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Abstract 

Distribution families on the unit interval play an important role in many 
statistical applications, especially in the field of finance. In the course of the 
recent years, it became law to some extent to use the Beta and the 
Kumaraswamy distribution, respectively, if loss rates are assumed to be 
stochastic and to use the Vasicek distribution as the corresponding pendant for 
default rates. On the other hand, a deeper look into the general statistical 
literature reveals several possible alternatives which are not so familiar in the 
financial community. Against this background and with view to possible model 
risk, we provide a comparative analysis of twelve two-parametric distribution 
families. 
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1. Introduction 

To deal with the uncertainty of the future, input parameters of nearly 
all statistical models have to rely on plausible distributional 
assumptions. Especially in the area of credit risk management, probability 
distributions on the unit interval [ ]1,0  play an important role, 

uppermost in the context of LGDs und PDs1. 

Loss given default (LGD) is the proportion of the counterparty’s 
exposure that will be lost if a default occurs. Consequently, uncertainty 
regarding the actual LGD is an important source of credit portfolio risk. 
The recovery rate (RR) is defined as its complement with respect to the 
full, i.e., one minus LGD. Referring to the distributional assumption of 
LGDs or RRs, Gupton and Stein [9] state that LGDs or RRs have a 
density that theoretically should be best described by a Beta distribution 
since the support is limited to the interval between zero and one with 
various shapes (e.g., U-shaped, J-shaped or uniform) governed by two 
parameters2. In contrast, Höcht [11] advocated the less prominent 
Kumaraswamy distribution. 

Probability of Default (PD) describes the likelihood of a default over a 
particular time horizon, typically one year. It provides an estimate that a 
borrower will be unable to meet its debt obligations and is a key 
parameter used in the calculation of economic or regulatory capital for a 
financial institution. Typically, the Vasicek distribution, which arises in 
Vasicek’s portfolio model by determining the PD in a downturn situation, 
is chosen, see Vasicek [29, 30]. 

                                                      
1Beyond LGD, probability distributions arise as link functions in the context of credit 
portfolio modeling. Above that, distribution functions on [0, 1] can be used as weighting 
functions (see, e.g., Jones [16]) in order to generate exible distributions on R  which might 
be also used in market risk or operational risk. 
2In order to resemble bimodality, Hlawatsch and Ostrowksi [10] approximate the LGD by a 
mixture of Beta distributions. 
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Beyond PD and LGD, Tasche [24] stated that when fitting different 
distributions to the same mean and standard deviation, the Vasicek, 
Kumaraswamy and Beta distributions do not differ considerably. The 
Vasicek distribution however, is not well-known and it is difficult to 
locate literature on its implementation. Vasicek distributions also require 
numerous inputs of different variables which complicates 
implementation. The Kumaraswamy and Beta methods are simpler, but 
the Kumaraswamy distribution has some implementation problems as 
moment matching for these distributions requires complex numerical 
solving of a two-dimensional optimisation problem3. 

As mentioned above, the PD and LGD literature primarily focuses on 
the Beta, the Kumaraswamy and the Vasicek distribution. However, in 
the general statistical literature, a number of other flexible distributional 
models appear which might serve as alternative. Against this 
background, the outline of this paper is as follows: Section 2 briefly 
summarizes the candidate functions classifying them as simple, standard 
(from a finance perspective), exotic and new ones (to the best of our 
knowledge). In Section 3, we present a detailed analysis in order to 
compare the flexibility of these distributions. Section 4 concludes. 

2. Flexible Two-Parameter Distributions on [ ]10,  

To keep within reasonable bounds, we restrict ourselves to the 
discussion of flexible two-parametric distribution families which we 
divide into four subfamilies, termed as simple ones, classical ones, exotic 
or less popular ones (at least in the financial literature) and new ones 
forth on. Extensions of these families to three or more parameter are 
already available to some extent but beyond the scope of this work. 
Although the goodness-of-fit might be improved applying these families, 
analytical tractability and convenient statistical properties often get lost. 

