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Abstract

We investigate the necessary and sufficient conditions in order that a Hankel
operator on the space H 3, isomorphic to Copson space cop(2), belongs to some

operator ideals such as that of all linear bounded operators, of all compact
operators, of all nuclear operators etc.

1. Introduction
In [10], we introduced the scale of spaces

HP = Sp(My) = Mg NHP ~MiNHP, 1< p <o,

where Sp(M};) is the space generated by M. These spaces are Banach

lattices with respect to the cone Mj; N H?, where
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0

MG ={f(z) = Zakzk; l2| < 1, f analytic, and a;, 4, 0},
k=1
of all analytic functions from the classical Hardy spaces H”,1 < p < o,

with a decreasing sequence of positive Taylor coefficients. In that paper

we proved that the Hankel operators with a symbol having also a
decreasing sequence of positive Taylor coefficients act boundedly on H, 2
if and only if the symbol belongs to the BMOA,;, the subspace of the
classical Banach space BMOA as defined in [12], generated by the cone
MG N BMOA.

It is perhaps of interest to remark that H(% is topologically

isomorphic to the classical Copson space cop(2), as defined in [2].

This paper is a continuation of [10], and we intend to give necessary
and sufficient conditions in order that a Hankel operator as above
belongs to different operator ideals like the ideal of compact operators, of

nuclear operators, or to the ideal Ny, as defined in [8].

2. Solid Spaces of Sequences

First we recall the definition of the smallest solid superset S(X), of a

Banach space of sequences X. (See [1], [4].)
S(X) :={a = (a,),s( : 3b € X such that |b,| > |a,| for all n}.
The norm on S(X) is the following (see [4]):

"a"S(X) = inf {|p]|y : for all b € X such that |b,| > |a,|Vn}.
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We use also the space d(a, p) introduced by Bennett in [2]:

1/p
d(a, p) = {x = (x,,) : such that ||x||d(a’p) = {;ak i&flxnlp] < o},

where a = (a, ag, ... ), a, 20, and 1 < p < o. In the particular case

a, =1, Vn, we denote d(a, p) simply by d(p).

Another space of interest introduced in [2] is g(a, p) = {x : Z:zl
|x;|? = O(A,)}. Here a = (a1, ag, ... ), where A, = a; +ag + -+ a,.

Of course, the norm of g(a, p) is given by

L& 1/p

_ p

*lg(a, p) = Sup [A_nZW' J '
h=1

The following result is valid for all 0 < p < o :

Theorem 2.1. Let 0 < p <. Then S(HJ)=d(a, p), where
a, = np_2, Vn, with equivalent norms.

Proof. Let x =(x,), € d(a, p), and y = (y,), € H]. Then
Znnp_z SUPgsnleg|? = ||x||§(a’p) <o, and, for y, = supys,|x;|, for all
n, we have y, I, 0,|x,| <|y,|Vn, and y e HP N M];, consequently
x e S(HY).

In other words

d(a, p) = S(HY),

and, moreover, [xllg 2, < [z = ¥l )
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Since by using Theorem 6.1 -[4], S(HJ]) is the smallest Banach
lattice containing H%, and d(a, p) is a Banach lattice containing H?,
then
S(HY) c d(a, p).
Thus
S(HJ) = d(a, p),

and their corresponding norms are equivalent by closed graph theorem

and by inequality ||x||S(H5) < ||x||d(a,p). O

Also the study of the largest solid subset of a space X, denoted by
s(X), where X is a Banach space of sequences, is of interest as showed
in [1].

In what follows we describe the largest solid subspace of the

topological dual of H,1 < p < .
We denote by A* the topological dual of the Banach space of
sequences A.

First we prove a lemma:

Lemma 2.2. The space of all coefficient multipliers from (” into

(HY )", denoted by (¢, (HY)"), coincides with the corresponding space

(HE, i').
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Proof. Let m = (m,), be a multiplier belonging to (¢*, (HY ),

thatis (m,a,), € (H})'V (a,), € (*.

