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Abstract 

Functional differential equations arise in the modelling of hereditary 
systems such as ecological and biological systems, chemical and 
mechanical systems and many-many other. The long-term behaviour and 
stability of such systems are important areas for investigation. 
Analytical solutions of functional differential equations are generally 
unavailable and a lot of different numerical methods are adopted for 
obtaining approximate solutions. A quite natural question appears: “Do 
numerical solutions preserve the stability properties of the exact 
solution?” Thus, to use numerical investigation of functional differential 
equations it is very important to know if the considered difference 
analogue of the original differential equation has the reliability to 
preserve some general properties of this equation, in particular, property 
of stability. Here the ability of difference analogues of the nonlinear 
integro-differential equation of convolution type to preserve the property 
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of stability of solutions is studied. Several difference analogues are 
considered both with discrete and with continuous time. Besides, 
difference analogues of the considered differential equation under 
stochastic perturbations are studied too. For stability investigation, we 
employ the general method of constructing Lyapunov functionals. It is 
shown how the obtained research can be applied to the various 
mathematical models. 

1. Introduction 

Functional differential equations arise in the modelling of hereditary 
systems such as ecological and biological systems, medical and 
sociological, chemical and mechanical systems and many-many other. 
The long-term behaviour and stability of such systems are important 
areas for investigation. Analytical solutions of functional differential 
equations are generally unavailable and different numerical methods are 
adopted for obtaining approximate solutions. 

A quite natural question appears: “Do numerical solutions preserve 
the stability properties of the exact solution?” Thus, to use numerical 
investigation of functional differential equations it is very important to 
know if the considered difference analogue of the original differential 
equation has the reliability to preserve some general properties of this 
equation, in particular, property of stability (see, for instance, [8, 25, 26, 
28]). 

The investigation focuses on the ability of difference analogues of the 
nonlinear integro-differential equation of a convolution type 

( ) ( ) ( )( )dssxfstKtx
t

−= ∫0
�  

to preserve the stability property of solutions. Specifically, we consider 
the nonlinear integro-differential equation of a convolution type with the 
exponential kernel 

( ) ( ) ( )( ) .
0

dssxfetx stt
−λ−∫−= k�   (1.1) 
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Note the fact that integro-differential equations are very popular in 
research (see, for instance, [31-35] and the references therein). 

It is supposed that in the Equation (1.1) 0,0 >λ>k  and the 

function ( )xf  is presented in the form 

( ) ,0,12
12,

1
≥≥

+
+

=α= ∑
=

ii
i
i

ii

m

i
qpq

pxxf i νν  (1.2) 

where ii p,0>α  and iq  are integers. 

Lemma 1.1. The zero solution of the Equation (1.1) is stable. 

Proof. Putting ( ) ( ) ( ) ( ),, 21 txtxtxtx �==  present the Equation (1.1) in 

the form of the system of two equations 

( ) ( ),21 txtx =�  

( ) ( )( ) ( ).212 txtxftx λ−−= k�   (1.3) 

The function 

( ) ( ) ( ) ( ) ,112
112

1,2
2

2
1

1
≥

+
++

=+=µ+
µ
α

= µ

=
∑ i

ii
ii

i
i

m

i
q

qptxtxtV i νk   

(1.4) 

is a Lyapunov function for the system (1.3) since ( ) 0>tV  for 

( ) ( ) ,02
2

2
1 >+ txtx  and via (1.2), (1.4) 

( ) ( )( )2122
12

1
1

22 xxfxxxtV i
i

i
i

m

i
λ−−+µ

µ
α

= −µ

=
∑ kk�  

( ) ( )












−α+λ−= −µ

=
∑ 1

12
1

1
2

2
2 22 xfxxtx ii

m

i
k  

( ) ,02 2
2 <λ−= tx  
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unless ( ) .02 =tx  The proof is completed via the Lyapunov-type theorem 

[27].   

Below several difference analogues of the Equation (1.1) are 
considered both with discrete and with continuous time. Besides, 
difference analogues of the considered differential equation under 
stochastic perturbations are studied too. For stability investigation, the 
general method of Lyapunov functionals construction is used [26, 27]. It 
is shown how the obtained research can be applied to the known 
mathematical models. 

The following auxiliary statement will be used below. 

Lemma 1.2 ([26]). Arbitrary positive numbers γβα ,,,, ba  satisfy the 

inequality 

.α−β+αββ+αβα γ
β+α

β+γ
β+α

α≤ baba  

Equality is reached for  .1−=γ ba  

2. Some Difference Analogues with Discrete Time 

It is obvious that one differential equation can have several 
difference analogues according to the choice of a numerical scheme. 
However, not all of these analogues need to be asymptotically stable. The 
problem is to determine which methods can be employed with the 
expectation that the difference analogue will preserve the qualitative 
behaviour of the solutions of the original problem. In particular, how one 
may construct a difference analogue of continuous asymptotically stable 
system that will be asymptotically stable too. 

In this section, three possible schemes are proposed for the 
construction of difference analogues of the integro-differential equation 

( ) ( ) ( ) ,3
0

dssxetx stt
−λ−∫−= k�   (2.1) 
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that is a particular case of the Equation (1.1), (1.2) with ,1,1 1 =α=m  

.0,1 11 == qp  Conditions for the asymptotic stability of the zero 

solution of these difference analogues are obtained. 

Scheme 1. Divide the interval [ ]t,0  into 1+i  intervals of length 

.0>∆  In this way ( ) ( ).,1,,,1,0,,1 ∆=+=∆=∆+= jxxiijjsit j…  

Using the left-hand difference derivative ( ) ∆−+ /1 ii xx  for representation 

of ( )tx�  in the point ( )∆+= 1it  as a result we obtain the difference 

analogue of the Equation (2.1) in the form: 

( ) .,1,0,31

0

2
1 …=∆−= −+∆λ−

=
+ ∑ ixexx j

ji
i

j
ii k  (2.2) 

Denoting ,∆λ−= ea  we transform the right-hand side of the Equation 

(2.2) in the following way: 

( ) .3
1

0

232
1 













∆−+∆−= −∆λ−

−

=
+ ∑ j

ji
i

j
iii xeaxaxx kk  

Applying (2.2) for 1−i  leads to 

,3
0

2
01 xaxx ∆−= k  

( ) .,2,1,1
32

1 …=−+∆−= −+ ixxaxaxx iiiii k   (2.3) 

The Equation (2.3) has four parameters: .,,, 0x∆λk  Putting 

,,,,, 2
2

2
0

0
ττ τ γ==

λ
=γ∆λ== − beax

x
xy i

i k  (2.4) 

we finally obtain the equation with two parameters a and b only 

,1,1 10 abyy −==  

( ) .,2,1,1
3

1 …=−+−= −+ iyyaabyyy iiiii   (2.5) 
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Scheme 2. Divide the interval [ ]t,0  into i intervals of length .0>∆  

In this way ( ).,,,1,0,, ∆==∆=∆= jxxijjsit j…  Using the right-

hand difference derivative ( ) ∆−+ /1 ii xx  for representation of ( )tx�  in the 

point ,∆= it  as a result similarly to (2.2) we obtain the difference 

analogue of the Equation (2.1) in the form: 

( ) ,,1,0,3

1

2
1 …=∆−= −∆λ−

=
+ ∑ ixexx j

ji
i

j
ii k  

or 

,01 xx =  

( ) .,2,1,1
32

1 …=−+∆−= −
∆λ−

+ ixxexxx iiiii k   (2.6) 

Following the same approach as above and using (2.4), one can represent 
the difference Equation (2.6) in the two-parameters form 

,101 == yy  

( ) .,2,1,1
3

1 …=−+−= −+ iyyabyyy iiiii   (2.7) 

Scheme 3. Divide the interval [ ]t,0  into 1+i  intervals of length 

.0>∆  In this way ( ) ( ).,1,,,1,0,,1 ∆=+=∆=∆+= jxxiijjsit j…  

Using the left-hand difference derivative ( ) ∆−+ /1 ii xx  for representation 

of ( )tx�  in the point ( ) ,1 ∆+= it  as a result analogously to (2.2), we obtain 

the difference equation in the form: 

( ) ,,1,0,31
1

1

2
1 …=∆−= −+∆λ−

+

=
+ ∑ ixexx j

ji
i

j
ii k  

or 

,3
1

2
01 xxx ∆−= k  
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( ) .,2,1,1
3

1
2

1 …=−+∆−= −
∆λ−

++ ixxexxx iiiii k   (2.8) 

Using (2.4), in the two-parameters form we obtain 

,1,1 3
110 byyy −==  

( ) .,2,1,1
3

11 …=−+−= −++ iyyabyyy iiiii   (2.9) 

Remark 2.1. If 0=b  then the Equations (2.5), (2.7) and (2.9) 
coincide with the equation ( ) ,1 11 −+ −+= iii ayyay  which has a stable 

but not an asymptotically stable zero solution [26]. 

