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Abstract 

We obtain general theorems on series involving the zeta function ( ) ,kζ  where 

2≥k  is an integer. 

1. Introduction and Main Results 

There are many papers on this subject. For example, we have the 
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See [1] (pages 43-44), for more series and references. 

In this article we obtain more series of this type. 

Theorem 1.1. Let us consider a power series with convergence radius 
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where L  is a real number and 
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Proof. Note that as all power series the convergence of (1) is absolute 

for .Rx <  Equation (1) gives 
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Therefore, 
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Now, we shall prove that the series 
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is absolutely convergent. 

We have 
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Note that the power series (see (1)) 2
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xa  also converges for 

Rx <  and as all power series the convergence is absolute for .Rx <  

Consequently (see (7)), we have 
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where 0>�  can be arbitrarily small. Therefore, we have proved 

( )( ) .1
1

lim 1

22

1

2

Lia
n

a i

i
i

N

n

i

i
N

=−ζ= +

∞

==

+

∞

=
∞→ ∑∑∑  (8) 

 



RAFAEL JAKIMCZUK 28 

Equations (8) and (5) give (2). To finish, we have to prove that the series 
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That is, the series (9) is absolutely convergent. The theorem is proved. 

Theorem 1.2. Let us consider a power series such that either 1=R  

and converges for 1=x  or ,1>R  namely, 

( ) .3
4

2
3211

0

⋯++++== +

∞

=
∑ xaxaxaaxaxf i

i

i

 

Then, there exists 

,
1

lim 1
2

1

1

L
n

a
a

n
f

N

n
N

=







−−






∑

=
∞→

 

where 1L  is a real number and 
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Proof. Since 
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>R  by Theorem 1.1 there exist 
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Consequently by Equation (3), we have 
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The theorem is proved. 

Example 1.3. (1) Let us consider the well-known power series 
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We apply Theorem 1.1 and obtain 
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Therefore, Theorem 1.1 gives the well-known result 
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(2) Let us consider the well-known power series 
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If we apply Theorem 1.2 then we obtain the well-known result 
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and consequently, we find the well-known result 
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(4) Let us consider the geometric power series 
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and consequently, we find the well-known result 
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Theorem 1.4. Let 2≥k  be an arbitrary but fixed positive integer and 

let us consider a power series with convergence radius ,
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>R  namely, 
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is absolutely convergent. 
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Consequently (see (16)), we have 
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Equations (17) and (14) give (11). To finish, we have to prove that the 
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Hence 
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That is, the series (18) is absolutely convergent. The theorem is proved. 

Theorem 1.5. Let 2≥k  be an arbitrary but fixed positive integer. Let 

us consider a power series such that either 1=R  and converges for 1=x  

or ,1>R  namely, 
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Proof. The proof is the same as the proof of Theorem 1.2. The 

theorem is proved. 

Example 1.6. (1) Let us consider the geometric power series 
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Therefore, we find that 
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and consequently, we find the well-known result 
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In particular, if 2=k  it is well-known that (see, for example, [2] (page 
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and consequently, we find the result 
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