 

                                                      
3Frye [4] derive the LGD (distribution) function under the assumption that the conditional 
default rate has a Vasicek distribution. 
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2.1. The simple ones 

Uniform distribution: For a detailed treatment of the uniform 
distribution on the unit interval ( )( ),1,0~Notaion UX  we refer to 

Johnson et al. [14] and Evans et al. [3]. Without any doubt, it is the most 
famous but also simplest one of those we consider in the sequel and has 
density ( ) 1=xfUNI  for .10 ≤≤ x  The uniform distribution is used if 

only minimum and maximum (here 0 and 1) of a random variable X are 
known. 

Triangular distribution: The triangular distribution is typically 
used as a subjective description of a population for which there is only 
limited sample data, and especially in cases where the relationship 
between variables is known but data is scarce. It is based on a knowledge 
of the minimum and maximum and an “inspired guess” as to the modal 
value. For these reasons, the triangle distribution has been called a lack 
of knowledge distribution. In the standard case on [ ],1,0  the density is 
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Kotz and van Dorp [18] deal with the ML estimation of m. 

Trapezoidal distribution: A straightforward generalization is the 
trapezoidal distribution with density 
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which reduces to the triangle distribution on [ ]1,0  if .21 mm =  For a 

detailed discussion of this class, see also Kotz and van Dorp [18]. 
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2.2. The standard ones 

Beta distribution: Note that if nXX ,,1 K  are independent and 

identically distributed random variables from ( )1,0U  and if ( )rX  denotes 

the r-th order statistics of this sample, then the pdf of ( )rX  is a Beta 

distribution with parameters ra =  and .1+−= rnb  Note that the 
general Beta distribution has density 

( ) ( ) ( ) [ ] ,0,,1,0,1,
1,, 11 >βα∈−
βα

=βα −β−α xxxBxfU   (1) 

and ( )βα,B  denotes the Beta function of the second kind (see, e.g., Jones 
[15]). 

Kumaraswamy distribution: The Kumaraswamy distribution was 
introduced by Kumaraswamy [19] in 1980. Referring to Kazemi et al. 
[17], it can be characterized by the following representation: Consider an 
iid random sample from a uniform variable U on ( )1,0  denoted by 

{ }.,,,,,, 1111 nmnm UUUU KKK=X  The cumulative distribution 
function of 

ijmjni
UX

≤≤≤≤
=

11
maxmin  

is given by ( ) ( ) .11 nm
X xxF −−=  Therefore, it is also called the MinMax 

distribution, see Lawrence and McQueston [20]. Alternatively, given a 
generalized exponential GEXY  (see Gupta & Kundu [8]), then exp=Z  
( )GEXY−  has a Kumaraswamy law under a simple re-parameterization. 

Vasicek distribution: The Vasicek distribution dates back to 
Vasicek [29], [30], [31] and was intensively discussed by Tasche [24]. It 
arises in the context of credit risk as an approximative distribution of 
loss rates in large, homogeneous portfolios. Its density on [ ]1,0  reads 
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and allows for different and flexible shapes. 
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2.3. The exotic ones 

Generalized Topp Leone distribution: Topp and Leone [25] 
proposed this distribution as an alternative to the Beta distribution. The 
generalized Topp-Leone family of distributions which was recovered by 
Nadarajah and Kotz [22] is generated from a slope distribution with 
density ( ) ( ) [ ]2,0,12 ∈α−α−α= xxxf  by elevating the corresponding 

cdf to a power ,0>β  see also Vicari et al. [32]. 

Generalized Biparabolic distribution: Similar to the triangular 
distribution, the standard biparabolic distribution is obtained from the 
minimum (a), most likely (m), and maximum (b). It can be constructed as 
follows, see Figure 1 the values a, m, and b determine the parabolas ( )xf1  

from ( )0,0  and the vertex ( ),, hm  and the parabola ( )xf2  using the point 

( )0,1  and the vertex ( )., hm  Alternatively, using the construction 

scheme suggested by van Dorp and Kotz [28], the density reads as 
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The generalized biparabolic distribution (GBP) of García et al. [5] arises 
from the generator function 

( ) ( ) ( ) ( ) .0,213
112; 2 ≥θ−

−θ−
+θ+θ

=θ θθ xxxp  

It holds that ( ) ( ) 0,;1,;0 =θ=θ mfmf GBPGBP  regardless of θ  and m. 
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Figure 1. Construction of the standard biparabolic distribution. 

