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Abstract

Functional differential equations arise in the modelling of hereditary
systems such as ecological and biological systems, chemical and
mechanical systems and many-many other. The long-term behaviour and
stability of such systems are important areas for investigation.
Analytical solutions of functional differential equations are generally
unavailable and a lot of different numerical methods are adopted for
obtaining approximate solutions. A quite natural question appears: “Do
numerical solutions preserve the stability properties of the exact
solution?” Thus, to use numerical investigation of functional differential
equations it is very important to know if the considered difference
analogue of the original differential equation has the reliability to
preserve some general properties of this equation, in particular, property
of stability. Here the ability of difference analogues of the nonlinear

integro-differential equation of convolution type to preserve the property
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of stability of solutions is studied. Several difference analogues are
considered both with discrete and with continuous time. Besides,
difference analogues of the considered differential equation under
stochastic perturbations are studied too. For stability investigation, we
employ the general method of constructing Lyapunov functionals. It is
shown how the obtained research can be applied to the various
mathematical models.

1. Introduction

Functional differential equations arise in the modelling of hereditary
systems such as ecological and biological systems, medical and
sociological, chemical and mechanical systems and many-many other.
The long-term behaviour and stability of such systems are important
areas for investigation. Analytical solutions of functional differential
equations are generally unavailable and different numerical methods are

adopted for obtaining approximate solutions.

A quite natural question appears: “Do numerical solutions preserve
the stability properties of the exact solution?” Thus, to use numerical
investigation of functional differential equations it is very important to
know if the considered difference analogue of the original differential
equation has the reliability to preserve some general properties of this
equation, in particular, property of stability (see, for instance, [8, 25, 26,
28]).

The investigation focuses on the ability of difference analogues of the

nonlinear integro-differential equation of a convolution type
t
() = j K(t - 5)f(x(s))ds
0

to preserve the stability property of solutions. Specifically, we consider
the nonlinear integro-differential equation of a convolution type with the

exponential kernel

i) = [ ;e-Mt-S)f(x(s))ds. (1.1)
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Note the fact that integro-differential equations are very popular in

research (see, for instance, [31-35] and the references therein).

It is supposed that in the Equation (1.1) £ > 0,1 >0 and the

function f(x) is presented in the form

_ 2pi+1
B 2qi+1,

pi 2q; 20, (1.2)

m
flx) = Zaixyi, v
o1

where a; > 0, p; and q; are integers.

Lemma 1.1. The zero solution of the Equation (1.1) is stable.

Proof. Putting x;(¢) = x(¢), x9(¢) = x(¢), present the Equation (1.1) in

the form of the system of two equations
x1(t) = x2(t),
xg(t) = = kf(x1(£)) — hxa (). (1.3)

The function

m
% 2Hi 2 1 pi+q;i +1
V(t) = kzu_fxlul(t)mz(t), hi =3 (v +1) = qu. L,
i=1 ? i

(1.4)
is a Lyapunov function for the system (1.3) since V(¢) >0 for

x2(t) + x2(¢) > 0, and via (1.2), (1.4)

m

: o 2u; -1

V(t) = kzu_fzuixlut Xg + 2x9(— K f(ay) — Axg)
i=1 "t

m

= — 27\.3{,‘%@) + 2]{362(2 aixf“i -1 f(xl)]

=1

= - 2u3(t) <0,



24 LEONID SHAIKHET

unless x9(t) = 0. The proof is completed via the Lyapunov-type theorem

[27]. ([

Below several difference analogues of the Equation (1.1) are
considered both with discrete and with continuous time. Besides,
difference analogues of the considered differential equation under
stochastic perturbations are studied too. For stability investigation, the
general method of Lyapunov functionals construction is used [26, 27]. It
is shown how the obtained research can be applied to the known
mathematical models.

The following auxiliary statement will be used below.

Lemma 1.2 ([26]). Arbitrary positive numbers a, b, o, B, vy satisfy the

inequality

app & a+p,. B B a+p,,—a
a”b _—a+Ba Y +—a+Bb Y o

Equality is reached for y = ba L.
2. Some Difference Analogues with Discrete Time

It i1s obvious that one differential equation can have several
difference analogues according to the choice of a numerical scheme.
However, not all of these analogues need to be asymptotically stable. The
problem is to determine which methods can be employed with the
expectation that the difference analogue will preserve the qualitative
behaviour of the solutions of the original problem. In particular, how one
may construct a difference analogue of continuous asymptotically stable

system that will be asymptotically stable too.

In this section, three possible schemes are proposed for the

construction of difference analogues of the integro-differential equation

x(t) = - k-.‘;ex(ts)xz%(s)ds, 2.1
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that is a particular case of the Equation (1.1), (1.2) with m =1, o; =1,
p1 =1, =0. Conditions for the asymptotic stability of the zero
solution of these difference analogues are obtained.

Scheme 1. Divide the interval [0, ¢{] into i +1 intervals of length
A>0. In this way ¢t =(@+1A, s =jA, j=0,1,...,0,i+1, x; = x(jA).
Using the left-hand difference derivative (x;,; — x;)/A for representation
of x(t) in the point ¢t = (i +1)A as a result we obtain the difference

analogue of the Equation (2.1) in the form:
i . .
X1 = Xj — kA2Z eiM(”lfj)x?, i=0,1,... (2.2)
=0

AA

Denoting a = e "%, we transform the right-hand side of the Equation

(2.2) in the following way:

J

-1
Xj1 = X; — akA2x? +a {— kAZZ e_M(L_J)x?’J.
j=0

Applying (2.2) for i — 1 leads to
X1 = X9 — ak;Azxg,
Xiy1 = Xj - akAleg, +aly; —x1), 1=1,2, ... (2.3)

The Equation (2.3) has four parameters: k, A, A, xo. Putting

2
yl :ﬁ’ T=7\,A, y:kx_g’ a :e_Ty b:'\{*‘rz, (24)
X0 N

we finally obtain the equation with two parameters a and b only

Yo=1, y =1-ab,

Yier = ¥ —aby? +a(y; - yiq), i=12 .. (2.5)
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Scheme 2. Divide the interval [0, ] into i intervals of length A > 0.
In this way t =iA, s = jA, j=0,1,..., 4, x; = x(jA). Using the right-
hand difference derivative (x;,; — x;)/A for representation of x(¢) in the
point ¢ =iA, as a result similarly to (2.2) we obtain the difference

analogue of the Equation (2.1) in the form:

i
Xj] =X — kAQZ e_M(l_])x?, i=0,1,...,
=

or

X1 = X0,
Xiy1 = Xj - k;Afo’ +e Mo — i), =12 ... (2.6)

Following the same approach as above and using (2.4), one can represent

the difference Equation (2.6) in the two-parameters form
Y1 =XYo = 1’
Vil = Vi — byf’ +aly; —yi21), 1=12, ... (2.7

Scheme 3. Divide the interval [0, ¢] into i +1 intervals of length
A >0. In this way ¢t =(+1)A, s =jA, j=0,1,...,5,i+1 x; = x(jA).
Using the left-hand difference derivative (x;,; — x;)/A for representation
of x(¢) in the point ¢ = (i + 1)A, as a result analogously to (2.2), we obtain
the difference equation in the form:

1+1

Xj1 = X5 — kA2Z e MAH=3 20,1, ..,
j=1

j’
or

X1 = Xo — kAQxf’,
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i = —kAD e —x), i=1,2 (2.8)

Using (2.4), in the two-parameters form we obtain
_ _ 3
Yo =1, y =1-byi,
Yiel = Vi — by,-3+1 +aly; — i), =12, ... (2.9)

Remark 2.1. If b =0 then the Equations (2.5), (2.7) and (2.9)

coincide with the equation y;,; = (1 + a)y; — ay;_;, which has a stable

but not an asymptotically stable zero solution [26].
3. Lyapunov Functionals Construction

Describe here in detail the construction of Lyapunov functionals V;
with the condition AVL =V;1 - V; <0 for the Equations (2.5), (2.7) and

(2.9). (Note that the operator A is used here and everywhere below in

difference from the step of discretization A). Via the general method of

Lyapunov functionals construction [26, 27], we have the following four

steps:
3.1. The Equation (2.5)

Step 1. Represent the Equation (2.5) in the form
Yi+l =F1i+AFi, iIO, 1, ...,
where
Fy = y; —aby?, i=
u =Y —aby’, =01, ..,
FO = 0, AFO = ayo,
Fi = ay;_1, AFl = a(yi - yi_l), i = 1, 2,

Step 2. Consider the auxiliary difference equation without delay
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zo =1, 24 =zi—abz§’, 1=0,1, ... 3.1)

The function v(z) = 22 is a Lyapunov function for this equation. In fact,

using (3.1), we get

N

2 2
Av; = v(2j41) - v(z;) = 2741 - 2

1
(z; - abz? Y -z? = (ab)ZZ?(zi2 - %).