3. Lyapunov Functionals Construction 

Describe here in detail the construction of Lyapunov functionals iV  

with the condition 0ˆ 1 <−=∆ + iii VVV  for the Equations (2.5), (2.7) and 

(2.9). (Note that the operator ∆̂  is used here and everywhere below in 
difference from the step of discretization ).∆  Via the general method of 

Lyapunov functionals construction [26, 27], we have the following four 
steps: 

3.1. The Equation (2.5) 

Step 1. Represent the Equation (2.5) in the form 

,,1,0,ˆ11 …=∆+=+ iFFy iii  

where 

,,1,0,3
1 …=−= iabyyF iii  

,ˆ,0 000 ayFF =∆=  

( ) .,2,1,ˆ, 111 …=−=∆= −− iyyaFayF iiii  

Step 2. Consider the auxiliary difference equation without delay 
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.,1,0,,1 3
10 …=−== + iabzzzz iii   (3.1) 

The function ( ) 2zzv =  is a Lyapunov function for this equation. In fact, 

using (3.1), we get 

( ) ( ) 22
11ˆ iiiii zzzvzvv −=−=∆ ++  

  ( ) ( ) .1242223 




 −=−−= abzzabzabzz iiiii  

Since 10 =z  then via the condition 2<ab  we have 0<∆ iv  for all 

…,1,0=i  providing .0=/iz  

Step 3. We will construct the Lyapunov functional iV  for the 

Equation (2.5) in the form ,21 iii VVV +=  where 

( ) ( ) ( ) ,,2,1,, 2
11

2
0010 …=−=−=== − iayyFyvVyyvV iiiii  

and the additional functional iV2  will be defined below. 

Calculating ,,2,1,ˆ 1 …=∆ iV i  via (2.5) and Lemma 1.2 

( ),4
14

14
4
3

1
3

−− +≤ iiii yyyy  we obtain 

( ) ( )21
2

11ˆ
−+ −−−=∆ iiiii ayyayyV  

 ( ) ( )21
2

1
3

−− −−−−= iiiii ayyayabyy  

 ( ) 1
32462 22 −+−= iiii ybyaabyyab  

 ( ) .2
1

2
32 4

1
24262

−+




 −−≤ iii byayabayab   (3.2) 

Similarly for ,0=i  we have 

( ) 11ˆ 22
0

2
110 −−=−=∆ abyyV  
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  ( ) ( ) ( )( ),112
1

22 −−<




 −−= τgababab  

where via (2.4) 

( ) ( ) ( ) .21212
21 abab

aeg <
−

=
γ

−
=

τ
τ

τ
  (3.3) 

Step 4. Choosing the additional functional iV2  in the form 

4
1

2
220 2

1,0 −== ii byaVV  with ( ) ,,2,1,2
1ˆ 4

1
42

2 …=−=∆ − iyybaV iii  

(3.4) 

for the functional iii VVV 21 +=  via (3.2), (3.4) and (3.3), we get 

( ) 42462 22ˆ iiii byaabyyabV +−≤∆  

( ) ( ( ) ) .,1,0,2
1

42 …=−−= iygyab ii τ   (3.5) 

From (3.3) it follows also that 

( ) ( ) ,lim,lim 110
∞=∞=

∞→→
ττ

ττ
gg  

( ) ( ) ( ) ,088.3
2

2inf
00

0110 γ
≈

γ−
==

≥ ττ
ττ

τ
gg  

where 594.10 ≈τ  is the root of the equation 

( ) .22 ττ e−=  (3.6) 

Let us suppose that the sequence 2
iy  is bounded and there exists 0>τ  

such that 

( ) .,1,0,1
2 …=< igyi τ   (3.7) 

In this way, 0<∆ iV  for all …,1,0=i  while .0=/iy  If the sequence 2
iy  

is bounded by ( ),01 τg  where 0τ  is the root of the Equation (3.6), then 
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(3.7) is correct for all .0>τ  If 2
iy  is bounded by some ( ),01 τgM >  then 

(3.7) is correct for ( ) ( ),,,0 21 ∞∈ τττ ∪  where 1τ  and 2τ  are two 

positive roots of the equation 

( ) .12 2ττ γ=− Me   (3.8) 

3.2. The Equation (2.7) 

The corresponding analysis for the Equation (2.7) proceeds as follows: 

Step 1. We choose 3
1 iii byyF −=  and .1−= ii ayF  

Step 2. This step is the same as for the Equation (2.5) by the 
condition .2<b  

Step 3. Via (2.7), one can show that 

( ) ( ) ,022ˆ 22
0

2
0110 <−=−=−−=∆ aaaayayyV  

.,2,1,2
1

2
32ˆ 4

1
462

1 …=+




 −−≤∆ − iabyyabybV iiii  

Step 4. Put 

.,2,1,2
1,0 4

1220 …=== − iabyVV ii  

Then for the functional ,21 iii VVV +=  we have 

( ( ) ),ˆ 2
2

42
iii ygybV −−≤∆ τ  

where via (2.4) 

( ) ( ) ( ) .21212
22 bb

aeg <−=
γ

−
=

−

τ
τ

τ
  (3.9) 

The function ( )τ2g  is a strictly decreasing one for 0>τ  and 

( ) ( ) .0lim,lim 220
=∞=

∞→→
ττ

ττ
gg  
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Thus, if the sequence 2
iy  is bounded by some 0>M  then the condition 

( ) ,,1,0,2
2 …=< igyi τ  (and therefore )0<∆ iV  is correct for 

( ),,0 0ττ ∈  where 0τ  is the positive root of the equation 

( ) .12 2ττ γ=− − Me   (3.10) 

3.3. The Equation (2.9) 

Finally for the Equation (2.9) we have: 

Step 1. Choose 

,, 3
00

3
1 bbyFbyyF iii −=−=−=  

( ) ( ) .,2,1,ˆ, 33
11

3
1 …=−−−=∆−= +−− iyybyyaFbyayF iiiiiiii  

Step 2. This step is the same as for the Equation (2.7). 

Step 3. Via (2.9), one can show that 

( ) ( )200
2

1110ˆ FyFyV −−−=∆  

( ) ( )22 11 ba +−−=  

( ) ( ) ,022 <+−−−= bbaa  

and via Lemma 1.2, 

 ( ) ( )22
111ˆ iiiii FyFyV −−−=∆ ++  

( ) ( )23
1

23
11 iiiiii byayybyayy +−−+−= −++  

( ) ( )23
1

2
1 iiiii byayyayy +−−−= −−  

1
3624 22 −+−−= iiii yabyybby  

1
34 22 −+−≤ iii yabyby  

.,2,1,2
1

2
32 4

1
4 …=+





 −−≤ − iabyaby ii  
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Step 4. Put 

.,2,1,2
1,0 4

1220 …=== − iabyVV ii  

Thus, for the functional iii VVV 21 +=  for all 0>τ  we obtain 

( ) .012 4 <−−≤∆ ii yabV  

4. Proofs of Asymptotic Stability 

Here we can show how the functional iV  constructed above can be 

used to give desired conclusion. We give here the analysis for the 
Equation (2.5). 

From (3.5) and (3.7) it follows 

( ) ( ( ) ) .0ˆ 2
1

4

0

2
01

0
<−−≤−=∆ ∑∑

=
+

=
jj

i

j
ij

i

j
ygyabVVV τ   (4.1) 

Therefore, .10 2
001 ==≤≤ + yVVi  Moreover, .11

42
2
1

1,2 ≤≤= ++ iii VbyaV  

From here via (2.4) 

.222 0
2
0

22

2
02

∆
=

∆γλ
=≤ a

x
a
x

a
x

bxi k
 

So, for any 0>ε  there exists 2
2 ε∆=δ ak  such that ,0, >ε< ixi  if 

.0 δ<x  In other words, we have shown that the zero solution of the 

Equation (2.5) is stable. 

Besides, from (4.1) and ,01 ≥+iV  it follows that 

( ( ) )
( )

.2
02

1
4

0 ab
Vygy jj

j
≤−∑

∞

=

τ   (4.2) 
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The convergence of the series in the left-hand part of (4.2) implies that 

( ( ) ) .0lim 2
1

4 =−
∞→ iii

ygy τ  

It means that either 0lim 4 =
∞→ ii

y  or ( ).lim 1
2 τgyii
=

∞→
 In any case the limit 

of iy  by ∞→i  there exists. From (2.5), it follows that .0lim =
∞→ ii

y  Via 

(2.4) the solution of the Equation (2.3) satisfies the condition .0lim =
∞→ ii

x  

The proof is completed.   

Remark 4.1. A similar argument applies to solutions of the 
Equations (2.7) and (2.9). 

We summarize our conclusions by the following way. Assume that 

0,, xλk are given and we investigate the solutions ix  of the Equations 

(2.3), (2.6) and (2.8) for a fixed values of .0>∆  

Theorem 4.1. If the solution ix  of the Equation (2.3) satisfies the 

condition ( ) ,2
001

2 xgxi τ≤  where 0τ  is the root of the Equation (3.6), then 

0→ix  regardless of the step size .0>∆  If the solution ix  of the 

Equation (2.3) satisfies the condition 2
0

2 Mxxi ≤  for some ( )01 kgM >  

then 0→ix  for all ( ) ( ),,,0 21 ∞∈∆
λλ
ττ ∪  where 1τ  and 2τ  are the roots 

of the Equation (3.8). 

If the solution ix  of the Equation (2.6) satisfies the condition 
2
0

2 Mxxi ≤  for some 0>M  then 0→ix  for all ( ),,0 0
λ

∈∆ τ  where 0τ  

is the root of the Equation (3.10). 

The solution ix  of the Equation (2.8) converges to zero for all .0>∆  

Remark 4.2 In the statements of Theorem 4.1 we have considered 
the behaviour of bounded solutions of the discrete equations. We can 
observe that unbounded solutions may arise with particular 
combinations of .,,0 λ∆x  Our calculations indicate that if ( ) ,11 >τg  then 
the solution of the Equation (2.5) satisfies the condition 
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.,2,1,1 …=< iyi  In Figures 1-3 one can see the behaviour of the solution 
of the Equation (2.5) with the different values of the parameters ,τ  γ  and 

function ( ):1 τg  Figure 1 ( )( ),51.3,6,1.0 1 ==γ= ττ g  Figure 2 
( ,15,01.0 =γ=τ  ( ) ),4.131 =τg  Figure 3 ( )( ).05.1,20,1.0 1 ==γ= ττ g  
In Figure 4, it is shown that by 25,24.0 =γ=τ  the solutions of the 

Equations (2.5) (number 1 ( ) )38.01 =τg  and (2.9) (number 3) converge to 

zero, but the solution of the Equation (2.7) (number 2, ( ) )3.02 =τg  goes 
to infinity. 