Two-sided power distribution: Let 21, UU  be iid ( )1,0U  variables. 
Then the variable ( ) { } { }2121 ,max,min1 UUmUUmZ +−=  has a two 
sided power distribution with density given in Table 6. Please note that 

{ }21,min UU  and { }21,max UU  have right and left triangle distribution. 
For details on the TSP distribution which can be seen as nonsmooth 
alternative to the Beta distribution, we refer to van Dorp and Kotz [27]. 

Negative Log-Gamma distribution: The name of a Negative Log- 
Gamma variable derives from its construction scheme ( )GYZ −= exp  
which shows that the negative logarithm of a NLG variable is Gamma 
distributed with parameter .0, >βα  Its density is of the form 

( )
( )

( ) ( ) .0,,ln1,; 111 >βα−
βαΓ

=βα −α−β
α

xxxfNLG  

In contrast to its competitors, both cdf and quantile function are not available 
in closed form. For details on the NLG which is often applied in reliability 
analysis, we refer to Martz and Waller [21], p. 242 and Allella et al. [1]. 
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Log-Lindley distribution: Recently, Gómez-Déniz et al. [7] 
introduced the Log-Lindley distribution. Starting from a special case 
( )γ=λθ=η=α 1and,,1  of the generalized Lindley of Zakerzadeh 

and Dolati [33] on the positive axis, a LL variable is defined as 
( ).exp GenLindleyYZ −=  It has density 

( ) ( ) ,0,0,ln1,; 1
2

≥λ>η−λ
λη+

η=λη −ηxxxfLLI  

and admits a closed form cdf, and allows for increasing, decreasing, and 
unimodal densities. 

Johnson-SB distribution: Dating back to 1949, the Johnson SB 
distribution (see Johnson et al. [13], p. 34 and Stuart and Ord [23], p. 240 
for details) results from a transformed normal distribution. Its cdf can be 
briefly written as 

( ) ( ( )) ,,0,,;,; 1
Log R∈γ>δδγΦ=δγ − xFxFJSB   (2) 

where 1
Log
−F  denotes the quantile function of a logistic variable with 

location γ  and scale .δ  In contrast to all the other distributions we 

consider, the JSB distribution allows for bimodal densities and  
( ) ( ) 0,;1,;0 =δγ=δγ JSBJSB ff  regardless of γ  and .δ  Hence, such 

densities take somewhat of a U-shaped form. 

Logistic uniform distribution: Recently, Torabi and Montazeri 
[26] discussed, amongst others, the LU distribution. Similar to the      
JSB-construction in (2), its cdf is defined as 

( ) ( ( ) ) ,0,,,;1,0;,; 1
LogLog >∈= − smsmxFFsmxFLU R   (3) 

such that all generating functions (pdf, cdf, and quantile function) are in 
closed form. Above that, LU densities can be unimodal or anti-unimodal, 
increasing or decreasing, symmetric or skewed. 
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2.4. The new ones 

Negative Log-Champernowne: In line with NLG and LLI, the 
Negative Log-Champernowne distribution denotes a random variable 

( ),exp ChampYZ −=  where ChampY  in turn denotes the Champernowne 

distribution [2] on ( )∞,0  which was originally introduced as a model for 

income distributions but also comes to application in the area of 
operational risk. Its density reads as 

( )
( )

.0,,,; 2

1
>α

+

α=α
αα

−αα
M

Mx
xMMxf  

To our best knowledge, the NLC distribution has not been mentioned yet. 
Its pdf, cdf, and qf admit a closed-form solution presented in Table 6.  

Negative Log-Weibull: Similar to the NLG, one can define a new 
probability law on [ ]1,0  by ( ),exp WZ −=  where W has a classical 

Weibull distribution. Again, pdf, cdf, and qf are available in closed-form. 
Note that the Weibull pdf reads as 

( ) ( ) ( ( ) ).exp,; 1 bb axaxabbaxf −= −  

Details on the NLG are also presented in Table 6 (given in last section).  