Let (b,), € HY. The canonical sequence (e, ), is a non normalized

n n

Schauder basis of HY, 1 < p < «, by [10]. Consequently annanbn is a

convergent series V (b,), € HY, and V (a,), € (”.

Thus fix an arbitrary (b,), € H}, and take a, = sign(b,m,), Vn.
Then we have that zn|mn||bn| <o, V(b,), € HY, thatis m e (H(fl’,fl ).

In other words (¢, (HY)") < (HY, M.

Conversely, let m e (HZ, ), and a=(a,)e (. Then, for

b=(b,), € HY, we have:

(mpby,), € ¢* implies Z|mn||bn| < o thus Z|mn| lay| b < oo,
n n

Va € (*, b e HY, which in turn implies (m,a,), € (HY)'V(a,),  (*.
It follows
me (1, (HF)").
O

Theorem 2.3. s((H))") = g(a, 1), where a, = (%)

ZZlexk |

{x = (x,); ||x||g(a,1) = Sup,>o Tn(n + 1) < o}, with the equivalent norms.

and gla, 1) =

n’
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Proof. It is easy to see that s((H})") = (¢*, (HY)*). (See [1].)

By using the previous lemma and [4] we have that s((H})") = (HY, ¢*)
= (S(Hg), 1),

Now by Theorem 2.1 and by Theorem 3.8 - [2], it follows that
(Hg)") = (d(a, 1), /") = g(a, 1). O

In the case 1 < p < o, we have:

Theorem 2.4. Let 1 < p < oo, % +é =1. Then

s(HY)") =17 - gla, p),
where (1 . g(a, p) means the space of all sequences x -y, with x € (9,
y € 8la, p).
Proof. Similarly with the proof of Theorem 2.3 we have
s(HD)") = (d(a, p), ¢') = d(a, p),
where the last term is the Kéthe dual of d(a, p).

But, by using Theorem 12.3 -[2], we get the result. O

First recall that, for 0 < p < o,

o / o p
cop (p) = 4x = (x1),. : ZL; ]lel

] < oo, with the quasi-norm

xkl
+1

p\L/P

o Z[Z |

n=0
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We recall that by the space bv we mean the Banach space of

sequences of real numbers a =(a,),,, with bounded variation
||a||bvo = |a| + Z::olan - ap41|, where lim, a, = a.

It is well-known and easy to prove that bv is a vector lattice for the

order induced by the cone C = {a = (a,),50, @n ¥, o = 0}.
For the convenience of the reader we sketch the argument of this:

First the cone C 1is a lattice cone.

For instance if a, b € C, then sup(a, b) := a Vb € C is given by

aVeb = (c,),, where ¢, = Z(ak —apy1 )V (b, —bpq), VE = 0.
k=n

It follows, by using [11] - Chapter V - Proposition 1.2, that bv is a

vector lattice with respect to the order induced by the cone C.

We recall that the modulus of a € bv, denoted by |af,,, is defined by

o0

(laly, )n = lof + D | = agya], o 2 0.

k=n
If a =0, for all sequences from bv, the corresponding space is
denoted by bvg, and the latter is also vector lattice.
We mention that bv is also a Banach lattice, but this is not
important for this paper.

Then we have:

Theorem 2.5. Let 0 < p <o, p # 2. Then Hg is linear-topological

isomorphic (but not latticially isomorphic) to the Copson space of order p,

cop(p).
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The isomorphism T : H — cop(p) is given, for x = (x,),5o € HY,

by T(x) := u = (uy );>¢ € cop(p), in the following way:
up = (k+1) [(k 1) 2Py (kt 2)1_2/pxk+1], k= 0.