 

Figure 1. The solution of the Equation (2.5) with 6,1.0 =γ=τ  and 

( ) .51.31 =τg  

 

Figure 2. The solution of the Equation (2.5) with 15,01.0 =γ=τ  and 

( ) .4.131 =τg  
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Figure 3. The solution of the Equation (2.5) with 20,1.0 =γ=τ  and 

( ) .05.11 =τg  

Remark 4.3. Note that the difference schemes considered above can 
be constructed and for more general nonlinear integro-differential 
equation 

( ) ( ) ( ) ,0,,
0

>λ−= −λ−∫ kk dssxetx rstt
�  (4.3) 

where r is an arbitrary odd number. For instance, the equations of the 
type of difference analogues (2.3) and (2.6), respectively for the Equation 
(4.3) are 

( ) ,,2,1,, 1
2

10
2

01 …=−+∆−=−= −+ ixxaxaxxxhaxx ii
r
iii

r kk  

and 

( ) ,,2,1,,1,1 11
2

10 …=−+−=∆γ−== −+ iyyaabxyyayy ii
r
iii  

where  2

1
0
λ

=γ
−ry

k  and bayi ,,, τ  are defined in (2.4). By that the 

functional  

( ) ,,2,1,1
2 1

1
22

1 …=
+

+−= +
−− iyr

baayyV r
iiii  
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satisfied the condition ( ) ( ( ) )1
1

12 −+ −−≤∆ r
i

r
ii ygyabV τ  with ( )τ1g  

defined in (3.3). 

 

Figure 4. The solutions of the Equations (2.5) (number 1), (2.7) (number 
2) and (2.9) (number 3) with ( ) ( ) ,3.0,38.0,25,24.0 21 ===γ= τττ gg  

5. Difference Analogue with Continuous Time 

To construct the difference analogue of the Equation (1.1) with 
continuous time rewrite this equation in the equivalent form 

( ) ( )( ) .
0

dsstxfetx st
−−= λ−∫k�   (5.1) 

Let ∆  be a small enough positive number. Using the Equation (1.1) for 
[ )∆∈ ,0t  and (5.1) for ,∆≥t  we can construct a difference analogue in 

the form of the following difference equation with continuous time: 

( ) ( ) ( )( ) [ ),,0,00 2 ∆∈−= λ− txfetxtx tk  

( ) ( ) ( ) ,0,2 ≥∆−=∆+ ttFtxtx k  
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( )
[ ]

( )( ),
0

∆−= ∆λ−

=
∑
∆

jtxfetF j

j

t

  (5.2) 

where [ ]t  is the integer part of the number t. If [ )∆∈ ,0t  then 

( ) ( )( ).txftF =  For ∆≥t  transform ( )tF  by the following way: 

( ) ( )( )
[ ]

( )( )∆−+= ∆λ−

=
∑
∆

jtxfetxftF j

j

t

1
 

( )( )
[ ]

( ) ( )( )( )∆+−+= +∆λ−
−

=
∑
∆

11
1

0
jtxfetxf j

j

t

 

( )( )
[ ]

( )( )∆−∆−+= ∆λ−

=

∆λ− ∑
∆
∆−

jtxfeetxf j

j

t

0
 

( )( ) ( ).∆−+= ∆λ− tfetxf   (5.3) 

From (5.2), it follows that 

( ) ( ) ( ) ( ) ( ) ( ) ., 22 ∆

∆−−−=∆−
∆

−∆+−=
kk

txtxtFtxtxtF  

Substituting the obtained ( )tF  and ( )∆−tF  into (5.3), we transform the 

Equation (5.2) to the form 

( ) ( ) ( )( ) ( ) ( )( ) .,2 ∆>∆−−+∆−=∆+ ∆λ− ttxtxetxftxtx k   (5.4) 

The process ( )tx  is defined by the Equation (5.4) for ∆=> 20tt  with the 

initial condition 

( ) ( ) [ ] [ ],2,0,2, 00 ∆=∆−∈θθφ=θ ttx  (5.5) 

where 
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( )
( ) ( )( ) [ ) [ )

( ) ( )( ) [ ] [ ]





∆∆=∆−∈θ∆−θφ∆−∆−θφ

∆=∆−∆−∈θθ−
=θφ

λθ−

.2,,,

,,0,2,00

00
2

00
2

ttf

ttxfex

k

k
 

Note that via (1.2) the order of nonlinearity of the Equation (5.4) is, 
generally speaking, more than one. 

Definition 5.1. The solution of the Equation (5.4) with the initial 
condition (5.5) is called asymptotically quasitrivial if ( ) 0lim =∆+∞→ jtxj  

for each [ )., 00 ∆+∈ ttt  

Definition 5.2. The zero solution of the Equation (5.4) is called 
stable if for any 0>ε  there exists ( ) ,0>εδ=δ  such that ( ) ,ε<tx  for 

all 0tt ≥  if [ ] ( ) .sup 00 ,2 δ<θφ=φ ∆−∈θ tt  

Definition 5.3. The zero solution of the Equation (5.4) is called 
locally asymptotically quasistable if it is stable and for any 0>ε  there 
exists a ( ) ,0>εδ=δ  such that the solution of the Equation (5.4) is 

asymptotically quasitrivial for each initial condition (5.5) such that 
.δ<φ  

Theorem 5.1. For a small enough 0>∆  an each bounded solution of 
the Equation (5.4) with the initial condition (5.5) is asymptotically 
quasitrivial. 

Proof. Using the procedure of Lyapunov functionals construction 
[26], we will construct a Lyapunov functional for the Equation (5.4) in the 
form ( ) ( ) ( ),21 tVtVtV +=  where 

( ) ( ( ) ( )) ,, 0
2

1 tttxetxtV ≥∆−−= ∆λ−   (5.6) 

is the Lyapunov functional for the auxiliary linear difference equation 
(the linear part of the Equation (5.4)) 

( ) ( ) ( ( ) ( )) ., ∆>∆−−+=∆+ ∆λ− ttxtxetxtx  (5.7) 
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Indeed, for the Equation (5.7) we have ( ) .0ˆ 1 =∆ tV  It means that the zero 

solution of the Equation (5.7) is stable but not asymptotically quasistable 
[26]. 

Calculating ( ) ( ) ( )tVtVtV 111ˆ −∆+=∆  for the Equation (5.4) via (5.6), 

we obtain 

( ) ( ( ) ( )) ( ( ) ( ))22
1ˆ ∆−−−−∆+=∆ ∆λ−∆λ− txetxtxetxtV  

 ( ( ) ( ) ( )( )) ( ( ) ( ))222 ∆−−−∆−∆−−= ∆λ−∆λ− txetxtxftxetx k  

 ( ( )) ( )( ) ( ) ( )( ) ( ).22 22242 ∆−∆+∆−∆= ∆λ− txtxfetxtxftxf kkk   (5.8) 

Via (1.2) and Lemma 1.2, we have 

( ) ( )( ) ( )( ) ( )txtxftxftV 2242
1 2ˆ ∆−∆≤∆ kk  

 ( ) ( ) .1
1

12 11

1

2 





 ∆−

+
+

+
α∆+ ++

=

∆λ− ∑ txtxe ii
ii

i
i

m

i

νν
νν

ν
k   (5.9) 

Put 

( ) ( ) .,12 0
1

1

2
2 tttxetV i

i
i

m

i
≥∆−

+
α

∆= +

=

∆λ− ∑ ν
νk  (5.10) 

From (1.4), it follows that .21 ii µ=+ν  So, ( ) .02 ≥tV  Via (5.9), (5.10) 

and (1.2), for the functional ( ) ( ) ( )tVtVtV 21 +=  we obtain 

( ) ( )( ) ( ) ( )( )txfetxftV 1
2242 12ˆ ∆λ−−∆−∆≤∆ kk  

( ) ( )( ) ( ) ( )( )( ) ,, 02211 tttxftxf ≥−∆β∆β−≤   (5.11) 

where 

( ) ( ) ( ) ( ) ( ) ,,12, 122
42

1 xxfxfe
=

∆

−
=∆β∆=∆β

∆λ−

k
k  
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( ) ( ) .0,1
2 =/= − xxxfxf   (5.12) 

Suppose that there exists ,00 >∆  such that the solution of the Equation 

(5.4) is uniformly bounded for [ ],,0 0∆∈∆  i.e., ( ) ., 0ttMtx ≥≤  Since 

( )xf2  is a non-decreasing for 0≥x  function and ( ) ,lim 20 ∞=∆β→∆  then 

there exists a small enough ,0>∆  such that ( )( ) ( ) ( ).222 ∆β<≤ Mftxf  

From this and (5.11) it follows: 

( ) ( ) ( )( ) ,,ˆ 011 tttxftV ≥∆γ−≤∆  (5.13) 

where ( ) ( ) ( ) ( )( ) .02211 >−∆β∆β=∆γ Mf  Rewrite (5.13) for ,∆+ jt  i.e., 

( ) ( ) ( )( ) ,,1,0,,ˆ 011 …=≥∆+∆γ−≤∆+∆ jttjtxfjtV  

and summing it from 0=j  to ,1−= ij  we obtain 

( ) ( ) ( ) ( )( ) ., 01

1

0
1 ttjtxftVitV

i

j
≥∆+∆γ−≤−∆+ ∑

−

=

 (5.14) 

From this it follows 

( ) ( )( ) ( ) ., 01
0

1 tttVjtxf
j

≥∞<≤∆+∆γ ∑
∞

=

 

Therefore, ( )( ) 0lim 1 =∆+∞→ jtxfj  for each .0tt ≥  Due to (5.12), 

( ) ( )( ) .,0 01
1

1 1 ttjtxfjtx ≥∆+≤∆+α≤ +ν  

So, ( ) 0lim =∆+∞→ jtxj  for each ,0tt ≥  i.e., the solution of the 

Equation (5.4) is asymptotically quasitrivial. The proof is completed.   