Since zy =1 then via the condition ab <2 we have Av; <0 for all

i =0,1, ... providing z; # 0.

Step 3. We will construct the Lyapunov functional V; for the
Equation (2.5) in the form V; = Vj; + Vy;, where

2 2 .
Vio =v(yo) = ¥, Vi =v(y; —F) = (y; —ay; )", i=12 ..,
and the additional functional Vy; will be defined below.
Calculating AVy;,i=1,2,..., via (25) and Lemma 1.2
(y?yi—l < %yf +%yf}_1 ), we obtain
A 2 2
AVY = (¥iv1 —ay;)” = (95 — ayio1)
3 2 2
= (y; —aby; —ay;1)" = (y; —ayi_1)
2
= (abd) yf - 2abyl4 + 2a2by?yi,1

2 3 1
< (ab)2 yi6 - azb(g - 5) yi o+ 3 a2byl4_1. (3.2)

Similarly for i = 0, we have

AVig = 37 - ¥ = (1-ab)® -1
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2
- - (@) 2 -1) < - (@) (& () - 1.

where via (2.4)

C2(e"-1) 20-a) 2
gi(1) = 2 == “ab (3.3)

Step 4. Choosing the additional functional Vjy; in the form

Voo =0, Vi = %a%y;‘_l with AVy; = %azb(y;* b)), i=12 .,
(3.4)
for the functional V; = V;; + Vy; via (3.2), (3.4) and (3.3), we get
AV; < (ab)2y§5 — 2aby} + 2a%by}
== (ab)gylfl(gl(ﬁr)_ y12)7 i = 0’ 17 (35)
From (3.3) it follows also that
lim g;(1) = o, lim g{(1) = o,
70 T—»00
. 2 3.088
11’218 gl(T) - gl(TO) - (2 _ TO)TOY ~ y 5
where 75 ~ 1.594 is the root of the equation
2=(2-1)". (3.6)

Let us suppose that the sequence yiz is bounded and there exists T > 0

such that
y2 < g(r), i=01, ... (3.7)

In this way, AV; < 0 forall i = 0, 1, ... while y; # 0. If the sequence y?
is bounded by g;(tg), where T is the root of the Equation (3.6), then
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(3.7) 1is correct for all T > 0. If yiz is bounded by some M > g;(7(), then
(38.7) is correct for T e (0, 1)U (19, ©), where 7; and 79 are two

positive roots of the equation
2™ - 1) = Myr2. (3.8)
3.2. The Equation (2.7)
The corresponding analysis for the Equation (2.7) proceeds as follows:
Step 1. We choose Fj; = y; — byf’ and F; = ay;_;.

Step 2. This step is the same as for the Equation (2.5) by the

condition b < 2.
Step 3. Via (2.7), one can show that
A _ 2 2 _ 2 _
AVig = (3 —ayg)” - y5 =a” —2a =a(a-2)<0,

AVy; < b%y8 - b(2 —%ljy? + %abyfl,l, i=1,2 ...

Step 4. Put
1 4 .
V20 ZO, V2i :§abyi_1, l 21, 2,
Then for the functional V; = V;; + V,;, we have
AV; < - b2y} (ga(r) - 37,
where via (2.4)

gs(r) = 24 _577) = 2(1;)_“) < % (3.9)
YT

The function go(7) is a strictly decreasing one for T > 0 and

lim g5(1) = ©, lim gy(7) = 0.
70 T—>©
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Thus, if the sequence yi2 is bounded by some M > 0 then the condition
y2 < go(t),i=0,1,..., (and therefore AV; <0) 1is correct for
T € (0, T9), where T( is the positive root of the equation

2(1-e7) = Myr2, (3.10)
3.3. The Equation (2.9)

Finally for the Equation (2.9) we have:

Step 1. Choose

Ry =y; by}, Fy=-byj=-b,

F, = ay; 1 -by>, AF, =a(y; —y;1)-b(y2 . —33), i=12

i ay;1 A i a(yz yz—l) (yi+1 Y; )’ ! 3 Ly vens

Step 2. This step is the same as for the Equation (2.7).

Step 3. Via (2.9), one can show that
A _ D) 2
AVig =(n - F)” = (v - Fo)
=(1-a)-@1+0b)?
=-a(2-a)-b2+0b)<0,
and via Lemma 1.2,
N 2 2
AV = (i — Fin) - (0 - F)

2 2
= (¥i41 —ay; +by?)* = (3 —ay;q +by?)

2 3\2
(yi —ayi1)” = (3 —ayiq +by?)

- 2by} - b%y? + 2abyPy; 4

IA

- Zbyl4 + 2abyf’yi,1

IA

_ by;l(g _370‘] +%abyl4_1, i=1,2 ...
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Step 4. Put
1 4 .
V20 = 0, V2i = §abyi,1, 1 = 1, 2,

Thus, for the functional V; =Vj; +Vy, for all 7>0 we obtain

AV; < - 2b(1 - a)yf < 0.
4. Proofs of Asymptotic Stability

Here we can show how the functional V; constructed above can be

used to give desired conclusion. We give here the analysis for the
Equation (2.5).

From (3.5) and (3.7) it follows

IN

J i
ZAVJ- A A (ab)2z yHg(r) - ¥ <o (4.1)
Jj=0 j=0

Therefore, 0 < V; 1 <V = y% 1. Moreover, Vg ;1 = %azby,4 <V £1L

From here via (2.4)

2 2
xz<ﬁx_o: 2 x0 _ (2 |l
"TND a a2 a k aA”

So, for any € > 0 there exists & = \/%aAaQ such that |x;| <&, i >0, if

|xo| < 8. In other words, we have shown that the zero solution of the

Equation (2.5) is stable.

Besides, from (4.1) and V;,; > 0, it follows that

C v,
]Z(; HENOENE (abo)2 : (4.2)
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The convergence of the series in the left-hand part of (4.2) implies that
lim yf(g1(7) - y7) = 0.
1—>0

It means that either lim y! = 0 or lim yig = g1(7). In any case the limit
1—> 0 11—

of y; by i > o there exists. From (2.5), it follows that lim y; = 0. Via
1—>0

(2.4) the solution of the Equation (2.3) satisfies the condition lim x; = 0.

1—>0

The proof is completed. O
Remark 4.1. A similar argument applies to solutions of the
Equations (2.7) and (2.9).

We summarize our conclusions by the following way. Assume that

k, A, xg are given and we investigate the solutions x; of the Equations
(2.3), (2.6) and (2.8) for a fixed values of A > 0.
Theorem 4.1. If the solution x; of the Equation (2.3) satisfies the

condition x? < g1(To )xg, where T is the root of the Equation (3.6), then
x; > 0 regardless of the step size A > 0. If the solution x; of the
Equation (2.3) satisfies the condition xl2 < Mx% for some M > gy(kg)
then x; —> 0 forall A € (0, TTl)U (TTQ, oo), where T and T9 are the roots
of the Equation (3.8).

If the solution x; of the Equation (2.6) satisfies the condition
x? < Mxg for some M >0 then x; —> 0 for all A € (0, 22), where T,

is the root of the Equation (3.10).

The solution x; of the Equation (2.8) converges to zero for all A > 0.

Remark 4.2 In the statements of Theorem 4.1 we have considered
the behaviour of bounded solutions of the discrete equations. We can
observe that unbounded solutions may arise with particular

combinations of x(, A, A. Our calculations indicate that if g;(t)>1, then

the solution of the Equation (2.5) satisfies the condition
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lyil <1,i =1, 2, .... In Figures 1-3 one can see the behaviour of the solution
of the Equation (2.5) with the different values of the parameters T, y and
function gy(t): Figure 1 (t=0.1,vy =6, gi()=3.51), Figure 2
(tr=0.01,y =15, g;(t) =13.4), Figure 3 (1 = 0.1, y = 20, g;(1) = 1.05).
In Figure 4, it is shown that by 7 = 0.24, y = 25 the solutions of the
Equations (2.5) (number 1 g;(7) = 0.38) and (2.9) (number 3) converge to
zero, but the solution of the Equation (2.7) (number 2, g5(1) = 0.3) goes

to infinity.