3. A Comparative Analysis 

For reason of simplicity, we use the following abbreviations: Uniform 
(UNI), triangle (TRI), trapezoidal (TRA), Beta (BETA), Kumaraswamy 
(KUM), Vasicek (VAS), Johnson-SB (JSB), Logistic uniform (LUN), Log-
Lindley (LLI), Negative Log-Gamma (NLG), Generalized Biparabolic 
(GBP), Two-sided power (TSP), Generalized Topp-Leone (GTL), Negative 
Log-Champernowne (NLC), and Negative Log-Weibull (NLW) distribution. 
The corresponding parameter domain is summarized in Table 1 below. 
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Table 1. Distributions on [ ]1,0  under consideration 

Abbreviation Name 1θ  2θ  

UNI Uniform   

TRI Triangle [ ]1,0∈m   

TRA Trapezoidal [ ]21 ,0 mm ∈  [ ]1,12 mm ∈  

BETA Beta 0>α  0>β  

KUM Kumaraswamy 0>α  0>β  

VAS Vasicek 10 << p  10 <ρ<  

JSB Johnson BS  R∈γ  0>δ  

LUN Logistic uniform R∈m  0>s  

LLI LogLindley 0≥λ  0>η  

GBP Generalized biparabolic [ ]1,0∈m  0>θ  

TSP Two-sided Power [ ]1,0∈m  0>α  

GTL Generalized Topp-Leone ( ]2,0∈α  0>β  

NLG Negative LogGamma 0>α  0>β  

NLC Negative 
LogChampernowne 

0>M  0>α  

NLW Negative Log-Weibull 0>a  0>b  

3.1. Statistical properties: An overview 

Table 2 below summarizes the possible shape(s) of the densities 
under consideration together with the corresponding domain of 
parameters. Neglecting the simple ones, most of the distribution families 
include unimodal, anti-unimodal, increasing, and decreasing densities. 
There are certain restrictions for LLI or GBP, for instance. 

 

 

 

 



Table 2. Shapes of the probability densities 

X ~  Unimodal  Anti-unimodal,  
U-shape 

 Increasing  Decreasing 

TRI 10 ≤≤ m  – – – 

TRA 21 mm =  – – – 

( )βα,BETA  1,1 >β>α  1,1 <β<α  1,1 ≤β≥α  1,1 ≥β≤α  

( )βα,KUM  1,1 >β>α  1,1 <β<α  1,1 ≤β≥α  1,1 ≥β≤α  

( )pVAS ,  
2
1<  2

1>  2
1,2

1 >= p  2
1,2

1 <= p  

( )δγ,JSB  see [12] – – – 

( )smLUN ,  1<s  1>s  1,0 =< sm  1,0 => sm  

( )ηλ,LLI  ( ) 11,1 <−ηλ>η  – ( ) 11,1 ≥−ηλ>η  1≤η  

( )θ,mGBP  1≠α  – – – 

( )α,mTSP  [ ]1,0,1 ∈>α m  1,0 <α< m  0,1 >α=m  – 

( )βα,GTL  ( ] 1,2,0 >β∈α  ( ] 1,2,0 <β∈α  ( ) 1,1,0 ≥β∈α  ( ] 1,2,1 ≤β∈α  

( )βα,NLG  1,1 <β>α  1,1 >β<α  1,1 ≤β≤α  1,1 ≥β≥α  

( )MNLC ,α  – 2,1;1 <=α≠α M  – 2,1 ≥=α M  

( )βα,NLW  1>b  1<b  1,1 =>α b  1,1 =<α b  

 

 

 



MATTHIAS FISCHER and STEFAN HÖSLE 154

3.2. Reproducing different shapes 

In order to verify the exibility of the underlying distributions, we 
choose six different shapes of a Beta and a triangular distribution, 
respectively, which one might come across to: unimodal and skewed, see 
Figure 2(a), unimodal and symmetric, see Figure 2(b), antiunimodal and 
symmetric, see Figure 2(c), anti-unimodal and skewed, see Figure 2(d), 
triangular and symmetric, see Figure 2(e), triangular and skewed, see 
Figure 2(f). 
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(a) X ~ BETA (2, 8) 