Theorem 5.2. The zero solution of the Equation (5.4) is stable. 

Proof. We will use here the functional ( ),tV  that was constructed in 

the proof of the previous theorem. Via (5.14), we have 

( ) ( ) .,,1,0, 0ttitVitV ≥=≤∆+ …  
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Putting sjtt +∆+= 0  with [ ]
∆
−= 0ttj  and [ ),,0 ∆∈s  we obtain 

( )( ) ( ) ( ) ( ).000 stVsjtVtVsijtV +≤+∆+=≤+∆++  (5.15) 

From (5.6) and [ ) ( ) ,sup 00 , stts φ=φ ∆−∈  we have 

( ) ( ( ) ( ))20001 ∆−+φ−+=+ ∆λ− stestxstV  

( ( ) ).2 222
0 φ++≤ ∆λ−estx   (5.16) 

From the Equation (5.4), (5.5) for st +∆=  and ∆= 20t  it follows that 

[ )00 , tsst ∆∈+∆=∆−+  and 

( ) ( ) ( ) ( )( ) ( ) .1 2
0 sesfsestx φ++∆φ∆++∆φ+≤+ ∆λ−∆λ− k  

Due to (1.2) 

( )( ) ( ) [ ],,0 02
1

tCf ii

m

i
∈θφ≤θφα≤θφ ∑

=

νν  

where 









>φ

≤φ

=α=

==
∑ .1ifmax

,1if1
,

,,11
2

imi
i

m

i
C

ν
ν

…

 

Therefore, 

( ) ,21, 2
2

330 CeCCstx ∆++=φ≤+ ∆λ− kν  

and using (5.16), we obtain 

( ) ( ).2 2222
301 φ+φ≤+ ∆λ−eCstV ν  (5.17) 

From (5.10), it follows that 

( ) ( ) ,12 1
10

1

1

2
02

++

=

∆λ− φ≤∆−+φ
+

α
∆=+ ∑ νν

ν CstestV i
i

i
m

i
k  (5.18) 
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where 

.12
1

2
1 +

α
∆= ∑

=

∆λ−

i
i

m

i
eC νk  

From (5.15), (5.17) and (5.18) for the functional ( ) ( ) ( )tVtVtV 21 +=  it 

follows the inequality 

( ) ( ) ( ).2,, 22
3100

2
00

∆λ−++=≥φ≤+≤ eCCCttCstVtV ν  (5.19) 

Via (5.12), (5.14) and (5.19), we obtain 

( ) ( ) ( ) ( )( )txftx 11
1

11 1 ∆γ≤α∆γ +ν  

( ) ( )( ) ( ) ., 0
2

01

1

0
1 ttCtVjtxf

i

j
≥φ≤≤∆+∆γ≤ ∑

−

=

ν  

So, for arbitrary 0>ε  there exists a ( ( ) ) ,02
1

1 1
11

1
0 >εα∆γ=δ +− ννC  such 

that ( ) ε<tx  if .δ<φ  The proof is completed.   

Corollary 5.1. From Theorems 5.1 and 5.2 it follows that for a small 
enough 0>∆  the zero solution of the Equation (5.4) is locally 
asymptotically quasistable. 

6. Stability Conditions for Stochastic Differential Equations 

To begin with, let us consider some simple examples with the 
possibility to get stability conditions for stochastic differential equations 
using its difference analogues. Some known mathematical models under 
stochastic perturbations will be considered in the next sections. 

Example 6.1. Consider the scalar Ito stochastic differential equation 
of neutral type 

( ) ( ) ( ) ( ) ( ) ( ) ,0,0 ≥=−σ+−+−++ ttwtxhtxchtbxtaxtx ��� τ  (6.1) 

and its difference analogue via the Euler-Maruyama scheme [19] 
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( ) ( ) kk −+−+ ∆−+−∆−= iiii xbccxxax 11 1  

.,1,0,1 …=ξ∆σ+ +− ix imi   (6.2) 

Here ( )tw  is the standard Wiener process [10, 27] 

( ) ,,,,,0
∆

=
∆

==∆=>∆ τmhtxxit iii k  

( ) ( ) ,,1,0,1,0, 21
1 …==ξ=ξ

∆

−
=ξ +

+ itwtw
ii

ii
i EE   (6.3) 

and it is supposed that k  and m are integers. 

Remark 6.1. It is known [10, 27] that the Wiener process is not 
differentiable. Therefore, the Equation (6.1) and all stochastic differential 
equations below are understanding in the form of differentials. 

In [26], two following sufficient conditions for asymptotic mean 
square stability of the zero solution of the difference Equation (6.2) are 
obtained: 

( )( ) ( ( ) ) ,121 22 <σ∆+∆−+∆−+∆++∆− bchbbaba  

and 

( ) ( ( ) ) ( ).22 22 babchbbaba +<σ+∆−+∆−+++∆   (6.4) 

Let .0→∆  Then from (6.4), the known [27] sufficient condition for 

asymptotic mean square stability of the zero solution of the differential 
Equation (6.1) follows: 

( ) ( ) .1,2
11 2 <+σ>−−+ chbchbba   (6.5) 

Example 6.2. Consider the scalar stochastic integro-differential 
equation 
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( ) ( ) ( ) ( ) ( ),d twtxssxbtaxtx
t

ht
�� τ−σ++= ∫ −

 (6.6) 

where ( )tw  is the standard Wiener process. Using (6.3), the Euler-

Maruyama scheme and θ-method [ ]( )1,0∈θ  for a difference 

representation of the integral, consider a difference analogue of (6.6) in 
the form 

[ ( )] .11 1

1

1

22
1 +−−−

−

=
+ ξ∆σ+













θ+∆+θ−∆+∆+= ∑ imiiji

j
ii xxxbxbax k

k
 

 (6.7) 

Via [26], we obtain two sufficient conditions for asymptotic mean square 
stability of the zero solution of the difference Equation (6.7) 

( )( ) ( )( ) ,1121 22 <σ∆++−θ∆+∆++∆+ hbhabhbha  

and 

( ) ( )( ) .212 22 bhahbhabhbha +<σ++−θ∆+++∆  (6.8) 

Let .0→∆  Then from the Equation (6.8) the known [27] sufficient 
condition for asymptotic mean square stability of the zero solution of the 
differential Equation (6.6) follows: 

.0,2
1

2
11 22 <+σ>





 −+ bhahbbha  (6.9) 

Remark 6.2. One can see that if the condition (6.5) (or (6.9)) holds, then 
the inequality (6.4) (or (6.8)) at the same time is a sufficient condition on 
the step of discretization ∆  by which the difference analogue (6.2) (or 
(6.7)) saves the stability property of the solution of the initial differential 
equation (6.1) (or (6.6)). 
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7. Difference Analogue of the Mathematical Model of the 
Controlled Inverted Pendulum 

7.1. Mathematical model of the controlled inverted pendulum 

The problem of stabilizing the controlled inverted pendulum has been 
very popular among researchers for many years (see [1, 2, 4-6, 12, 13, 15, 
16, 20, 21, 23, 24, 26, 27, 29] and references therein). The linearized 
mathematical model of the controlled inverted pendulum can be 
described by the second-order linear differential equation 

( ) ( ) ( ) .0,0, ≥>=− tatutaxtx��  (7.1) 

The classical way of stabilization [13] uses the control ( ) ( )txbtu 1−=  

( ) .0,, 212 >>− babtxb �  But this type of control, which represents 

instantaneous feedback, is quite difficult to realize because usually it is 
necessary to have some finite time to make measurements of the 
coordinates and velocities, to treat the results of the measurements and 
to implement them in the control action. 

Another way is supposed that the control ( )tu  does not depend on the 

velocity but it depends on the previous values of the trajectory 
( ) ,, tssx ≤  and has the form [27] 

( ) ( ) ( ).
0

ττ −= ∫
∞

txdKtu   (7.2) 

The kernel ( )τK  in (7.2) is a function of bounded variation on [ ]∞,0  and 

the integral is understood in the Stieltjes sense. It means in particular 
that both distributed and discrete delays can be used depending on the 
concrete choice of the kernel ( ).τK  

The initial condition for the system of (7.1), (7.2) has the form 

( ) ( ) ( ) ( ) ,0,, ≤ϕ=ϕ= sssxssx ��   (7.3) 
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where ( )sϕ  is a given continuously differentiable function. 

It is supposed also that the Equation (7.1) is under the influence of 
stochastic perturbations of the type of white noise in the form 

( ) ( )( ) ( ) ( ),tutxtwatx =σ+− ���   (7.4) 

where ( )tw  is the standard Wiener process and σ  is a constant. 