100 200 300 400 500 n

Figure 1. The solution of the Equation (2.5) with T =0.1, y =6 and
g1(t) = 3.51.

Figure 2. The solution of the Equation (2.5) with T = 0.01, y =15 and
gl(T) = 13.4.
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+ — I
200 300 400 500 n

1
[
e

Figure 3. The solution of the Equation (2.5) with T = 0.1, y = 20 and
g1(7) = 1.05.

Remark 4.3. Note that the difference schemes considered above can
be constructed and for more general nonlinear integro-differential
equation

i) = -k '[ ; e ME=8)x"(s)ds, K, & > 0, (4.3)

where r is an arbitrary odd number. For instance, the equations of the
type of difference analogues (2.3) and (2.6), respectively for the Equation
(4.3) are

x; = xg — akh®xl, xjq =x; —akAx] +alx; —x;1), i=12, ..,
and

D) }
Yo =1, y =1-yaA®, y;;1 =y —abx! +aly; —y;i-1), =12, ..,

r-1

where y =% yoz and y;, 7, a, b are defined in (2.4). By that the
A

functional

2a2b r+1 .
: =12, ...
r+1 yl—la v s “y )

2
Vi=(y —ay1)" +



36 LEONID SHAIKHET

satisfied the condition AV; < — (ab)?y! ™ (g (t)—y/ ") with g (1)
defined in (3.3).

|
-
S

} T ¥ ¥ ¥ ¥
20 30 a0 50 60 70 n

Figure 4. The solutions of the Equations (2.5) (number 1), (2.7) (number
2) and (2.9) (number 3) with T = 0.24, y = 25, g,(1) = 0.38, g5(1) = 0.3,

5. Difference Analogue with Continuous Time

To construct the difference analogue of the Equation (1.1) with

continuous time rewrite this equation in the equivalent form
b
i(t) = - k I e f(x(t — ))ds. (.1)
0

Let A be a small enough positive number. Using the Equation (1.1) for

t €0, A) and (5.1) for ¢t > A, we can construct a difference analogue in

the form of the following difference equation with continuous time:
x(t) = x(0) - kt’e Mf(x(0)), ¢ <0, ),

x(t + A) = x(t) - kA2F(t), t >0,
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4]
F(t) = Z e M f(x(t - jA)), (5.2)

J=0

—_

where [t] is the integer part of the number ¢. If ¢ [0, A) then
F(¢) = f(x(¢)). For ¢t > A transform F(¢) by the following way:

4
F(@) = [(x(0) + 3 e f(x(e - ja)

=1

—_

~

—_

z] 1
= flx@)+ Y e MUV f(x(t - (j +1)A))

j=0

~

2]

= @)+ e (el - A - ja)

j=0
= flx(e) + e 4 - A). (5.3)
From (5.2), it follows that
Ft) = - x(t + A)Z— x(t) C F(t-A) = - x(t) - x(zt -A)
kA kA

Substituting the obtained F(¢) and F(t — A) into (5.3), we transform the
Equation (5.2) to the form

x(t + A) = x(t) — kA2 f(x(t)) + e M (x(t) — x( — A)), t > A (5.4)

The process x(t) is defined by the Equation (5.4) for ¢ > ¢, = 2A with the
initial condition

x(0) = §(0), 0 e[ty — 24, to] = [0, 24], (5.5)

where
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o x(0) - k0% f(x(0)), 0 [ty — 24, ty - A) = [0, A),
o(6) =
06 — A) — kA2 F(9(6 - A)), 0 e to — A to] = [A, 24].

Note that via (1.2) the order of nonlinearity of the Equation (5.4) is,

generally speaking, more than one.
Definition 5.1. The solution of the Equation (5.4) with the initial
condition (5.5) is called asymptotically quasitrivial if lim;_,,, x(t + jA) = 0

for each ¢ € [tg, to + A).

Definition 5.2. The zero solution of the Equation (5.4) is called
stable if for any & > 0 there exists § = 8(¢) > 0, such that |x(¢)| < ¢, for

all ¢ > to if ¢ = suPgefy, 24, £,]/0(0)] < 3.

Definition 5.3. The zero solution of the Equation (5.4) is called
locally asymptotically quasistable if it is stable and for any ¢ > O there

exists a & = 8(¢) > 0, such that the solution of the Equation (5.4) is

asymptotically quasitrivial for each initial condition (5.5) such that

ol < 3.

Theorem 5.1. For a small enough A > 0 an each bounded solution of
the Equation (5.4) with the initial condition (5.5) is asymptotically

quasitrivial.

Proof. Using the procedure of Lyapunov functionals construction
[26], we will construct a Lyapunov functional for the Equation (5.4) in the
form V(¢) = V1(t) + Va(¢), where

Vi(t) = (x(t) — e ™ x(t — A))?, ¢ = ¢, (5.6)

is the Lyapunov functional for the auxiliary linear difference equation
(the linear part of the Equation (5.4))

x(t + A) = x(t) + e (x(t) - x(t — A)), ¢ > A (5.7)
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Indeed, for the Equation (5.7) we have AV;(¢) = 0. It means that the zero

solution of the Equation (5.7) is stable but not asymptotically quasistable
[26].

Calculating AV;(¢) = V4(¢t + A) — Vi (¢) for the Equation (5.4) via (5.6),

we obtain
AVL(0) = (x(t + A) - ex(2))” - (x(2) — e (e - A))?
= (x(t) = et = A) = EAf(x(0)) - (2(2) - et - A))°
= KA 2 (x(0)) - 2RO fx(e)x(t) + 2kA% M f(x(O)n(t ~ A). (5.8)
Via (1.2) and Lemma 1.2, we have

AV () < K2ATF2(x(2)) - 2K A% F (x(0))x(0)

m
2 %A [ Yi v+l 1 vitly,
+ 2kAZe leal(yi Lx (t)+—yi —xM-0)) 6.9
1=
Put

m
_ 2 _—AA a; vitlo _ A S 1
Vo(t) = 2kA%e 21 P T (t-A), t=t. (5.10)
1=

From (1.4), it follows that »; +1 = 2u;. So, Vy(¢) > 0. Via (5.9), (5.10)
and (1.2), for the functional V(¢) = V;(¢) + Va(t) we obtain

AV(t) < KA 2 (x(t) - 2kA%(1 - e 7 )fy (x(2)

< = Br(WA (@) B2(A) - fo (@), ¢ = to, (5.11)

where

—AA
pr(a) = 2%, y(a) = ) o) - e,
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folx) = flx)x™", x #0. (5.12)

Suppose that there exists Ay > 0, such that the solution of the Equation
(5.4) is uniformly bounded for A € [0, Ag], i.e., |x(t)] < M, t > t,. Since
fo(x) is a non-decreasing for x > 0 function and lim,_,q By(A) = «, then
there exists a small enough A > 0, such that fy(x(¢)) < fo(M) < By(A).
From this and (5.11) it follows:

AV(E) < = (DA (), t =1, (5.13)

where v;(A) = B1(A)B2(A) = fo(M)) > 0. Rewrite (5.13) for ¢ + jA, i.e.,
AV(E + jA) < — ;1 (Afi(x(t + jA)), t2>ty, j=0,1,..,
and summing it from j =0 to j =i — 1, we obtain
-1
V(t +iA) - V() < - yl(A)Z fi(x(t + jA)), &> t. (5.14)
=0

From this it follows
NOY A+ a) < VO <0t 1
=0

Therefore, lim;_,, fi(x(t + jA)) = 0 for each t > t;. Due to (5.12),

0 < o x”27H(¢ + jA) < fi(x(t + jA)), t > tg.
So, limj_,,[x(t + jA)| =0 for each t>tj, ie., the solution of the
Equation (5.4) is asymptotically quasitrivial. The proof is completed. [
Theorem 5.2. The zero solution of the Equation (5.4) is stable.

