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Abstract

We obtain general theorems on series involving the zeta function {(k), where

k > 2 1is an integer.
1. Introduction and Main Results

There are many papers on this subject. For example, we have the

series
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See [1] (pages 43-44), for more series and references.

In this article we obtain more series of this type.

Theorem 1.1. Let us consider a power series with convergence radius
R > %, namely,

oo

f(x) = Zai+1xi = a1 +agx + agxz + a4x3 . (1)
i=0

Then, there exists

N

. 1 a
S0
where L is a real number and
L= a;1(§6)-1) = a3(6@) - 1)+ @4 (6(8) - 1) + a5 ({4) - 1) + . (3)

=2

Proof. Note that as all power series the convergence of (1) is absolute

for |x| < R. Equation (1) gives
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Therefore,
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n=2

Now, we shall prove that the series

is absolutely convergent.

We have
la; 1] — < |ai+llj —dx = ) || —
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Note that the power series (see (1)) Zizaiﬂxi_z also converges for

|x| < R and as all power series the convergence is absolute for |x| < R.

Consequently (see (7)), we have
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where ¢ > 0 can be arbitrarily small. Therefore, we have proved
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Equations (8) and (5) give (2). To finish, we have to prove that the series

D @i -1) €)
=2
converges.
We have
1 1 1 1 1 1 1
e < — _ = — = i
Ck)-1< o +J2 5 dx o +(k—1)2k_1 = (2+k—1)
1 3 1
< — —
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Hence
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That is, the series (9) is absolutely convergent. The theorem is proved.

Theorem 1.2. Let us consider a power series such that either R =1

and converges for x =1 or R > 1, namely,
— io_ 2 3
flx) = Zaiﬂx = a; + a9X + agx” + ayx” + .
1=0
Then, there exists
N
. 1 (02}
lim —|-a —-—=| =1L,
N —oo 4 n 1 n 1
n=1
where L, is a real number and
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Ly = ) ajall) = as8(2) + as5(3) + asf(4) + -

i=2
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Proof. Since R > é by Theorem 1.1 there exist

1 a
1 —_— —_ —_ _2 =
lim (f( \J a ) L,

n=2
and consequently, there exists
S 1 a
lim (f(;)— o —72) =L+ fM)-a —az = L.

N>
n=1

Consequently by Equation (3), we have
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Li=L+f)-a-ay = f)-ay —ay + ¥ a;(56) - 1)

=2
= f) -y —ay = Y @i + D apal) = Y ainll).
1=2 =2 =2
The theorem is proved.

Example 1.3. (1) Let us consider the well-known power series

f(x)=—log(l—x)=x+%x2+%x3+"-, -1<x<l

We apply Theorem 1.1 and obtain
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Therefore, Theorem 1.1 gives the well-known result

ic(kz:_l =1-v.

k=2

(2) Let us consider the well-known power series

flx )—log(1+x)—x_lx2+1 3

. -1 <1
5 3 , <x

If we apply Theorem 1.2 then we obtain the well-known result
R
k
k=2
(3) Let us consider the geometric power series

L =l+x+x? 423+, 1<l
1-x

If we apply Theorem 1.1 then we obtain

N
. 1 1 . 1
L: _— —_—— =
dm Y=g X[

1y,
n

and consequently, we find the well-known result
D G-
k=2
(4) Let us consider the geometric power series

1 =1-x+x2 -3+, <1
1+x

If we apply Theorem 1.1 then we obtain

N N
L= lim Lo 1 g (l_ 1 ):l
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and consequently, we find the well-known result

CDHEW-1) = 5
k=2

Theorem 1.4. Let k > 2 be an arbitrary but fixed positive integer and

. . . . 1
let us consider a power series with convergence radius R > 3 namely,

f(x) = Zai+1xi =a; +ag9x + a3x2 + a4x3 + .en (10)
1=0

Then, there exists
N 1
3
where L is a real number and
L= Zam(é(ik) —1) = ag(8(k) — 1) + ag(8(2k) — 1) + a, (C(8k) — 1) + -
=1
(12)

Proof. Equation (10) gives

1 . 1
f(—k) —a = Zaiﬂ i (13)

n i=1
Therefore,
N 1 oo N 1
;(f(n_"j - al) = ;aiﬂr; T (14)

Now, we shall prove that the series

aw Y L (15)

1s absolutely convergent.
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We have

2o
-1

Zlal+1 |J. dx - Zlal+l| le 1
Zlal“l N1 Nk a Zl ‘+1|
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Consequently (see (16)), we have

N

i=1

< Doal 3 s <o N2N.

where ¢ > 0 can be arbitrarily small. Therefore, we have proved

oo N oo
. 1 .
dim Y e ) == Y @i 1) = L (17
i=1 n=21 i=1
Equations (17) and (14) give (11). To finish, we have to prove that the
series
ZaHl (18)
=1
converges.

As in Theorem 1.1 we have

. 1
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Hence

ZlaHl I'k < 3Z|al+1|

That is, the series (18) is absolutely convergent. The theorem is proved.

Theorem 1.5. Let k > 2 be an arbitrary but fixed positive integer. Let
us consider a power series such that either R =1 and converges for x =1

or R > 1, namely,

X) = a; xi——a +ax+ax2+ax3+---.
1+1 1 2 3 4
0

=
Then, there exists
N

. 1
dm, 2. (f H i ] =

where Ly is a real number and

oo

Ly =) ajallik) = asl(k) + asb(2k) + ay4(3k) +

=1

Proof. The proof is the same as the proof of Theorem 1.2. The

theorem 1s proved.

Example 1.6. (1) Let us consider the geometric power series

L =1+x+xZ 423+, |xf <l
1-x

If we apply Theorem 1.4 then we obtain (k > 2)

N oo
. 1 1
L_]\lflglm 4 1 -1 _Z k 1'
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Therefore, we find that

k = — 1)+ (§(2k) - 1) + (L(3k) - 1) +

n=27

In particular, if ¥ = 2 then we obtain

n? -1 :Enzz(n—l N n+1j :%’
and consequently, we find the well-known result
2= (@)= 1)+ (C4) = 1) + (L6) 1) + -
(2) Let us consider the geometric power series

L =1-x+x2 -3+, <1
1+x

If we apply Theorem 1.4 then we obtain (k > 2)

Therefore, we find that

Z

In particular, if k¥ = 2 it is well-known that (see, for example, [2] (page
433))

- 1) - (E(2k) - 1) + (C(3k) - 1) -

n+1

1 :ncothn_

n:2n2+1 2
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and consequently, we find the result

TORT 1 = (¢2) - 1) - (L) 1) + (€(6) ~1) -,

coshx e¥ +e”

where coth x = = = .
sinhx g% _ %
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