Put ( ) ( ) ( ) ( )., 21 txtxtxtx �==  Then (7.2)-(7.4) can be represented in 

the form of the system of Ito's stochastic differential equations [10] 

( ) ( ),21 txtx =�  

( ) ( ) ( ) ( ) ( ) ( ),11
0

12 twtxtxdKtaxtx �� σ+−+= ∫
∞

ττ   (7.5) 

with the initial condition ( ) ( ) ( ) ( ) .0,, 21 ≤ϕ=ϕ= sssxssx �  

Put 

( ) ,1,0,
0

== ∫
∞

idKi
i ττk  

( ) ( )., 01
2

0
2 kk +−== ∫

∞
aadK ττ   (7.6) 

The following theorem gives a sufficient stability condition for the system 
(7.5). 

Theorem 7.1 ([27]). Let 

,0,0 11 >> ka  (7.7) 

( ) .222
2

1
211

2








−

−<σ
k

kk
aa   (7.8) 

Then the zero solution of the system (7.5) is asymptotically mean square 
stable. 
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Note that the inequalities (7.7) are the necessary conditions for 
asymptotic mean square stability of the zero solution of the system (7.5) 
but the inequality (7.8) is a sufficient one only. Besides, for the condition 

(7.8) 2k  has to satisfy the inequality ,242
2 <−+< kkkk  where 

1
2
1 /akk =  [27]. 

Below, the mathematical model of the controlled inverted pendulum 
(7.1)-(7.3) is considered in the following simple form: 

( ) ( )( ) ( ) ( ) ( ) .0,2211 ≥−+−=σ+− thtxbhtxbtxtwatx ���  (7.9) 

Here 0,,,0 121 >> hbba  and 02 >h  are given arbitrary numbers. 

From (7.6), it follows that for (7.9) 

,, 22111210 hbhbbb +=+= kk  

( )., 211
2
22

2
112 bbaahbhb ++−=+=k   (7.10) 

The main conclusion of our investigation here can be formulated in the 
following way: if the conditions (7.7), (7.8) and (7.10) hold, then the zero 
solution of the Equation (7.9) is asymptotically mean square stable. 
Additionally, there exists a sufficiently small step of discretization of this 
equation that the zero solution of the corresponding difference analogue 
is asymptotically mean square stable too. Below a difference analogue is 
constructed and an estimation of the step of discretization is obtained. 

7.2. Construction of a difference analogue 

Transform the differential Equation (7.9) into the system of two 
equations 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,
2

1
twtxhtxbtaxtytytx ll

l
��� σ+−+== ∑

=

  (7.11) 

To construct a difference analogue of the system (7.11), put 
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( ) ,,,,,0 2
2

1
1 ∆

=
∆

==∆=>∆
hmhmtxxit iii  

( ) ( ) …,1,0,1,0, 21
1 ==ξ=ξ

∆

−
=ξ +

+ itwtw
ii

ii
i EE   (7.12) 

 

(it is supposed here that 1m  and 2m  are integers). Via the Euler-

Maruyama scheme [19], a difference analogue of the system (7.11) is 

,1 iii yxx ∆+=+  

.1

2

1
1 +−

=
+ ξ∆σ+













+∆+= ∑ iimil

l
iii xxbaxyy l   (7.13) 

From the first equation of the system (7.13), we have 

.2,1,
1

=∆+= −
=

− ∑ lyxx ji

m

j
mii

l

l   (7.14) 

From this and (7.10) it follows that 

.
1

2

1
0

2

1
ji

m

j
l

l
imil

l
ybxxb

l

l −
==

−
=

∑∑∑ ∆−= k  (7.15) 

Substituting (7.15) into the second equation of the system (7.13) and 
using (7.10), we obtain 

.1
1

2

1

2
11 +−

==
+ ξ∆σ+∆−∆−= ∑∑ iiji

m

j
l

l
iii xybxayy

l
 (7.16) 

Put 

( ) .1
1

2

1

2
jil

m

j
l

l
i yjmbF

l

−
==

−+∆= ∑∑  (7.17) 

Calculating iii FFF −=∆ +1ˆ  and using (7.17), (7.10) and (7.12), we have 
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( ) ( ) 












−+−−+∆=∆ −

=
−+

==
∑∑∑ jil

m

j
jil

m

j
l

l
i yjmyjmbF

il
11ˆ

1
1

1

2

1

2  

.
1

2

1

2
1

1

2

1

2
ji

m

j
l

l
iji

m

j
ill

l
ybyyymb

ll

−
==

−
==

∑∑∑∑ ∆−∆=












−∆= k  

From this and (7.16), it follows that 

( ) .ˆ1 1111 ++ ξ∆σ+∆+∆−+∆−= iiiiii xFyxay k  

So, the system (7.13) can be presented in the matrix form 

( ) ( ) ( ) ( ) ,ˆ1 1+ξ+∆+=+ iiBziFiAziz   (7.18) 

where 

( ) ( ) .
0

00
,

1

1
,

0
,

11














∆σ
=














∆−∆−

∆
=














=














= B

a
A

F
iF

y

x
iz

ii

i

k
 

(7.19) 

7.3. Stability conditions for the auxiliary equation 

Following the general method of Lyapunov functionals construction 
[26, 27], first consider the auxiliary equation without memory 

( ) ( ) ( ) ,1 1+ξ+=+ iiBziAziz   (7.20) 

and the function ( ) ( ),iDzizvi ′=  where the matrix D is a positive definite 

solution of the matrix equation 

,0,
0

01
, >










=−=−′ c

c
CCDDAA  (7.21) 

with the elements [26] 

,2
2

2 221
2

11
1

11
11 daa

a
ad ∆+∆−

+
∆
+∆

=
kk  
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( ) ( )
.

24
22,22

1
2

11111

1
2

11
2222

1
1

12
∆+∆−∆−∆

+∆+∆−
=

∆
+

∆
=

aaa
caadda

ad
kk

k   (7.22) 

Calculating iv∆̂E  via (7.12) and (7.19)-(7.21), we have 

( ) ( )[ ]ii viDzizv −++′=∆ 11ˆ EE  

[ ( ) ( )( ) ( ) ( )( ) ]iii viBziAzDiBziAz −ξ+′ξ+= ++ 11E  

( ) ( ) ( ) ( )[ ]iDBzBiziCziz ′′+′−= E  

( ) .1 222
22 ii ycxd EE −∆σ−−=   (7.23) 

So, if for some ,0>c  the inequality 

∆
<σ

22
2 1

d   (7.24) 

holds then the zero solution of the Equation (7.20) is asymptotically mean 
square stable [26]. 

Note that the Equation (7.20) can also be written in the scalar form 

,101102 +++ ξσ++= iiiii xxAxAx  (7.25) 

with 

.,1,2 3
01

2
1110 ∆σ=σ−∆−∆=∆−= aAA kk   (7.26) 

It is known [26] that the necessary and sufficient conditions for 
asymptotic mean square stability of the zero solution of the Equation 
(7.25) are 

,1,1 101 AAA −<<   (7.27) 

( ) [( ) ] .1
11

1

2
0

2
112

0 A
AAA

−
−−+

<σ   (7.28) 

Substituting (7.26) into (7.27), we obtain the system of the inequalities 
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,042, 1
2

111 >+∆−∆<∆ kk aa  

with the solution 

( )





≥−−

<
<∆<

−

−

.4,4

,4,
0

1
2
11

2
11

1
1

1
2
11

1
1

aaa

aa

kkk

kk
  (7.29) 

Substituting (7.26) into (7.28), we obtain the condition 

( ) ( ) .
2

24
2

11

2
111112

∆+∆−

∆+∆−∆−
<σ

a
aaa

k

kk   (7.30) 

So, by the conditions (7.29) and (7.30) the zero solution of the Equation 
(7.25), (7.26) is asymptotically mean square stable. 

From (7.22) and (7.24), it follows that if the condition (7.30) holds 
then there exists a small enough 0>c  such that the condition (7.24) 
holds too. Thus, the function ( ) ( ),iDzizvi ′=  where the matrix D  is a 

positive definite solution of the matrix equation (7.21), is a Lyapunov 
function for the auxiliary Equation (7.20). 

7.4. Stability conditions for the difference analogue 

Let us obtain now a sufficient condition for asymptotic mean square 
stability of the zero solution of the Equation (7.18). Rewrite this equation 
in the form 

( ) ( ) ( ) ( ) ( ) .11 1+ξ+−=+−+ iiBziFiAziFiz   (7.31) 

Following the procedure of Lyapunov functionals construction [26], we 
will construct a Lyapunov functional iV  for the Equation (7.31) in the 

form ,21 iii VVV +=  where 

( ( ) ( )) ( ) ( )( )iFizDiFizV i −′−=1   (7.32) 
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and the matrix D  is a positive definite solution of the matrix equation 
(7.21) with the elements (7.22). The additional functional iV2  will be 

chosen below. 

Calculating iV1∆̂E  via (7.12), (7.21), (7.31) and (7.32), similarly to 

(7.23), we obtain 

 [( ( ) ( )) ( ( ) ( )) ]ii ViFizDiFizV 11 1111ˆ −+−+′+−+=∆ EE  

[ ( ) ( ) ( )( ) ( ) ( ) ( )( ) ]iii ViBziFiAzDiBziFiAz 111 −ξ+−′ξ+−= ++E  

( ) ( ) ( ) ( ).21 222
22 izIADiFycxd ii −′−−∆σ−−= EEE    (7.33) 

Note that via (7.19) 

( ) ( ) ( )izIADiF −′2  

( )




























−−













∆=

i

i
i

y

x

add

dd
F

112212

1211 10
02

k
 

( )[ ].2 22112221 iii yddxdaF k−+−∆=   (7.34) 

Put 

( ) ( )
( )

( ) ( )
.