 
(b) X ~ BETA (4, 4) 

 

(c) ( )5
3,5

3~ BETAX  
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(d) ( )
5
4,

10
3~ BETAX  

 

(e) )
2
1(~ TRIX  

 

(f) ( )
10
9~ TRIX  

Figure 2. Densities to be reproduced. 
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For each distribution, we draw a random sample of length n = 1000 
several times (number of repetitions: 1000) and fitted the models under 
consideration using maximum likelihood estimation. In order to compare 
the goodness-of-fit (see, for instance, Gibbs [6]), we calculated both 
Kolmogorov-Smirnov distance between the sample(s) and the fitted 
distribution(s) 

( ) ( ) ( ) [ ],1,0,ˆsup:, ∈−= xxFxFYXd YXKS  

and Hellinger distance between the original density and the estimated 
density: 

( ) ( ) ( ) .ˆ
2

1:,
2121

0 












 −= ∫ dtxftfYXd YXH  

Tables 3 and 4 summarizes the mean ( )µ̂  and the standard deviation ( )σ̂  

of the repeated experiments. First of all, the results w.r.t. Kolmogorov-
Smirnov and Hellinger metric are very similar. Beta shapes are best 
approximated (in the sense of a small distance) by NLG, KUM or VAS 
and (only) in the symmetric case also by JSB, LUN and GBP. In contrast, 
LLI and TSP provide a poor fit. LUN, GBP, and TSP indicate best 
approximation to triangular densities for the symmetric case, whereas 
JSB, LUN, and TSP are favourable in the asymmetric case. 

 

 

 

 

 

 

 

 



Table 3. Distances w.r.t. Kolmogorov-Smirnov metric 

X ~  
BETA(2, 8) BETA(4, 4) ( )5

3,5
3BETA  ( )5

4,10
3BETA  ( )2

1TRI  ( )10
9TRI  

µ̂   0.537  0.189  0.092  0.375  0.136  0.232 
( )1,0U  

σ̂   0.009  0.007  0.010  0.015  0.008  0.013 

µ̂   0.322  0.066  0.263  0.282  0.022  0.025 
TRI 

σ̂   0.010  0.007  0.013  0.015  0.006  0.008 

µ̂   0.322  0.066  0.092  0.373  0.021  0.024 
TRA 

σ̂   0.010  0.007  0.010  0.019  0.008  0.008 

µ̂   0.019  0.020  0.020  0.021  0.030  0.040 
BETA 

σ̂   0.005  0.005  0.005  0.006  0.007  0.007 

µ̂   0.025  0.026  0.021  0.021  0.031  0.040 
KUM 

σ̂   0.006  0.007  0.006  0.006  0.007  0.007 

µ̂   0.025  0.020  0.020  0.024  0.030  0.033 
VAS 

σ̂   0.007  0.005  0.005  0.006  0.006  0.007 

µ̂   0.045  0.021  0.044  0.093  0.038  0.022 
JSB 

σ̂   0.008  0.005  0.007  0.010  0.0070  0.005 

µ̂   0.030  0.023  0.021  0.052  0.020  0.027 
LUN 

σ̂   0.005  0.005  0.005  0.006  0.005  0.005 

 

 



Table 3. (Continued) 

X ~  BETA(2, 8) BETA(4, 4) ( )5
3,5

3BETA  ( )5
4,10

3BETA  ( )2
1TRI  ( )10

9TRI  

µ̂   0.204  0.123  0.115  0.047  0.053  0.049 
LLI 

σ̂   0.008  0.009  0.012  0.010  0.010  0.008 

µ̂   0.073  0.020  0.091  0.376  0.025  0.035 
GBP 

σ̂   0.014  0.005  0.010  0.015  0.006  0.010 

µ̂   0.328  0.034  0.024  0.044  0.020  0.022 
TSP 

σ̂   0.007  0.007  0.006  0.010  0.005  0.011 

µ̂   0.241  0.121  0.088  0.025  0.039  0.048 
GTL 

σ̂   0.008  0.076  0.011  0.006  0.009  0.006 

µ̂   0.024  0.020  0.023  0.022  0.030  0.040 
NLG 

σ̂   0.006  0.005  0.006  0.006  0.007  0.007 

µ̂   0.028  0.032  0.071  0.061  0.033  0.038 
NLC 

σ̂   0.005  0.005  0.005  0.006  0.005  0.005 

µ̂   0.055  0.042  0.033  0.025  0.047  0.041 
NLW 

σ̂   0.007  0.007  0.007  0.006  0.008  0.006 

 