Proof. We will use here the functional V(¢), that was constructed in

the proof of the previous theorem. Via (5.14), we have

Vi +iA)<V(E), i=0,1,.., t=t.
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Putting ¢ =ty + jA +s with j = @] and s € [0, A), we obtain
Vitg + (G +)A+s) < V() =Vt + jA +5) < V(g + 9). (5.15)
From (5.6) and [|]| = supse[y,-a, ¢,)|9(s)], we have
Vit +s) = (x(tg + s)— e ™4ty + s — A))

< 2|x(ty + s)* + e 2o[*). (5.16)

From the Equation (5.4), (5.5) for t = A +s and ¢y = 2A it follows that

to+s—A=A+selA, ty) and

lx(ty +s) < (1+ e M Jo(A + s)| + kA2|f(¢(A +8))| + e_M|¢(s)|.

Due to (1.2)
m
F@O)] < D ailé(®) < Cole]” 0 < [0, 1],
=1
where
m 1 if o <1,
Cy = o, v =
? Zf : max v if o] > 1.
1=1,....,m
Therefore,

|x(t0 + SM < C3||(I)"l/, C3 =1+ 26_7LA + kA2C2,
and using (5.16), we obtain
Vilto +s) < 2(CE|9]* + e 22 )¢|%). (5.17)

From (5.10), it follows that

m
Vylto +5) = 2kA2e—MZL¢”i”(tO +s—A) < G, (5.18)

v+ 1
=1



42 LEONID SHAIKHET
where
m

Cy = 2kAZe 0N %
1 € ZVi+1

1=1

From (5.15), (5.17) and (5.18) for the functional V(¢) = V;(¢) + Va(¢) it

follows the inequality
V(t) < Vitg +s) < Collol*, t=ty, Co=Cp+2(C3+e2) (5.19)
Via (5.12), (5.14) and (5.19), we obtain

v (A)o ()]

IA

1 (A)f; (x(2))

-1
LAY A+ ) < VE) < Coll™, ¢ > to.
j=0

IA

1
So, for arbitrary & > 0 there exists a & = (Cgly;(A)oye”? ™ )2s > 0, such

that |x(¢)| < ¢ if |¢| < 8. The proof is completed. O

Corollary 5.1. From Theorems 5.1 and 5.2 it follows that for a small
enough A >0 the zero solution of the Equation (5.4) is locally

asymptotically quasistable.
6. Stability Conditions for Stochastic Differential Equations

To begin with, let us consider some simple examples with the
possibility to get stability conditions for stochastic differential equations
using its difference analogues. Some known mathematical models under

stochastic perturbations will be considered in the next sections.

Example 6.1. Consider the scalar Ito stochastic differential equation

of neutral type
x(t) + ax(t) + bx(t — h) + cx(t —h) +ox(t —T)w(t) =0, ¢t>0, (6.1)

and its difference analogue via the Euler-Maruyama scheme [19]



STABILITY OF DIFFERENCE ANALOGUES OF ... 43

201 = (L= Aa)e; —cx;_piq + (¢ — Ab)x;y,
+ ovAx; i, 1=0,1,.... (6.2)

Here w(t) is the standard Wiener process [10, 27]

12

. h T
A>0, t; =iA,  x; = x(t;), k:X’ m =,

w(t; ) — w(t; 2 .
é;i-%—l = %, E(il = O, E&L = 1, 1 = 0, 1, ey (63)
and it 1s supposed that & and m are integers.

Remark 6.1. It is known [10, 27] that the Wiener process is not
differentiable. Therefore, the Equation (6.1) and all stochastic differential

equations below are understanding in the form of differentials.

In [26], two following sufficient conditions for asymptotic mean
square stability of the zero solution of the difference Equation (6.2) are

obtained:
(1 - Ala +b)* + 2Aa + b|(|b(h — A) + |c — Ab|) + Ac? < 1,
and
Aa+b)* +2a +b|(pl(h - A) +|c - Ab]) + 6% < 2@ +b).  (6.4)

Let A — 0. Then from (6.4), the known [27] sufficient condition for
asymptotic mean square stability of the zero solution of the differential

Equation (6.1) follows:

@+b)(1-plh-ld)>Lc?, [Bh+]d<1. 6.5)
2

Example 6.2. Consider the scalar stochastic integro-differential

equation
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t
#(t) = ax(t) + b j x(s)ds + ox(t — Thi0), (6.6)
t_

where w(t) is the standard Wiener process. Using (6.3), the Euler-
Maruyama scheme and ©-method (0 €[0,1]) for a difference

representation of the integral, consider a difference analogue of (6.6) in

the form
k-1
Xig1 = [1 + Aa + Azb(l — e)]xl + Azb[z xXi_j+ exi_k] + c«/Xxi_miiH.
=)

(6.7)
Via [26], we obtain two sufficient conditions for asymptotic mean square
stability of the zero solution of the difference Equation (6.7)
(1+ Ala + bh))® + Ahp||a + bR|(A(20 —1) + h) + Ac? < 1,
and
A(a + bh)? + hlb||a + bR| (A(20 — 1) + h) + 6% < 2a + bA|. (6.8)

Let A —» 0. Then from the Equation (6.8) the known [27] sufficient
condition for asymptotic mean square stability of the zero solution of the
differential Equation (6.6) follows:

la + bh|(1 —%|b|h2j > 0% a+bh<0. 6.9)

Remark 6.2. One can see that if the condition (6.5) (or (6.9)) holds, then
the inequality (6.4) (or (6.8)) at the same time 1s a sufficient condition on
the step of discretization A by which the difference analogue (6.2) (or
(6.7)) saves the stability property of the solution of the initial differential
equation (6.1) (or (6.6)).
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7. Difference Analogue of the Mathematical Model of the

Controlled Inverted Pendulum

7.1. Mathematical model of the controlled inverted pendulum

The problem of stabilizing the controlled inverted pendulum has been
very popular among researchers for many years (see [1, 2, 4-6, 12, 13, 15,
16, 20, 21, 23, 24, 26, 27, 29] and references therein). The linearized
mathematical model of the controlled inverted pendulum can be

described by the second-order linear differential equation
i(t)-ax(t) = u(t), a>0, t=>0. (7.1)

The classical way of stabilization [13] uses the control u(t) = — byx(¢)
— box(t), by > a, by > 0. But this type of control, which represents
instantaneous feedback, is quite difficult to realize because usually it is
necessary to have some finite time to make measurements of the
coordinates and velocities, to treat the results of the measurements and
to implement them in the control action.

Another way is supposed that the control u(¢) does not depend on the

velocity but it depends on the previous values of the trajectory
x(s), s < t, and has the form [27]

u(t) = j : AR (T)x(t - 7). (7.2)

The kernel K(t) in (7.2) is a function of bounded variation on [0, o] and

the integral is understood in the Stieltjes sense. It means in particular
that both distributed and discrete delays can be used depending on the

concrete choice of the kernel K(7).
The initial condition for the system of (7.1), (7.2) has the form

x(s) = o(s), x(s) =¢(s), s<0, (7.3)
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where ¢(s) is a given continuously differentiable function.

It is supposed also that the Equation (7.1) is under the influence of

stochastic perturbations of the type of white noise in the form
¥(t) - (a + ow(t))x() = ult), (7.4)
where w(t) is the standard Wiener process and ¢ is a constant.

Put x1(¢) = x(2), x9(¢) = x(t). Then (7.2)-(7.4) can be represented in

the form of the system of Ito's stochastic differential equations [10]

%1 (t) = x5(t),
fo(t) = ax () + I: AR (T)ey (¢ = 7) + o1 (L0, (7.5)

with the initial condition x1(s) = ¢(s), x9(s) = ¢(s), s < 0.

Put

ki :I HdK(7), i=0,1,
0

ky = j 2dK(7), @ = - (a+ ko). (7.6)
0
The following theorem gives a sufficient stability condition for the system
(7.5).
Theorem 7.1 ([27]). Let

a; > 0, kl > 0, (77)

o2 < 2a1(k1 - kg,/mafl@)j. (7.8)

Then the zero solution of the system (7.5) is asymptotically mean square

stable.
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Note that the inequalities (7.7) are the necessary conditions for
asymptotic mean square stability of the zero solution of the system (7.5)

but the inequality (7.8) is a sufficient one only. Besides, for the condition
(7.8) ky has to satisfy the inequality ky < Vk? + 4k —k < 2, where
k= kla; [27].
Below, the mathematical model of the controlled inverted pendulum
(7.1)-(7.3) 1s considered in the following simple form:
¥(t) - (a + cw(t))x(t) = byx(t — hy) + box(t — hy), t > 0. (7.9)
Here a > 0, b, bg, iy >0 and hyg > 0 are given arbitrary numbers.