24
2,

24
22

2
1111

11
2

1111

1
2

11
∆+∆−∆−

∆−+∆
=β

∆+∆−∆−

+∆+∆−
=α

aa
ac

aa
caa

kk

k

kk

k  

(7.35) 

Then via (7.22), (7.35), we have 

,
1

22 ∆
α= ad   (7.36) 

and 

( ) ( )( )∆−α−=−∆ 11
1

22112 212
1 aadd kk  
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 ( ) ( )
( ) ( )

.
24

22212
1

2
1111

1
2

1111
1

β−=










∆+∆−∆−

+∆+∆−∆−
−=

aa
caaa

a kk

kk  

(7.37) 

So, via (7.33)-(7.37) 

( ) .221ˆ 2221
11 iiiiiii FyFxycxaV EEEEE β−α−−ασ−−=∆ −  

Put now 

( ) ( ) .1,2
1 2

1

2

1

2
2

1
jil

m

j
l

l
illl

l
yjmbShhbq

l

−
===

−+∆=∆+= ∑∑∑   (7.38) 

Using (7.17), (7.12) and ,0>λ  we have 

 ( ) 






λ
+λ−+∆≤ −

==
∑∑ 22

1

2

1

2 112 jiil

m

j
l

l
ii yxjmbFx

l
 

,2
λ

+λ= i
i

Sqx  

and analogously 

.2 2
iiii SqyFy +≤  

As a result we obtain 

[ ( )] ( ) ,1ˆ 2221
11 iiii SyqcxaqV EEEE ρ+β−−σ+λα−−≤∆ −  

where 

.β+
λ
α=ρ   (7.39) 

To neutralize the positive component in the estimation of iV1∆̂E  choose 

the additional functional iV2  in the form 
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( ) ( ) .212
1 2

1

2

1

2
2 jill

m

j
l

l
i yjmjmbV

l

−
==

−+−+∆ρ= ∑∑  

Then via (7.38) 

 ( ) ( ) ijill

m

j
l

l
i VyjmjmbV

l

2
2

1
1

2

1

2
2 212

1ˆ −−+−+∆ρ=∆ −+
==
∑∑  

( )( ) ijill

m

j
l

l
Vyjmjmb

l

2
2

0

2

1

2 12
1 −−+−∆ρ= −

==
∑∑  

,2
ii Sqy ρ−ρ=  

and for the functional ,21 iii VVV +=  we have 

[ ( )] ( ) .[1ˆ 2221
1 iii yqcxaqV EEE ρ+β−−σ+λα−−≤∆ −  

Using (7.39), we obtain the stability conditions in the form 

.2,1
1

2
cqaq <







λ
α+β<







 σ+λα  (7.40) 

For 0>λ  from (7.40) it follows that 

.2 1

2
1

qa
a

qc
q

α
ασ−

<λ<
β−

α   (7.41) 

Thus, if 

,2 1

2
1

qa
a

qc
q

α
ασ−

<
β−

α   (7.42) 

then there exists 0>λ  such that the conditions (7.41) and therefore the 
conditions (7.40) hold. 

Let us rewrite (7.42) in the form 
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.12 1

222
<ασ+

β−
α

aqc
q  (7.43) 

To stress the dependence of the left-hand part of (7.43) on c put 

( ) ( ),24 2
11110 ∆+∆−∆−= aaA kk  

.2,2 112
2

111 ∆−=∆+∆−= aAaA kk   (7.44) 

Then via (7.35) 

,,2
0

2
0

11
A

cA
A

caA +∆
=β

+
=α  

and (7.43) takes the form 

( ) ,22
2 2

22
11 BcqQc

qcaA
<σ+

∆−
+   (7.45) 

where 

.2, 20
2

1
1

0 qAAQa
AAB −=σ−=   (7.46) 

Transform (7.45) into the form 

021
2

0 <+− BcBcB  (7.47) 

with 

,24 222
10 σ+= QqaB  

.2,44 22
12

2
11

2
1 ∆+=−∆σ+= qBqABqaAqBQB   (7.48) 

Minimization of the left-hand part of (7.47) with respect to c gives 

.4 20
2
1 BBB >   (7.49) 

Via (7.48), the inequality (7.49) can be represented as 

,02 2
2

1
4 >+σ−σ PP   (7.50) 
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where 

.4,8,
11

0
3
1

2
2

1211 ∆+
=−== qaQA

QARQ
RaqPPRaP   (7.51) 

From (7.50) and (7.51) by virtue of (7.45) and (7.46), it follows that 

.22 1
1

2








−<σ Q

RaqRa   (7.52) 

Note that in the condition (7.52) 1a  is defined in (7.10), Qq,  and R are 

defined in (7.38), (7.46) and (7.51) and depend on .∆  Thus, the following 
theorem is proven. 

Theorem 7.2 Let the parameters σ,,, 21 bba  and ∆  of the system 

(7.13) satisfy the conditions (7.7), (7.8) and (7.52). Then the zero solution 
of the system (7.13) is asymptotically mean square stable. 

Lemma 7.1. If for some values of the parameters 21,, bba  and σ  the 

conditions (7.7) and (7.8) hold, then there exists a small enough 0>∆  
such that the condition (7.52) holds too. 

Proof. Note that for 0=∆  via (7.38), (7.10) ,2 2k=q  via (7.44) 

.2,2,4 12110 kk === AAA  So, via (7.46) and (7.51), ( )21 22 kk −=Q  

and .2 1k=R  Substituting all these results into (7.52), we obtain that for 

0=∆  the condition (7.52) coincides with (7.8). Since the right-hand part 
of (7.52) is continuous with respect to ∆  in the point ,0=∆  if the 

condition (7.52) holds for 0=∆  then it holds for some small enough 
0>∆  too. The proof is completed.   

Corollary 7.1. If the parameters 21,, bba  and σ  of the system (7.13) 

satisfy the conditions (7.7) and (7.8), then there exists a small enough 
0>∆  (satisfying the condition (7.52)) such that the zero solution of the 

system (7.13) is asymptotically mean square stable. 
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7.5. Nonlinear model of the controlled inverted pendulum 

Consider the problem of stabilization for the nonlinear model of the 
controlled inverted pendulum 

( ) ( )( ) ( ) ( ) ( ) ,0,sin 2211 ≥−+−=σ+− thtxbhtxbtxtwatx ���   (7.53) 

with the initial condition (7.3). Similarly to (7.13) the difference analogue 
of the Equation (7.53) is 

,1 iii yxx ∆+=+  

( ) ( )( ) ,1

2

1
1 +−

=
+ ξ+∆σ+













++∆+= ∑ iiimil

l
iiii xfxxbxafaxyy l   (7.54) 

where ( ) .sin xxxf −=  The system (7.13) is the linear part of the system 

(7.54) and the order of nonlinearity of the system (7.54) equals 3, since 

( ) .3
6
1 xxf ≤  Via [26] we obtain the following statement: 

Corollary 7.2. If the parameters σ,,, 21 bba  and ∆  of the system 

(7.54) satisfy the conditions (7.7), (7.8) and (7.52), then the zero solution of 
the system (7.54) is stable in probability. 

8. Nicholson’s Blowflies Equation 

Consider the nonlinear integro-differential equation with exponential 
nonlinearity and distributed delay 

( ) ( ) ( ) ( ) ( ),e
0

tcxsdKstxtx stbx −−= −−
∞

∫�   (8.1) 

where the delay term is given by the Stieltjes integral. 

Putting in (8.1) ( ) ( ) ,dshsasdK −δ=  where ( )sδ  is Dirac’s function, 

we obtain well known Nicholson’s blowflies differential equation, which is 
one of the most important mathematical models in ecology [22] 

( ) ( ) ( ) ( ).e tcxhtaxtx htbx −−= −−�   (8.2) 
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It describes the population dynamics of Nicholson’s blowflies. Here ( )tx  is 

the size of the population at time at,  is the maximum per capita daily 

egg production rate, b/1  is the size at which the population reproduces 

at the maximum rate, c is the per capita daily adult death rate and h is 
the generation time. 

The Equation (8.2) along with its difference analogues are very 
popular in research (see, for instance, [3, 7, 9, 11, 14, 17, 18, 22, 26, 27, 
30, 36] and a long list of references therein). Below, we consider stability 
in probability of the positive equilibrium of the Equation (8.2) by 
stochastic perturbations and also of one discrete analogue of this 
equation. The capability of a discrete analogue to preserve stability 
properties of the original differential equation is studied. All theoretical 
results are verified by some numerical simulation. Besides it is shown 
that numerical simulation of the solution of difference analogue allows 
one to define more exactly a bound of stability region obtained by the 
sufficient stability condition. 

The following method for investigation of the stability is used. The 
considered nonlinear equation (8.2) is exposed to stochastic perturbations 
and is linearized in the neighbourhood of the positive equilibrium. The 
conditions for asymptotic mean square stability of the zero solution of the 
corresponding linear equation are obtained. Since the order of 
nonlinearity is higher than one these conditions are sufficient ones (both 
for continuous and discrete time [26, 27]) for stability in probability of the 
initial nonlinear equation by stochastic perturbations. This method was 
used already for investigation of the stability of different nonlinear 
biological systems with delays: SIR epidemic model, predator-prey model 
and many others [26, 27]. 

Note that a generalization of the obtained below results for the 
Equation (8.1) is an open problem.  
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8.1. Stability condition for the positive equilibrium 

In (8.2), it is supposed that the parameters ba,  and c are positive. 

By the conditions ,0,0 >>≥ bac  (8.2) has the zero equilibrium only, 

i.e., .0=∗x  By the conditions 

,0,0 >>> bca   (8.3) 

the Equation (8.2) has two equilibria: the zero one and a positive one 

.ln1
c
a

bx =∗   (8.4) 

It is known [27] that the zero equilibrium in the region (8.3) is unstable. 
The stability condition in the region (8.3) for the positive equilibrium 
(8.4) by stochastic perturbations is considered below. 