 

 

 



 

Table 4. Distances w.r.t. Hellinger metric 

X ~  BETA(2, 8) BETA(4, 4) ( )5
3,5

3BETA  ( )5
4,10

3BETA  ( )2
1TRI  ( )10

9TRI  

µ̂   0.521  0.359  0.155  0.360  0.239  0.239 
UNI 

σ̂   0.000  0.000  0.000  0.000  0.000  0.000 

µ̂   0.332  0.131  0.303  0.334  0.009  0.009 
TRI 

σ̂   0.001  0.001  0.001  0.000  0.001  0.001 

µ̂   0.332  0.131  0.155  0.361  0.013  0.012 
TRA 

σ̂   0.001  0.001  0.001  0.004  0.010  0.010 

µ̂   0.014  0.014  0.014  0.012  0.037  0.062 
BETA 

σ̂   0.007  0.007  0.008  0.008  0.003  0.002 

µ̂   0.030  0.031  0.016  0.014  0.038  0.059 
KUM 

σ̂   0.004  0.004  0.007  0.007  0.003  0.002 

µ̂   0.032  0.015  0.015  0.029  0.039  0.051 
VAS 

σ̂   0.004  0.007  0.007  0.005  0.003  0.002 

µ̂   0.074  0.023  0.076  0.145  0.060  0.032 
JSB 

σ̂   0.003  0.005  0.004  0.006  0.003  0.004 

µ̂   0.078  0.040  0.024  0.118  0.022  0.051 
LUN 

σ̂   0.002  0.003  0.005  0.003  0.005  0.002 

 

 



Table 4. (Continued) 

X ~  BETA(2, 8) BETA(4, 4) ( )5
3,5

3BETA  ( )5
4,10

3BETA  ( )2
1TRI  ( )10

9TRI  

µ̂   0.294  0.172  0.137  0.051  0.057  0.095 
LLI 

σ̂   0.000  0.000  0.001  0.003  0.002  0.003 

µ̂   0.101  0.023  0.155  0.360  0.033  0.033 
GBP 

σ̂   0.006  0.005  0.000  0.000  0.003  0.004 

µ̂   0.443  0.053  0.025  0.053  0.015  0.015 
TSP 

σ̂   0.000  0.003  0.005  0.005  0.008  0.016 

µ̂   0.322  0.151  0.114  0.035  0.042  0.102 
GTL 

σ̂   0.000  0.051  0.001  0.003  0.002  0.002 

µ̂   0.027  0.015  0.018  0.015  0.039  0.064 
NLG 

σ̂   0.004  0.007  0.006  0.007  0.003  0.002 

µ̂   0.113  0.077  0.049  0.024  0.069  0.083 
NLC 

σ̂   0.004  0.003  0.003  0.005  0.003  0.002 

µ̂   0.061  0.083  0.177  0.096  0.089  0.101 
NLW 

σ̂   0.002  0.002  0.006  0.005  0.002  0.002 
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Exemplarily, Figure 3 illustrates 4 situations with a very good fit (see 
panel (a), (c)) and, in contrast, a poor fit (see panel (b), (d)). 