T7' : cop(p) > HY is given by

o0
X, = (n+1)2/p712%, n=>0.
k=n

Moreover,
00 1/p
Relie = | D0+ 1P 2l o | = I @egylo, v € HE.
n=0
Proof. Obvious by inspection. O

Corollary 2.6. Let 1 < p < oo, p # 1. Then (H fi) )" is linear-topologically

(but not latticially) isomorphic to d(p" Y, where —— +% _1.
p

Proof. By using Theorem 6.8 and Corollary of Theorem 12.17 - [2],

we get that cop(p)” = d(p”). O
The particular case p = 2 is of interest view the fact that Hankel
operators act nicely on H 3, as we see in the next section.
Corollary 2.7. (1) H3 «—L— cop(2) by the latticial isometry:

T(x) = u, where u;, = (k +1)[x;, —x341], k¥ = 0, and,

0
T u) = x, x, =Zk”+’f1,nzo.
k=n

Moreover T* maps isometrically (H2)" onto d(2).
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@) Hs is not isomorphic to (2, but (Hs )" is isomorphicto S(H32) = d(2).

3) H 3 is a reflexive Banach space.
Proof. (1) Is a particular case of the previous Theorem and Corollary.

(2) By using a more generally fact - Proposition 15.13 [2].

(3) By (2). O
3. Hankel Operators on H¢2i

We saw in Corollary 2.7 that H 3 1s not isomorphic to a Hilbert space.
However HC% c H 2, and the restriction of a Hankel operator (with an
appropriate symbol) to H(% behaves very likely to a classical Hankel
operator on H 2,

More specific we show in Theorem 4.1 [10] that a Hankel operator

H 7 with a decreasing sequence of Taylor coefficients, is a linear and
bounded operator on H, 3 if and only if f € BMOAjJ = Mj N BMOA.

In order to be self-contained we give the proof of this result.

First we recall the definition of BMOA.

Following [12] we consider first a function f e L2(6]D)) and I an

interval contained in 0D. We write the mean of f over I as

1
fr=m | 0)do,
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where |I| denotes the length of I.f is said to have bounded mean

oscillation on oD if
) , T2
f =sup{—'|‘ f(0) - de} < oo,
171 3az0 P I| (CIENid

Let BMO denote the space of all functions f e LZ(GJID) having bounded
mean oscillation. It can be checked that BMO 1is a Banach space modulo
constants. Now let BMOA the intersection of BMO with H? and
BMOA(D) be the space consisting of harmonic extensions ? of functions

in BMOA.

Since BMOA 1is only a Banach space modulo constants we consider

on the BMOA the norm

M =Miparo +1 7 ©1-

BMOA equipped with this norm is then equivalent to the dual of

H', as it follows by using [12] Theorem 8.3.8 (the celebrated theorem of

Fefferman). The bilinear map which realizes this duality is given by

2n J—
< f.g>=5 [ T ©)0)do,

where f € H', g € BMOA.

In the sequel we present some results concerning the behaviour of

Hankel matrices on H, 3
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Let (a,),so be a sequence of positive real numbers with Zna,zl < o,

The infinite matrix

a ag as Qy
ag as ay

A:=|ag ay )
ay

having the constant entries on each skew-diagonal, is called a Hankel

matrix.

To each Hankel matrix we can associate a Hankel operator mapping
H? into H 2, denoted by H;, where f 1is an anti-analytic function on

the unit disk with Taylor coefficients a,, n > 0, in the following way:
Hrg = (I -p)(fe),

for ge H 2 where P is the Szegb projection, that is the orthogonal

projection from L?(8D) onto HZ.

A natural question about this operator is to determine the property of
f such that H f is bounded. It is well-known [12] that the answer is as

follows:

Theorem of Nehari Hy is bounded if and only if f belongs to BMOA.

Denote by (% the subspace C — C of (2, where C = {a = (a, Jns0 € 02

a, ¥, 0}. 6(21 is equipped with the norm

a=a -a“,a ,a“e

© © © 1/2
la: = inf . (Z(a,lz)Q)l/z +(Z(a3)2)1/2j ~ [Z:(Ialbv0 )i} .
n=0 n=0 n=0

Of course, so equipped, f?i is a Banach lattice isomorphic to H 3.
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Similarly, in our context we have:

Theorem 3.1. Let A be the Hankel matrix defined as above, where

the sequence (ay,),., 1Is, moreover, monotone decreasing a, i, 0.
Then A determine a bounded operator from Z,Zi into (%3 if and

only if sup,so(n+1)a, <, that is the Hankel operator Hy, where

f(z) = Z::Oanz”, z e D, is bounded on H if and only if f € BMOA,.