From (7.6), it follows that for (7.9)
ko = by +bg, ki =bihy +bghy,
ko = u|h + |bo|hE, @y = — (@ + by +by). (7.10)

The main conclusion of our investigation here can be formulated in the
following way: if the conditions (7.7), (7.8) and (7.10) hold, then the zero
solution of the Equation (7.9) is asymptotically mean square stable.
Additionally, there exists a sufficiently small step of discretization of this
equation that the zero solution of the corresponding difference analogue
1s asymptotically mean square stable too. Below a difference analogue is

constructed and an estimation of the step of discretization is obtained.
7.2. Construction of a difference analogue

Transform the differential Equation (7.9) into the system of two

equations
2
x(t) = y(t), () = ax(t) + Z bix(t — hy) + ox(t)w(t), (7.11)
=1

To construct a difference analogue of the system (7.11), put
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. h h
A > 0, tl = lA, xX; = x(tl)’ my; = Xl’ mg = TZ’
£ = wltiy) —wlt) Eg; =0, E&? =1, i=0,1,.. (7.12)

A

(it is supposed here that m; and mg are integers). Via the Euler-

Maruyama scheme [19], a difference analogue of the system (7.11) is

Xiv1 = % + Ay,

2
Yiv1 = ¥ + A(axi + Z blximlJ + oVAxE. (7.13)
=1
From the first equation of the system (7.13), we have

my
X; = xi_ml + AZ Yi—j» l = 1, 2. (7.14)
j=1

From this and (7.10) it follows that

2 2 my
Zblxi*ml = koxi - AZ bl E )/i,j. (715)
I=1 =1 j=1

Substituting (7.15) into the second equation of the system (7.13) and

using (7.10), we obtain

2 mj
Yit1 = ¥i — Aayx; — AZZ bzz Yioj + VAKX . (7.16)
=1 j=1
Put
2 my
Fi = 22[)[2(7711 +1—j)yi,j. (717)
=1 j=1

Calculating AFi = F; 1 — F; and using (7.17), (7.10) and (7.12), we have
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2 my m;
AF; = 82 b | ) my +1= )y = D my +1= )y
=1 j=1 j=1
2 my 2 my
2 2
=A Zbl mm—zyi_,‘ = Akyy; — A szz Yi-j
=1 i1 =1 g1

From this and (7.16), it follows that
Yis1 = — Aayx; + (1 - kyA)y; + AF; + ovAx;E;.

So, the system (7.13) can be presented in the matrix form

2(i +1) = Az(i) + AF(i) + Bz(i)&;,1, (7.18)
where
X; 0 1 A 0 0
NN P F
¥i F, —a A 1-kA ovA 0
(7.19)

7.3. Stability conditions for the auxiliary equation

Following the general method of Lyapunov functionals construction

[26, 27], first consider the auxiliary equation without memory
2(i +1) = Az(i) + Bz(i)&;,1, (7.20)

and the function v; = 2'(1)Dz(i), where the matrix D is a positive definite

solution of the matrix equation

1 0
ADA-D=-20C, C:( }, c >0, (7.21)
0 c

with the elements [26]

alA +kl + 2-]€1A +a1A2

di1 =
1 2a,A 2

a;dyg,
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1 a A 2 — kA + ay A2 + 2ayc
d12 = ﬂ + %d22, d22 = 1 1 1 o (722)
a alA(k’l — alA) (4 — 2]€1A + alA )
Calculating EAUZ' via (7.12) and (7.19)-(7.21), we have
EAv; = E[2'(i + 1)Dz(i + 1) - v;]
= B[(A2() + Be(i)ei. ) D(AZG) + Beli)eion) - vi]
= E[-2'(:)Cz(i) + 2'(:)B'DBz(i)]
= — (1 = dg9o’A)Ex? — cEy?. (7.23)
So, if for some ¢ > 0, the inequality
9 1
< g (7.24)

holds then the zero solution of the Equation (7.20) is asymptotically mean
square stable [26].

Note that the Equation (7.20) can also be written in the scalar form
Xirg = ApXiy1 + A1X; + 00x;E;41, (7.25)

with
AO =2- Akl, A]_ =S Akl - Azal - 1, Op = O A3 (726)

It is known [26] that the necessary and sufficient conditions for
asymptotic mean square stability of the zero solution of the Equation
(7.25) are

|A1| <1, |A0| <1- Al’ (727)

o2 < 1+ A - 4)* - AF]
0 1-4 '

(7.28)

Substituting (7.26) into (7.27), we obtain the system of the inequalities
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@A <k, aA? —2kA+4 >0,
with the solution

aflkl, k12 < 4(11,
0<Ac< (7.29)

a{l(kl —'\}k12 —401 )’ k12 > 4(11.
Substituting (7.26) into (7.28), we obtain the condition

62 < al(kl - alA) (4 — 2]€1A + alAZ)

(7.30)
2 - klA + a1A2

So, by the conditions (7.29) and (7.30) the zero solution of the Equation
(7.25), (7.26) is asymptotically mean square stable.

From (7.22) and (7.24), it follows that if the condition (7.30) holds
then there exists a small enough ¢ > 0 such that the condition (7.24)
holds too. Thus, the function v; = 2'(i)Dz(i), where the matrix D is a

positive definite solution of the matrix equation (7.21), is a Lyapunov

function for the auxiliary Equation (7.20).
7.4. Stability conditions for the difference analogue

Let us obtain now a sufficient condition for asymptotic mean square
stability of the zero solution of the Equation (7.18). Rewrite this equation

in the form
z2(+1)-F@+1)= Az(i))- F(i) + Bz(i)g; 1. (7.31)

Following the procedure of Lyapunov functionals construction [26], we

will construct a Lyapunov functional V; for the Equation (7.31) in the

form V; = V; +Vy;, where

Vi; = (2(i) - F(i)) D(z() - F (@) (7.32)



52 LEONID SHAIKHET

and the matrix D is a positive definite solution of the matrix equation

(7.21) with the elements (7.22). The additional functional Vy; will be

chosen below.

Calculating E&Vli via (7.12), (7.21), (7.31) and (7.32), similarly to
(7.23), we obtain

EAVy; = E[(2(i +1) - F(i +1)) D(2(i +1) - F(i + 1)) - V3;]
= E[(42() - F(i) + Bz(i)5; 1) D(A2(i) - F(i) + Bz(i)g;41) - Vi; ]
= — (1 - dg9c?A)Ex? — cEy? — 2EF'()D(A — I)z(i). (7.33)

Note that via (7.19)

2F({)D(A — I)2(i)

dl 1 d12 0 1 xX;
~ 220 F})
dig dog )\ - -k )\

= 2AF;[- aydogx; + (dig — krdas)y; . (7.34)
Put
o 2 — kA + gy A% + 2a4c C p- A+ c(2k; — a;A) ‘
(k; — ayA) (4 = 2k A + a1 A%) (k; — ayA) (4 = 2k A + a1 A%)
(7.35)
Then via (7.22), (7.35), we have
doy = #“A, (7.36)

and

1
Aldyg — kydgg) = 2a; 1 - a2k — a;A))
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_L 1_(Zkl—alA)(Z—k1A+a1A2+2alc) ——B
2a1 (kl - alA)(4 - 2]€1A + alAz) .

(7.37)
So, via (7.33)-(7.37)
EAVy; = — (1 - aglac?)Ex? — cEy? — 20Ex; F; — 2BEy; F..

Put now

DO | =

2 2 my
q= ;Ibzlhz(hz +A), S; = A2;|b,|z; (my +1-j)ytj.  (1.39)
- = e

Using (7.17), (7.12) and A > 0, we have

2

my
. 1
2x; F; < A22|bl|z (m; +1 - ])(Mci2 + I%‘Z—j)

=1 j=1

= hgx} +%,

and analogously
2y;F; < qyf +S;.
As a result we obtain
EAVy; < - [1-a(Ag + a; "6 )[Ex} — (c - Bg)Ey} + pES;,
where

p = % +B. (7.39)

To neutralize the positive component in the estimation of EAVH choose

the additional functional Vj; in the form
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1 oo,
2 , 2
Voi = 5 pA ZV’HZ (my +1=j)(my +2 = )yij.
=1 j=1
Then via (7.38)

2 my
A 1 2 . N
AVy, = §pA ;M}Z; (mp +1=j)(m; +2 - j)yiva—j — Vai

2 my
1 . .
=35 pA* > (B> (my = )y +1 = j)yEj = Vai
= 0

2
= pqy; - pS;,

and for the functional V; = Vj; + Vy;, we have
A -1 _2 2 2
EAV; < - [1 - a(rg + a; o”)[Ex] —[c - q(B + p)Ey;.