It is supposed that the Equation (8.2) is exposed to stochastic 
perturbations, which are of the type of white noise, are directly 
proportional to the deviation of the system state ( )tx  from the 

equilibrium ∗x  and influence ( )tx�  immediately. So, the Equation (8.2) is 

transformed into Ito's stochastic differential equation 

( ) ( ) ( ) ( ) ( )( ) ( ).e twxtxtcxhtaxtx htbx �� ∗−− −σ+−−=   (8.5) 

Let us center the Equation (8.5) on the positive equilibrium ∗x  using the 

new variable ( ) ( ) .∗−= xtxty  In this way via (8.4), we obtain 

( ) ( ) ( ) ( ) ( ( ) ) ( ) ( ).1elne twtyc
a

b
chtcytcyty htbyhtby �� σ+−+−+−= −−−−  

(8.6) 

It is clear that stability of the equilibrium ∗x  of the Equation (8.5) is 
equivalent to stability of the zero solution of the Equation (8.6). 
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Along with (8.6) we will consider the linear part of this equation. 

Using the representation ( )yoye y ++= 1  (where ( )yo  means that 

0lim →y
( ) )0=y
yo  and neglecting by ( ),yo  we obtain the linear part 

(process ( ))tz  of (8.6) in the form 

( ) ( ) ( ) ( ) ( ).1ln twtzhtzc
actcztz �� σ+−





 −−−=   (8.7) 

As shown in [27] if the order of nonlinearity of the equation under 
consideration is more than one then a sufficient condition for asymptotic 
mean square stability of the linear part of the initial nonlinear equation 
is also a sufficient condition for stability in probability of the initial 
nonlinear equation. So, we will investigate sufficient conditions for 
asymptotic mean square stability of the linear part (8.7) of the nonlinear 
stochastic differential Equation (8.6). 

Lemma 8.1 ([26, 27]). The necessary and sufficient condition for 
asymptotic mean square stability of the zero solution of the Equation (8.7) 
is 

,1<pG   (8.8) 

where 

( ) ( )

( ) ( )]
( )

( ) ( )

( ) ( )]
( )
















−=<<
−+

−+

=+

−=>
−+

−+

=σ=

.ln2ln,e,
cosh1ln1[

sinh1ln1

,e,2
1

,2lnln,e,
cosh1ln1[

sin1ln1

,2
1

2

2

2

2

c
a

c
a

c
a
c
a

q
c

c
a

c
a

c
a

c
a

q
c

cqcac
qhc

qh

cac
ch
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qhc

qh

Gp  

(8.9) 
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In particular, if ,0,0 => hp  then the stability condition (8.8), (8.9) takes 

the form ;ln pc c
a >  if ,0,0 >= hp  then the region of stability is 

bounded by the lines acc == ,0  and ( ) ( ) 0cos1ln1 =−+ qhc
a  for 

.e2ca >  

The condition (8.8), (8.9) gives us a region (in the space of the 
parameters ( ))ca,  for asymptotic mean square stability of the zero 

solution of the Equation (8.7) (and at the same time regions for stability 

in probability of the positive equilibrium ∗x  of the Equation (8.5)). In 
Figures 5-8 the region of stability given by the condition (8.8), (8.9) is 
shown in lilac colour. 

Remark 8.1. Note that the stability condition (8.8), (8.9) has the 
following property: if the point ( )ca,  belongs to the stability region with 

some p and h, then for arbitrary positive α  the point ( ) ( )caca αα= ,, 00  

belongs to the stability region with pp α=0  and .1
0 hh −α=  

8.2. Stability of difference analogue 

Consider a difference analogue of the nonlinear Equation (8.6) using 
the Euler-Maruyama scheme [19] 

( ) ( ) .1elne1 11 +
−−

−+ ξ∆σ+−∆+∆+∆−= −− ii
byby

iii yc
a

b
cycycy ii kk

k  

(8.10) 

Here k  is an integer, 
k
h=∆  is the step of discretization, 

( ) ( ) ( )( ) .,1,0,1,, 11 …=−
∆

=ξ=∆= ++ itwtwtyyit iiiiii  

In compliance with (8.7) the linear part of (8.10) is 

( ) .ln11 11 +−+ ξ∆σ+




 −∆+∆−= iiiii zzc

aczcz k   (8.11) 
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Consider two following sufficient conditions for asymptotic mean square 
stability of the zero solution of the Equation (8.11) [26] 

1ln112
111ln1

2
<








−+∆+∆−−+ c

acccc
p   (8.12) 

and 

.lnln11ln2
1 2

c
a

c
achc

acc
p






 −−<∆+   (8.13) 

The regions for asymptotic mean square stability of the zero solution of 
the Equation (8.11) (and at the same time regions for stability in 
probability of the zero solution of the Equation (8.10)), obtained by the 
conditions (8.12) and (8.13), are shown in the space of the parameters 
( )ca,  for 024.0,12 == hp  and 004.0=∆  (Figure 5), 008.0=∆  

(Figure 6), 012.0=∆  (Figure 7). The main part (with number 1) of the 
stability region is obtained via the condition (8.12), the additional part 
(with number 2) is obtained via the condition (8.13).  

Let us show how the sufficient stability conditions (8.12) and (8.13) 
are close to the necessary and sufficient stability condition. Consider the 

case ,024.0,12 == hp  .2,012.0 ===∆
∆
hk  Appropriate necessary 

and sufficient stability condition for the Equation (8.11) is obtained in 
[26] in the form  

( ) ( ) ( )

( ) ( )
.1

ln1ln11

ln1ln11
ln111

22
<

∆−−∆−

∆−−∆−
+













 −+∆+

c
a

c
a

c
a

c
a

cc

cc
c
accc

p   (8.14) 
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Figure 5. Region of sufficient stability condition for the Equation (8.11): 
.004.0and024.0,12 =∆== hp  

 

Figure 6. Region of sufficient stability condition for the Equation (8.11): 
.008.0and024.0,12 =∆== hp  
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Figure 7. Region of sufficient stability condition for the Equation (8.11): 
.012.0and024.0,12 =∆== hp  

 

Figure 8. Region of sufficient stability condition and necessary and 
sufficient stability condition for the Equation (8.11): 024.0,12 == hp  
and .012.0=∆  
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In Figure 8, the stability region, obtained via the sufficient stability 
conditions (8.12) and (8.13) (number 1), is shown inside the stability 
region, obtained via the necessary and sufficient stability condition (8.14) 
(number 2). 

Remark 8.2. The conditions (8.12) and (8.13) can be represented in 
the explicit form, respectively; 

,11,ee
2

0
11 00

∆
∆−−∆σ−

=>> −+
c

cGcac GG   (8.15) 

and 







≤

>
>>

,,e

,,e
e

0

0

2

1
3

ccc

ccc
ac

G

G
G  

( ) ( )
( ) ,2

211,11 22
1

2
0 ∆−

σ∆−+−+−
=

∆
∆σ−−= hc

hchchGc  

( ) ( )
( ) ,2

211 22
2 ∆+

σ∆+−+−+
= hc

hchchG  

( ) ( )
( ) .2

211 22
3 ∆+

σ∆+−+++
= hc

hchchG   (8.16) 

Remark 8.3. The conditions (8.12), (8.13) and (8.14) for arbitrary 
values of the parameters of the Equation (8.5) allow us to choose the 
admissible step of discretization ∆  by numerical simulation of the stable 
solution of this equation. For example, in Figure 5, we can see that for 
simulation of the solution of the Equation (8.5) with ,200,900 == ca  
we can use .004.0=∆  But taking into account Figures 6 and 7 we 
cannot be sure that it is possible to use 008.0=∆  or .012.0=∆  

Remark 8.4. Note that the stability conditions (8.12) and (8.13) have 
the following property: if the point ( )ca,  belongs to the stability region 
with some hp,  and ,∆  then for arbitrary positive α  the point 
( ) ( )caca αα= ,, 00  belongs to the stability region with ,0 pp α=  

hh 1
0

−α=  and .1
0 ∆α=∆ −  
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Remark 8.5. In [14, 30], the discrete analogue of the Equation (8.2) 
was considered in the form (in our notations) 

( ) .e11 k
k

−−
−+ ∆+∆−= ibx

iii xaxcx  

By the assumption ,1<∆c  the sufficient condition for asymptotic 
stability of the positive equilibrium (8.4) was obtained in [14]: 

[( ) ( ) ] ,1111 1 <




 −−∆− +−

c
ac k   (8.17) 

and improved in [30]: 

[( ) ( ) ] .1ln11 1 ≤−∆− +−
c
ac k   (8.18) 

Note that in the conditions (8.15) and (8.16) the assumption 1<∆c  does 
not have to be made. Let us show that even with the assumption 1<∆c  

the conditions (8.15) and (8.16) (in deterministic case, i.e., by )02 =σ  are 
better than (8.18). 