Proof. Assume that sup,(n +1)a, < . Then by using [13] we get
that fe BMOA,. From [12]-9.2.3, we get that H is bounded on H2,
and ||Hy| is comparable with the norm |A] B(12) Next let us take the

sequence b = (b,),50) € C == Mg N H? and g :ZOO b,e™ ¢ < [0, 2],

n=0""
Then Hpg = A-b e C. Then it is easy to see that H; is a bounded map
on H 2 =C-C.
Conversely assume that A determines a bounded operator (which is

the Hankel operator Hy) on H, (% Consider the unit vector function

2
k() = V2R g2

- z e D.
1-ze? ,

This function has the Taylor coefficients b, = rle” ™ 5 >0, where

z = re't. Of course b,,| ¥,, 0. It is well-known (see [12]-9.2.2) and easy to

see that
12 22
IHek, g2 =17 -1 f @,

for all z € D, where ? is the Poisson extension of f on D.
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Let k; be the analytic function with Taylor coefficients |b,|, for all

n > 0. Then, of course, ki e H3, with |k ||H§ =k, |lg2 =1, 2 € D.

On the other hand the Taylor coefficients of Hyk, are dominated by
the corresponding Taylor coefficients of H fk;. Moreover, the sequence of

Taylor coefficients of H fk; is a decreasing sequence running to 0.
1 1
Consequently |H fk,| g2 <||H¢k; |2 = |Hfk; ||H§ <M < x, where M

is the operator norm of H; on H(%

It follows that | f |2 (2)-| ;C_\ (2)[* is a bounded function on D, and, by
using Theorem 8.3.4 -[12], f € BMOA. Since q, »Ln 0, in view of [13], it

follows that sup,>q(n + 1)a,, < . O

Now we study Hankel operators on H 3, first we recall the definition
of the VMOA space. The closure of analytic polynomials in BMOA is
called the VMOA, and denote by VMOA_ the cone M, N VMOA. Here,

of course, the space VMOA is equipped with the norm induced by that of
BMOA.

Then we have the analogue of Theorem 9.3.2 [12].
Theorem 3.2. If [ Hg N Mg, Hf is a compact operator from H(%
to (H7)" == (H%)" N [*(8D), if and only if VMOAJ.

Proof. Since H 7 is given by the matrix:

ay (%)) as ay
asg as ay

a4




30 N. POPA
where f(0) = z:zoakeike, 0 € [0, 2n), a;, ) 0, it is easy to see that H;

maps H3 into L*(6D); = {g e L*(0D), g(0) = Z:ﬂakeﬂ.ke; (ap), € 0%,

Assume that H 7 is a compact operator defined on H, 3 into L? (0D)g,

denoted simply by H(%. We know that H 7 maps any sequence weakly

convergent to zero in a sequence norm-convergent to zero, with respect to

the norm of E%.

V1|2

Now, let k! be the analytic function k(€)= —,
1-2ze

zelD, and
t € R. Clearly ki e H3 N M. Since |k’ ||H3 = kg2 =1 Vz € D, the
set {kl; z € D} is bounded in H3.

Because H 3 is a reflexive Banach space, {kzl., z € D} is a relatively
weakly compact set in H 3 By using Eberlein’s theorem (see Theorem

11.1 - Chapter IV [11]), each subsequence of {k; }n contains a weakly

convergent subsequence in H 3
Since k; — 0 whenever |z,| > 17, it follows that each subsequence
n
of (H f(k; )), contains a norm-convergent subsequence in H3, hence
n

also in H2. By using the proof of Theorem 9.3.2 - [12] it follows that this

limit is equal to 0.



HANKEL OPERATORS ON COPSON SPACES 31

Consequently |H f(ki ) H: ™ 0, and also

7P (=1 @F =1 Hy (K, ), 0.

By using Theorem 8.4.2 [12], it follows that f e VMOA. By the

hypothesis concerning f, we have f € VMOA].