Using (7.39), we obtain the stability conditions in the form
o2 o
of \g +— | <1, q(2[3 + —j <ec (7.40)
a A

For A > 0 from (7.40) it follows that

_ 2
B s B (7.41)
c - 2Bq oqaq
Thus, if
oqg a; — ac?

(7.42)

c—2Bq aqay

then there exists A > 0 such that the conditions (7.41) and therefore the
conditions (7.40) hold.

Let us rewrite (7.42) in the form
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—= 4+ — < 1. (7.43)
To stress the dependence of the left-hand part of (7.43) on ¢ put
AO = (kl - alA) (4 - 2]{71A + a1A2 ),

A =2 kA + a;A?, Ay = 2k — qqA. (7.44)

Then via (7.35)

_A1+2010 B_A+A20
- Ap ’ Ay
and (7.43) takes the form
(4 +2a;0)%q 2
—_— A4
Qc —2gA + 207 < B, (7.45)
where
A 9
BZAo—a—l(Y , Q:Ao—qu2. (746)
Transform (7.45) into the form
Bgc? — Byc + By < 0 (7.47)
with
By = 4(112(12 +2Q02,
B, = BQ + 4gc®A — 44a,9%, By = AZq® + 2¢BA. (7.48)

Minimization of the left-hand part of (7.47) with respect to ¢ gives
B > 4ByB,. (7.49)
Via (7.48), the inequality (7.49) can be represented as

ot —2Pc? + P, >0, (7.50)
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where
P = Ra p_p2_w R—& (7.51)
From (7.50) and (7.51) by virtue of (7.45) and (7.46), it follows that
o < al(R — 2 2‘2)R ] (7.52)

Note that in the condition (7.52) a; is defined in (7.10), ¢, @ and R are
defined in (7.38), (7.46) and (7.51) and depend on A. Thus, the following
theorem is proven.

Theorem 7.2 Let the parameters a, bj, by, c and A of the system
(7.13) satisfy the conditions (7.7), (7.8) and (7.52). Then the zero solution
of the system (7.13) is asymptotically mean square stable.

Lemma 7.1. If for some values of the parameters a, b;, by and c the
conditions (7.7) and (7.8) hold, then there exists a small enough A > 0
such that the condition (7.52) holds too.

Proof. Note that for A =0 via (7.38), (7.10) 2q = ko, via (7.44)
AO = 4k1, A1 = 2, A2 = 2]{/’1 SO, via (746) and (751), Q = 2k1(2 - kz)
and R = 2k;. Substituting all these results into (7.52), we obtain that for

A = 0 the condition (7.52) coincides with (7.8). Since the right-hand part
of (7.52) is continuous with respect to A in the point A =0, if the
condition (7.52) holds for A = 0 then it holds for some small enough
A > 0 too. The proof is completed. ]

Corollary 7.1. If the parameters a, b;, by and o of the system (7.13)

satisfy the conditions (7.7) and (7.8), then there exists a small enough
A > 0 (satisfying the condition (7.52)) such that the zero solution of the

system (7.13) is asymptotically mean square stable.
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7.5. Nonlinear model of the controlled inverted pendulum

Consider the problem of stabilization for the nonlinear model of the

controlled inverted pendulum

¥(t) - (a + cw(t))sin x(¢) = byx(t — hy) + box(t — hy), t >0, (7.53)
with the initial condition (7.3). Similarly to (7.13) the difference analogue
of the Equation (7.53) is

Xi1 =X + Ay,

2
Yis1 = ¥i + A ax; +af(x;) + Zblxi—ml + oVA(x; + f(x;)Ei41, (7.54)
=)

where f(x) = sin x — x. The system (7.13) is the linear part of the system
(7.54) and the order of nonlinearity of the system (7.54) equals 3, since

If(x) < %|x|3. Via [26] we obtain the following statement:

Corollary 7.2. If the parameters a, by, by, c and A of the system

(7.54) satisfy the conditions (7.7), (7.8) and (7.52), then the zero solution of
the system (7.54) is stable in probability.

8. Nicholson’s Blowflies Equation

Consider the nonlinear integro-differential equation with exponential

nonlinearity and distributed delay
() = I x(t = s)e 9K (s) - ex(t), 8.1)
0

where the delay term is given by the Stieltjes integral.

Putting in (8.1) dK(s) = ad(s — h)ds, where §(s) is Dirac’s function,
we obtain well known Nicholson’s blowflies differential equation, which 1s

one of the most important mathematical models in ecology [22]

£(t) = ax(t — h)e M) _ ex(e). (8.2)
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It describes the population dynamics of Nicholson’s blowflies. Here x(t) is
the size of the population at time ¢, @ is the maximum per capita daily
egg production rate, 1/b is the size at which the population reproduces

at the maximum rate, ¢ is the per capita daily adult death rate and A is

the generation time.

The Equation (8.2) along with its difference analogues are very
popular in research (see, for instance, [3, 7, 9, 11, 14, 17, 18, 22, 26, 27,
30, 36] and a long list of references therein). Below, we consider stability
in probability of the positive equilibrium of the Equation (8.2) by
stochastic perturbations and also of one discrete analogue of this
equation. The capability of a discrete analogue to preserve stability
properties of the original differential equation is studied. All theoretical
results are verified by some numerical simulation. Besides it is shown
that numerical simulation of the solution of difference analogue allows
one to define more exactly a bound of stability region obtained by the

sufficient stability condition.

The following method for investigation of the stability is used. The
considered nonlinear equation (8.2) is exposed to stochastic perturbations
and is linearized in the neighbourhood of the positive equilibrium. The
conditions for asymptotic mean square stability of the zero solution of the
corresponding linear equation are obtained. Since the order of
nonlinearity is higher than one these conditions are sufficient ones (both
for continuous and discrete time [26, 27]) for stability in probability of the
initial nonlinear equation by stochastic perturbations. This method was
used already for investigation of the stability of different nonlinear
biological systems with delays: SIR epidemic model, predator-prey model
and many others [26, 27].

Note that a generalization of the obtained below results for the

Equation (8.1) is an open problem.
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8.1. Stability condition for the positive equilibrium

In (8.2), it is supposed that the parameters a, b and ¢ are positive.
By the conditions ¢ > a > 0, b > 0, (8.2) has the zero equilibrium only,

i.e., x* = 0. By the conditions

a>c>0 b>0, (8.3)
the Equation (8.2) has two equilibria: the zero one and a positive one

*

a
x* = —-ln—

1
pn_- (8.4)

It is known [27] that the zero equilibrium in the region (8.3) is unstable.
The stability condition in the region (8.3) for the positive equilibrium

(8.4) by stochastic perturbations is considered below.

It is supposed that the Equation (8.2) is exposed to stochastic
perturbations, which are of the type of white noise, are directly

proportional to the deviation of the system state x(¢t) from the

equilibrium x* and influence x(t) immediately. So, the Equation (8.2) is

transformed into Ito's stochastic differential equation
£(t) = ax(t — h)e ) _ex(p) + G(x(t) - x*>u(t) (8.5)

Let us center the Equation (8.5) on the positive equilibrium x* using the

new variable y(¢) = x(¢) — x*. In this way via (8.4), we obtain
$(t) = - ey(t) + eyt — h)e PR %m % (721 _1) 4 oy(t)i(t).

(8.6)

It is clear that stability of the equilibrium x* of the Equation (8.5) is
equivalent to stability of the zero solution of the Equation (8.6).
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Along with (8.6) we will consider the linear part of this equation.