 

Figure 9. Region of sufficient stability condition and necessary and 
sufficient stability condition for the Equation (8.11): 024.0,0 == hp  
and .012.0=∆  
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In fact, if 02 =σ  and ,1<∆c  then the condition (8.15) takes the 

form .e2ca <  Representing (8.18) as 

[( ) ( ) ] ,e
11 11 −+− −∆−≤

kcca   (8.19) 

one can see that (8.15) is better than (8.19) if (( ) ( ) ) 211 11 ≤−∆− −+− kc  or 

( ) .1 1
1

3
2 +−≥∆ kc  

Let us show that the condition (8.16) is better than (8.18) for 

( ).1,0∈∆c  In fact, if ,02 =σ  then condition (8.16) takes the form 

( ) .e 5.0
1
∆+

+

< hc
ch

ca   (8.20) 

Via (8.19) and (8.20) it is enough to show that 

( ) ( ) ( )∆+
+≤

−∆− +− 5.0
1

11
1

1 hc
ch

c k
 

or the function 

( )
( )

( )
1
5.01

1
1

1 +
∆+

−−
∆−

=
+ ch

hc
c

cf
k

 

is nonnegative for [ ).1,0∈∆c  This is in fact so, since ( ) 00 =f  and via 

h=∆k  

( )
( ) ( )

.0
1
5.0

1 22 ≥
+

∆+−
∆−

∆+=′
+ ch

h
c

hcf
k

 

In Figure 9, one can see the stability regions for 024.0=h  and 
012.0=∆  given by the condition (8.17) (number 1), given by the 

condition (8.18) (numbers 1 and 2), given by the conditions (8.12), (8.13) 
(numbers 1, 2 and 3) and given by the condition (8.14) (numbers 1, 2, 3 
and 4). 
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8.3. Numerical analysis in the deterministic case 

Consider the Equation (8.5) at first in the deterministic case ( )0=p  

with delay .024.0=h  We will simulate solutions of this equation via its 
discrete analogue (8.11) with .012.0=∆  The corresponding stability 
region is shown in Figure 10. Note that for 0=p  the stability region 

slightly differs from the similar region for 12=p  (Figure 8). The initial 

function is ( ) ( ) [ ],0,,cos0 hssasz −∈=  where 0a  has different values in 

different points. 

 

Figure 10. Region of sufficient stability condition and necessary and 
sufficient stability condition for the Equation (8.11): 024.0,0 == hp  
and .012.0=∆  
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Figure 11. Stable zero solution of the Equation (8.11) in the point 
( ) .5,100,520 0 =aA  

In Figure 10, one can see the points A(520, 100), B(529.45, 100), 
C(540, 100), D(544.5, 46), E(544.5, 40), F(544.5, 34), K(279.9, 150), L(87.5, 
85), and M(40, 40). The points A and F belong to the stability region, the 
points C and D do not belong to the stability region the points B, E, K, L 
and M are placed on the bound of the stability region. The trajectories of 
solutions of the Equation (8.11) at points A(520, 100), B(529.45, 100), 
C(540, 100), are shown in Figures 11, 12 and 13, respectively. One can 
see that on the bound of stability region (the point B) the solution is 
bounded, to move a bit outside of the stability region (the point C) gives 
an unstable solution and to move a bit inside of the stability region (the 
point A) gives the stable zero solution. A similar picture one can obtain in 
the points D(544.5, 46) (unstable solution), E(544.5, 40) (bounded 
solution), F(544.5, 34) (stable zero solution). 

The points K, L and M are placed on the bound of the stability region, 
similarly to the points B and E the solutions of the Equation (8.11) in 
these points are bounded functions. 
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For instance, in the Figures 14, 15 and 16 the solutions of the 
Equation (8.11) are shown respectively in the point L(87.5, 85) (bounded 
solution) and close to this point the points ( )85,881L  (the stable zero 

solution) and ( )85,872L  (unstable solution). Note also that in the case 

0,0 >=> cab  the initial Equation (8.2) has only the zero equilibrium 

and the solution of the Equation (8.11) is a constant: see Figure 17 for the 
point M. 

This fact can be used to construct the exact bound of the stability 
region in the case when we have a sufficient stability condition only. For 
example, in the case ,008.0,024.0,0 =∆== hp  the points P(50, 50), 

Q(288.65, 170), R(680, 250.079), T(923.63, 125), (Figure 18) belong to the 
bound of the exact stability region. In all these points the solution of the 
Equation (8.11) is bounded. In particular, in the point P similarly to the 
point M the solution is a constant. 

 

Figure 12. Bounded solution of the Equation (8.11) in the point 
( ) .5,100,45.529 0 =aB  
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Figure 13. Unstable solution of the Equation (8.11) in the point 
( ) .1.0,100,540 0 =aC  

 

Figure 14. Bounded solution of the Equation (8.11) in the point 
( ) .5,85,5.87 0 =aL  
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Figure 15. Stable zero solution of the Equation (8.11) in the point 
( ) .5,85,88 01 =aL  

 

Figure 16. Unstable solution of the Equation (8.11) in the point 
( ) .3,85,87 02 =aL  
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Figure 17. Stable solution of the Equation (8.11) in the point 
( ) .3,40,40 0 =aM  

 

Figure 18. Region of sufficient stability condition for the Equation (8.11): 
.008.0,024.0,0 =∆== hp  
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Figure 19. Bounded solution of the Equation (8.11) in the point 
( ) .4,16.24,1000 0 =aV  

 

Figure 20. The solution of the Equation (8.10) in the point A(520, 100) 
(Figure 10) for 437.00 =a  (left) and for 438.00 =a  (right). 
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Figure 21. Unstable solution of the Equation (8.10) in the point C(540, 
100) (Figure 10) for .001.00 =a  

 

Figure 22. Regions of sufficient stability condition and necessary and 
sufficient stability condition for the Equation (8.11): 024.0,12 == hp  
and .012.0=∆  
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Via numerical simulations it was found that in the points S(810, 
170), U(652.6, 50), V(1000, 24.16) (Figure 18) the solutions are bounded 
too (see, for instance, the point V, Figure 19), so, these points also belong 
to the bound of the exact stability region. If desired, one can get a lot of 
such points. 

Consider now the behaviour of a solution of the nonlinear differential 
Equation (8.6) in the case .0=p  We will simulate solutions of this 

equation via its discrete analogue (8.10) with .012.0=∆  If in the point 
( )ca,  the zero solution of the Equation (8.11) is asymptotically stable (it 

means that for arbitrary initial function the solution of the Equation 
(8.11) goes to zero) then the zero solution of the Equation (8.10) is stable 
in the first approximation (it means that for each small enough initial 
function the solution of the Equation (8.10) goes to zero). On the other 
hand if the zero solution of the Equation (8.11) is not asymptotically 
stable, then for arbitrary indefinitely small initial function the solution of 
the Equation (8.10) does not go to zero.  

These facts are illustrated by the following examples. In the point 
A(520, 100), the zero solution of the Equation (8.11) is asymptotically 
stable (Figure 11, ),50 =a  so in this point the solution of the Equation 

(8.10) ( )4=b  goes to zero for small enough initial function (Figure 20, 

,437.00 =a  left) and quickly enough goes to infinity for a little larger 

initial function (Figure 20, ,438.00 =a  right). In the point C(540, 100), 

the zero solution of the Equation (8.11) is not asymptotically stable 
(Figure 13, )1.00 =a  and the solution of the Equation (8.10) ( )1=b  goes 

to infinity for an indefinitely small initial function (Figure 21, 
).001.00 =a  
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Figure 23. 50 trajectories of the standard Wiener process. 

 

Figure 24. Unstable solution of the Equation (8.11) in the point W(120, 
100), .1.00 =a  



LEONID SHAIKHET 78

8.4. Numerical analysis in the stochastic case 

Consider finally the behaviour of the solution of the Equation (8.7) in 
the stochastic case with ,12=p  delay 024.0=h  and the initial function 

( ) ( ) [ ].0,,cos0 hssasz −∈=  A solution of this equation is simulated here 

via its discrete analogue (8.11) with .012.0=∆  The corresponding 
stability region is shown in Figure 22, which is the increasing copy of 
Figure 8 with the additional points X(160, 100), Y(465, 100), which 
belong to the stability region of the Equation (8.11), and the points 
W(120, 100), Z(510, 100), which do not belong to the stability region of 
the Equation (8.11). 

For numerical simulation of the solution of the Equation (8.11), one 
uses some special algorithm of numerical simulation of the Wiener 
process trajectories [27]. Fifty trajectories of the Wiener process obtained 
via this algorithm are shown in Figure 23. In Figure 24, ten trajectories 
of the solution of the Equation (8.11) are shown in the point W(120, 100) 
with .1.00 =a  The point W(120, 100) belongs to the stability region of 

the stochastic differential Equation (8.7), but it does not belong to the 
stability region of its difference analogue (8.11). One can see that each 
trajectory of the solution of the Equation (8.11) in the point W(120, 100) 
oscillates and goes to infinity. 

A similar picture can be seen in Figure 25 where 100 trajectories of 
the solution of the Equation (8.11) are shown in the point Z(510, 100) 
with .1.00 =a  In Figure 26, 100 trajectories of the solution of the 

Equation (8.11) are shown in the point X(160, 100) with .5.80 =a  The 

point X belongs to the stability region of the Equation (8.11) and all 
trajectories go to zero. One hundred trajectories of the stable solution of 
the Equation (8.11) are shown also in Figure 27 in the point Y(465, 100) 
with .5.60 =a  
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Figure 25. Unstable solution of the Equation (8.11) in the point 
Z(510,100), .1.00 =a  

 

Figure 26. Stable solution of the Equation (8.11) in the point X(160, 
100), .5.80 =a  
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Figure 27. Stable solution of the Equation (8.11) in the point Y(465, 
100), .5.60 =a  

9. Conclusion 

The paper is devoted to the important issue of compliance of 
numerical modeling of the solution of the difference analogue with the 
original nonlinear integro-differential equation. Various schemes for 
constructing difference analogues both with discrete and continuous time 
are considered. To study the stability of difference analogues, the general 
method of constructing Lyapunov functionals is used. Numerical 
examples with some well-known mathematical models demonstrate the 
effectiveness of the theoretical results and the possibility of their use in 
various applications. 
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