 

(a) X ~ BETA(2, 8), Y ~ KUM(1.62, 10.55) 

 

(b) X ~ BETA(4, 4), Y ~ LLI(0, 2.64) 
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(c) ( ),
5
3,

5
3~ BETAX  Y ~ NLG(0.62, 2.01) 

 

(d) ( ),
10
9~ TRIX  Y ~ V AS(0.33, 0.63) 

Figure 3. Selected densities of estimated distribution. 
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3.3. Moment ratio diagrams and σ−µ  diagrams 

In order to compare flexibility from another perspective, moment 
ratio diagrams (or skewness and kurtosis plots) are provided in Figure 4. 
Moment ratio diagrams provide a useful visual assessment of skewness 
and kurtosis and consists of all possible pairs of third and fourth 
standardized moments ( )43, MM  that can be obtained through different 

combinations of the shape parameters of the underlying distributions, 
provided their existence. In general, the relation 143 −< MM  for 

14 ≥M  holds, i.e., for a given level of kurtosis only a finite range of 

skewness may be spanned. As a result from Figure 4, a restricted area 
has to be stated for LLI, GTL and to some extent for GBP, whereas LUN, 
NLC und TSP seem to be very flexible. Above that, moment ratio 
diagrams of NLG, VAS, KUM, BETA, and NLW are rather similar. 
Finally, figure illustrates the area of possible σ−µ -combinations         

( :µ  expectation value, sd: standard deviation) for the underlying 

distributions. Whereas BETA, KUM, VAS, JSB, LUN, NLG, NLC, and 
NLW are close together, certain restrictions appear for LLI, GBP, TSP, 
and GTL. 
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(a) BETA 

 
(b) KUM 

 
(c) VAS 
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(d) JSB 

 
(e) LUN 

 
(f) LLI 
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(g) GBP 

 
(h) TSP 

 
(i) GTL 
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(j) NLG 

 
(k) NLC 

 
(l) NLW 

Figure 4. Skewness-kurtosis plots (y-axis: skewness, x-axis: kurtosis). 
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(a) UNI 

 
(b) TRI 

 
(c) TRA 
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(d) BETA 

 
(e) KUM 

 
(f) VAS 
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(g) JSB 

 
(h) LUN 

 
(i) LLI 
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(j) GBP 

 
(k) TSP 

 
(l) GTL 
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(m) NLG 

 
(n) NLC 

 
(o) NLW 

Figure 5. Possible σ−µ  combinations (y-axis: ,µ  x-axis: σ ). 



MATTHIAS FISCHER and STEFAN HÖSLE 174

3.4. Performance tests 

In order to compare the performance with respect to random number 
generation, we generated 100,000,000 random variables from all 
distributions. Without loss of generality, the parameterizations are 
chosen close to the triangular distributions, as shown in Figure 6. Table 5 
summarizes both parameter values and run times. 

 

Figure 6. Generation of random numbers-densities. 
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Table 5. Required time for generation of 100,000,000 random numbers 

X ~ Time 

UNI(0, 1) 0.17min 

TRI(0.50) 0.90min 

TRA(0.47, 0.53) 1.97min 

BETA(2.43, 2.43) 1.45min 

KUM(2.13, 2.62) 1.79min 

V AS(0.27, 0.50) 1.32min 

JSB(0.00, 0.98) 1.54min 

LUN(0.00, 0.56) 1.07min 

LLI(0.00, 2.48) 18.87min 

GBP(0.50, 1.32) > 20min 

TSP(0.50, 2.01) 2.97min 

GTL(2.00, 2.43) 1.19min 

NLG(2.37, 0.34) 1.52min 

NLC(0.67, 2.52)  1.49min 

NLW(1.11, 1.60) 1.69min 

It becomes obvious that the random number generation is very time-
consuming if the qf is not available in closed form (e.g., LLI and GBP), 
except for the Beta distribution which seems to be implemented very 
efficient in R. However, switching to the Vasicek (VAS), the logistic 
uniform (LUN) or to the generalized Topp-Leone (GTL) distribution 
reduces run time up to 20 percent. 

4. Summary 

Traditionally, both the Beta and the Vasicek distribution are chosen 
as stochastic model for default rates (PD) and/or loss rates (LGD) in the 
financial literature. However, as shown in this article, there are several 
alternatives with similar flexible density functions. If, above that, a lot of 
random numbers are needed (e.g., within a Monte Carlo context) some of 
these alternatives even outperform the Beta and the Vasicek distribution 
w.r.t. run time. 
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