Using the representation e” =1+ y+o(y) (where o(y) means that

o(y)

lim,_, == 0) and neglecting by o(y), we obtain the linear part

(process z(t)) of (8.6) in the form
3t) = — c2(t) - (m% - 1) 2t - h) + o2(thi(t). 8.7

As shown in [27] if the order of nonlinearity of the equation under
consideration is more than one then a sufficient condition for asymptotic
mean square stability of the linear part of the initial nonlinear equation
is also a sufficient condition for stability in probability of the initial
nonlinear equation. So, we will investigate sufficient conditions for
asymptotic mean square stability of the linear part (8.7) of the nonlinear

stochastic differential Equation (8.6).

Lemma 8.1 ([26, 27]). The necessary and sufficient condition for
asymptotic mean square stability of the zero solution of the Equation (8.7)

is

pG <1, (8.8)
where
1+<(In2 -1)sin(gh)
d ¢ , a>ce’, g=cyIn%(In2-2),
o1+ (ln% —1)cosh(qh)] ¢«
1 9~ 1+ch )
p—2o,G— 50 a=ce”,
1+<(In< -1)sinh(gh)
- , c<a<ce?, g=c¢/ln%(2-1n2).
c[1+(In < ~1)cosh(qh)] ¢ ¢

(8.9
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In particular, if p > 0, h = 0, then the stability condition (8.8), (8.9) takes
the form cln% >p; if p=0,h >0, then the region of stability is
bounded by the lines ¢ =0,c=a and 1+(In<-1)cos(gh)=0 for

a >(,‘82.

The condition (8.8), (8.9) gives us a region (in the space of the

parameters (a, c)) for asymptotic mean square stability of the zero
solution of the Equation (8.7) (and at the same time regions for stability

in probability of the positive equilibrium x* of the Equation (8.5)). In
Figures 5-8 the region of stability given by the condition (8.8), (8.9) is

shown 1n lilac colour.

Remark 8.1. Note that the stability condition (8.8), (8.9) has the
following property: if the point (a, ¢) belongs to the stability region with

some p and A, then for arbitrary positive a the point (ag, ¢g) = (aa, ac)

belongs to the stability region with py = ap and hy = o th.
8.2. Stability of difference analogue

Consider a difference analogue of the nonlinear Equation (8.6) using

the Euler-Maruyama scheme [19]
—by; c., a —by;_ .
Yis = (L= cA)y; +cAy;_y e Wik 4 Eln;A(e Dick —1)+ oVAyEi .
(8.10)

Here % is an integer, A = % is the step of discretization,

. 1 .
tp =iA, vy = (), & = ﬁ(w(tiﬂ)— w(t;)), i=0,1,...
In compliance with (8.7) the linear part of (8.10) is

ziy1 = (1 -cA)z; + cA(l —-In %)zi,k + oVAZE; . (8.11)
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Consider two following sufficient conditions for asymptotic mean square
stability of the zero solution of the Equation (8.11) [26]

2
L2, 1—1n1|1—cA|+ch[1+ 1-n< j<1 (8.12)
c c 2 c
and
£+ch1n2g<(1—ch1—1ngjlng. (8.13)
c 2 c c c

The regions for asymptotic mean square stability of the zero solution of
the Equation (8.11) (and at the same time regions for stability in
probability of the zero solution of the Equation (8.10)), obtained by the
conditions (8.12) and (8.13), are shown in the space of the parameters
(a,c) for p=12,h=0.024 and A =0.004 (Figure 5), A = 0.008
(Figure 6), A = 0.012 (Figure 7). The main part (with number 1) of the
stability region is obtained via the condition (8.12), the additional part

(with number 2) is obtained via the condition (8.13).

Let us show how the sufficient stability conditions (8.12) and (8.13)
are close to the necessary and sufficient stability condition. Consider the
case p =12, h =0.024, A =0.012 k = % = 2. Appropriate necessary

and sufficient stability condition for the Equation (8.11) is obtained in
[26] in the form

2 1-cAP(1-1n2)(1-cAlng
£+ch1+(1—1n2) +( A 2l c)<1. (8.14)
¢ c ¢ 1-cA(1-In4)(1-cAln<)




STABILITY OF DIFFERENCE ANALOGUES OF ... 63

n

R . SETE

400

300

200

-

T

100

Figure 5. Region of sufficient stability condition for the Equation (8.11):
p =12, h = 0.024 and A = 0.004.

Figure 6. Region of sufficient stability condition for the Equation (8.11):
p =12, h = 0.024 and A = 0.008.
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Figure 7. Region of sufficient stability condition for the Equation (8.11):
p =12, h =0.024 and A = 0.012.

Figure 8. Region of sufficient stability condition and necessary and
sufficient stability condition for the Equation (8.11): p =12, h = 0.024

and A = 0.012.
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In Figure 8, the stability region, obtained via the sufficient stability
conditions (8.12) and (8.13) (number 1), is shown inside the stability
region, obtained via the necessary and sufficient stability condition (8.14)
(number 2).

Remark 8.2. The conditions (8.12) and (8.13) can be represented in
the explicit form, respectively;

V1-6%A — |1 - cA|

1-Gy

1+G0
>a > Gy = 8.15
ce a>ce , 0 A ( )
and
G ceGl, ¢ > cg,
ce >a>
Gy
ce 4, ¢ < ¢,
S ) Cch 141 ch) + (2h - A)o?
0~ A T c(2h - A) ’

L ch 41—+ ch) - (2h + A)c?
a c(2h + A) ’

ch+1+ x/(l +ch)? - (2h + A)c>

Gs = C@h+ D)

(8.16)

Remark 8.3. The conditions (8.12), (8.13) and (8.14) for arbitrary
values of the parameters of the Equation (8.5) allow us to choose the
admissible step of discretization A by numerical simulation of the stable
solution of this equation. For example, in Figure 5, we can see that for
simulation of the solution of the Equation (8.5) with a = 900, ¢ = 200,

we can use A = 0.004. But taking into account Figures 6 and 7 we
cannot be sure that it is possible to use A = 0.008 or A = 0.012.

Remark 8.4. Note that the stability conditions (8.12) and (8.13) have
the following property: if the point (a, ¢) belongs to the stability region
with some p, h and A, then for arbitrary positive o the point
(ag, ¢g) = (aa, ac) belongs to the stability region with py = ap,

hO = (l_lh and AO = (X,_lA.
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Remark 8.5. In [14, 30], the discrete analogue of the Equation (8.2)

was considered in the form (in our notations)

% = (1—cA)x; + aAx;_ e O%ik,

By the assumption cA <1, the sufficient condition for asymptotic

stability of the positive equilibrium (8.4) was obtained in [14]:
[(1 - ca)y ¥+ _ 1](% - 1] <1, (8.17)
and improved in [30]:

[ - ca)y D) - l]ln% <1. (8.18)

Note that in the conditions (8.15) and (8.16) the assumption cA <1 does
not have to be made. Let us show that even with the assumption cA <1

the conditions (8.15) and (8.16) (in deterministic case, 1.e., by o2 = 0) are
better than (8.18).

i
2001
150+

1001
.

50+

1 5

B S == v = v i

1
'
1
'
|
1
'
1
'
1
'
1
'
1
'
1
I
'
1
1
'
1
'
1
1
'
1
'
1
'
1
'
1
'
1
'
v
1
'
1
'
1
1
'
1
|
o, 200 400 600 800 1000 a

|

Figure 9. Region of sufficient stability condition and necessary and
sufficient stability condition for the Equation (8.11): p = 0, h = 0.024

and A = 0.012.
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In fact, if 62 =0 and cA < 1, then the condition (8.15) takes the

form a < ce?. Representing (8.18) as
a < celi=ea DTt (8.19)

one can see that (8.15) is better than (8.19) if ((1 - CA)_(k+1) - 1)_1 <2 or

1

cA > 1~ (2.

Let us show that the condition (8.16) is better than (8.18) for

cA € (0, 1). In fact, if o2 = 0, then condition (8.16) takes the form

ch+1
a < c echt054) (8.20)

Via (8.19) and (8.20) it is enough to show that

1 «_Ch+1
(1—ca)y ) 1 = c(h+0.54)

or the function

1 _,_c(h+0.54)
(1 - AL ch+1

fle) =

is nonnegative for cA € [0, 1). This is in fact so, since f(0) = 0 and via

kA =h

h+A h + 0.5A
f'(c) = - >0
1 -cA)™?  (ch+1)

In Figure 9, one can see the stability regions for A = 0.024 and
A = 0.012 given by the condition (8.17) (number 1), given by the
condition (8.18) (numbers 1 and 2), given by the conditions (8.12), (8.13)
(numbers 1, 2 and 3) and given by the condition (8.14) (numbers 1, 2, 3
and 4).
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8.3. Numerical analysis in the deterministic case

Consider the Equation (8.5) at first in the deterministic case (p = 0)
with delay h = 0.024. We will simulate solutions of this equation via its
discrete analogue (8.11) with A = 0.012. The corresponding stability
region is shown in Figure 10. Note that for p = 0 the stability region
slightly differs from the similar region for p = 12 (Figure 8). The initial
function is z(s) = ag cos(s), s € [-h, 0], where a( has different values in

different points.

