→
 (5.4) 

By the arguments similar to those used for obtaining (4.14) and (4.15) 

(see Bening [15] for detail), we get 

( )( ) ( ) ( ) ( )[ ],
8

12
11 IuLtLKItu

I

t
tr m

αα =−−ϕ= Var  

( )( ) ( ) ( ) ( )[ ]IuLtLKItu
I

t
tr m

αα =−−ϕ= 12
11

8
Var  

( ) ( ) ( )[ ],
8

12
1 IuLtLKItu

I

t
αα =−−ϕ− Var  

where 

( ) ( ) ( ) ( ) ;2,1,1
1

0
=−= −∫ kk

k sdFsBsJL  

( ) ( ) ( ),12
1

1

0
1 sdFsBsJK −′−= ∫  

( ) ( ) ( ),12
1

1

0
1

1 sdFsBsJK l

m

l

−
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and 
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