———————————————————————————————————————————————————————————————————————————————

Figure 10. Region of sufficient stability condition and necessary and
sufficient stability condition for the Equation (8.11): p = 0, h = 0.024

and A = 0.012.
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Figure 11. Stable zero solution of the Equation (8.11) in the point
A(520, 100), ag = 5.

In Figure 10, one can see the points A(520, 100), B(529.45, 100),
C(540, 100), D(544.5, 46), E(544.5, 40), F(544.5, 34), K(279.9, 150), L(87.5,
85), and M(40, 40). The points A and F belong to the stability region, the
points C and D do not belong to the stability region the points B, E, K, L
and M are placed on the bound of the stability region. The trajectories of
solutions of the Equation (8.11) at points A(520, 100), B(529.45, 100),
C(540, 100), are shown in Figures 11, 12 and 13, respectively. One can
see that on the bound of stability region (the point B) the solution is
bounded, to move a bit outside of the stability region (the point C) gives
an unstable solution and to move a bit inside of the stability region (the
point A) gives the stable zero solution. A similar picture one can obtain in
the points D(544.5, 46) (unstable solution), E(544.5, 40) (bounded
solution), F(544.5, 34) (stable zero solution).

The points K, L and M are placed on the bound of the stability region,
similarly to the points B and E the solutions of the Equation (8.11) in

these points are bounded functions.



70 LEONID SHAIKHET

For instance, in the Figures 14, 15 and 16 the solutions of the
Equation (8.11) are shown respectively in the point L(87.5, 85) (bounded
solution) and close to this point the points L;(88, 85) (the stable zero

solution) and Ly(87, 85) (unstable solution). Note also that in the case
b >0, a = c > 0 the initial Equation (8.2) has only the zero equilibrium
and the solution of the Equation (8.11) is a constant: see Figure 17 for the
point M.

This fact can be used to construct the exact bound of the stability
region in the case when we have a sufficient stability condition only. For
example, in the case p = 0, A = 0.024, A = 0.008, the points P(50, 50),
Q(288.65, 170), R(680, 250.079), T(923.63, 125), (Figure 18) belong to the
bound of the exact stability region. In all these points the solution of the
Equation (8.11) is bounded. In particular, in the point P similarly to the

point M the solution is a constant.

Figure 12. Bounded solution of the Equation (8.11) in the point
B(529.45, 100), aq = 5.
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Figure 13. Unstable solution of the Equation (8.11) in the point
C(540, 100), ag = 0.1.
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Figure 14. Bounded solution of the Equation (8.11) in the point
L(87.5, 85), ag = 5.
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Figure 15. Stable zero solution of the Equation (8.11) in the point
L,(88, 85), ag = 5.

Iy

= w
e e e e T

o

I
= =)

|
[

] |
a o
B e i S . et

|
1}

Figure 16. Unstable solution of the Equation (8.11) in the point
L2(87,85),a0 = 3.
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Figure 17. Stable solution of the Equation (8.11) in the point
M(40, 40), ag = 3.
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Figure 18. Region of sufficient stability condition for the Equation (8.11):
p=0,h=0.024, A = 0.008.
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the Equation (8.11) in the point

20. The solution of the Equation (8.10) in the point A(520, 100)

(Figure 10) for ag = 0.437 (left) and for ay = 0.438 (right).
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Figure 21. Unstable solution of the Equation (8.10) in the point C(540,
100) (Figure 10) for ay = 0.001.
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Figure 22. Regions of sufficient stability condition and necessary and
sufficient stability condition for the Equation (8.11): p =12, h = 0.024

and A = 0.012.
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Via numerical simulations it was found that in the points S(810,
170), U(652.6, 50), V(1000, 24.16) (Figure 18) the solutions are bounded
too (see, for instance, the point V, Figure 19), so, these points also belong
to the bound of the exact stability region. If desired, one can get a lot of

such points.

Consider now the behaviour of a solution of the nonlinear differential
Equation (8.6) in the case p = 0. We will simulate solutions of this
equation via its discrete analogue (8.10) with A = 0.012. If in the point
(a, ¢) the zero solution of the Equation (8.11) is asymptotically stable (it
means that for arbitrary initial function the solution of the Equation
(8.11) goes to zero) then the zero solution of the Equation (8.10) is stable
in the first approximation (it means that for each small enough initial
function the solution of the Equation (8.10) goes to zero). On the other
hand if the zero solution of the Equation (8.11) is not asymptotically
stable, then for arbitrary indefinitely small initial function the solution of

the Equation (8.10) does not go to zero.

These facts are illustrated by the following examples. In the point
A(520, 100), the zero solution of the Equation (8.11) is asymptotically
stable (Figure 11, ag = 5), so in this point the solution of the Equation

(8.10) (b = 4) goes to zero for small enough initial function (Figure 20,
ag = 0.437, left) and quickly enough goes to infinity for a little larger
initial function (Figure 20, ay = 0.438, right). In the point C(540, 100),

the zero solution of the Equation (8.11) is not asymptotically stable
(Figure 13, ag = 0.1) and the solution of the Equation (8.10) (b = 1) goes

to infinity for an indefinitely small initial function (Figure 21,

ap = 0.001).
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Figure 24. Unstable solution of the Equation (8.11) in the point W(120,
100), ag = 0.1.
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8.4. Numerical analysis in the stochastic case

Consider finally the behaviour of the solution of the Equation (8.7) in
the stochastic case with p = 12, delay A = 0.024 and the initial function

z(s) = ag cos(s), s € [-h, 0]. A solution of this equation is simulated here

via its discrete analogue (8.11) with A = 0.012. The corresponding
stability region is shown in Figure 22, which is the increasing copy of
Figure 8 with the additional points X(160, 100), Y(465, 100), which
belong to the stability region of the Equation (8.11), and the points
W(120, 100), Z(510, 100), which do not belong to the stability region of
the Equation (8.11).

For numerical simulation of the solution of the Equation (8.11), one
uses some special algorithm of numerical simulation of the Wiener
process trajectories [27]. Fifty trajectories of the Wiener process obtained
via this algorithm are shown in Figure 23. In Figure 24, ten trajectories
of the solution of the Equation (8.11) are shown in the point W(120, 100)
with ap = 0.1. The point W(120, 100) belongs to the stability region of
the stochastic differential Equation (8.7), but it does not belong to the
stability region of its difference analogue (8.11). One can see that each
trajectory of the solution of the Equation (8.11) in the point W(120, 100)

oscillates and goes to infinity.

A similar picture can be seen in Figure 25 where 100 trajectories of
the solution of the Equation (8.11) are shown in the point Z(510, 100)
with ag = 0.1. In Figure 26, 100 trajectories of the solution of the
Equation (8.11) are shown in the point X(160, 100) with ay = 8.5. The
point X belongs to the stability region of the Equation (8.11) and all
trajectories go to zero. One hundred trajectories of the stable solution of
the Equation (8.11) are shown also in Figure 27 in the point Y(465, 100)
with qy = 6.5.
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Figure 25. Unstable solution of the Equation (8.11) in the point
Z(510,100), ag = 0.1.

Figure 26. Stable solution of the Equation (8.11) in the point X(160,
100), ag = 8.5.
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Figure 27. Stable solution of the Equation (8.11) in the point Y(465,
100), ag = 6.5.

9. Conclusion

The paper is devoted to the important issue of compliance of
numerical modeling of the solution of the difference analogue with the
original nonlinear integro-differential equation. Various schemes for
constructing difference analogues both with discrete and continuous time
are considered. To study the stability of difference analogues, the general
method of constructing Lyapunov functionals is used. Numerical
examples with some well-known mathematical models demonstrate the
effectiveness of the theoretical results and the possibility of their use in

various applications.
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