Conversely, let f € VMOA?,, f(0) = Zlioakeike, with a; 4, 0. By
using Theorem 8.4.7 [12], it follows that there is a g € C(dD) such that
f = Pg, P being the Szego projection. By 9.2.3 -(4) -[12] we have H ;=

Hy.

It remains, consequently, to prove that H, : H(% — H(%, where

g € C(oD), is a compact operator. By using [12], we know that f — H/

is a bounded map from L*(8D) into the space B(HZ, (H%)"), and the

norm |Hy "B(Hﬁ,%) is, clearly, dominated by | H/ ||B(H2,(H2 - Thus it

is enough to show that Hj : H% > HZ, where f(t)=e™ neZ isa
compact operator.
But it is easy to see that, for n € N, Hf =0, and, for n < 0, Hf 1s a

finite rank operator. O

As we have seen above a Hankel operator H 7 with f(z) = Z::O akeikz,

zeD,a; ¥, 0, acting on H(%, is bounded if and only if

sup,(n +1)a,, < .

It is natural to ask ourselves if there is something similar in the

compact case.

The following result gives us the answer:
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Theorem 3.3. Let f(z) = z:zoakeikz, zeD,a; 4. 0, an analytic
function.

Then Hf is a compact operator acting on Hg; if and only if

lim (n + 1)a, = 0.
n—ow

Proof. Necessity. Let Hf be a compact operator. Then by Theorem

3.2, feVMOA c B,, where By 1is the closure of all analytic

polynomials in the Bloch space B. By using Theorem 1.10(a) and Remark
1.19 - [3], it follows that

n
Zjaj = o(n), Vn.
=0

Since a; ij 0, we have

a,, nn+l) o(n), thus lim (n + 1)a, = 0.
2 n—ow
Sufficiency. Assume that a, ¥, 0, and lim,(n +1)a, = 0. By

Theorem 7.2.2-(3), vol. I-[6], it follows that g(¢) := Zw

L 0nsinnt, t €0, 2m),

is a continuous function.
If P:I? > H? is the Szegd projection, P(h)(t) = Z::Obneint, for

h(t) = Z:z_wbneint, V(bp),ez € ¢2(Z), then, by using Theorem 8.4.7 [12],
P(C(oD)) = VMOA.

Consequently,
1 1
P(g)(t) = Zganemt = 5 [f(©) - ag]  VMOA,
n=1

thus f € VMOA, and, by using Theorem 3.2, it follows that H 7 is a

compact operator. Here, of course, f(z) = Z:zoanzn, z e D O
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Remark 3.4. (1) By using the proof of Theorem 3.1 we get easily that,
for f € BMOAj, the subspace, Hankppoa ;> of all Hankel operators

le € B(H(%, H(%) is a Banach subspace of the similar space Hankgproa-

(2) Similarly, for f € VMOAJ, the space, Hank compyp0a 2’ of all

compact Hankel operators from H 3 into H 3, 1s a Banach subspace of the

similar space Hank compypo4-
We intend now to characterize the nuclear Hankel operators H 7>

f e M actingon H7.

Let S;(H 3, H 3) the space of all nuclear operators acting from H ;3

into H 3, equipped with the usual nuclear norm.
Denote by (Besl)é ={f(z) = Z::()anzn, a, ¥, 0; ||f||Besl
= j L@ dA) < o).

Then we have the analogue of Theorem 9.4.4 - [12]:

Theorem 3.5. I f(z) = >~ a,z", with a, 1, 0, then f  (Bes;);

n=0
if and only if Hf € Sl(Hz, Hﬁ ). Moreover the corresponding norms are

equivalent.

Proof. Let f e (Bes; ):;3 Then, by using the proof of Theorem 9.4.4 -

[12], we get
H; - I (= o )E()H g, dAGw).

1

where g(w) = f"(z)/ w? e LD, dA), and K, (t) = P
e

, with |w| < 1.
124



34 N. POPA
Since Hy h = h (w)(Kw—-1), Yhe H3, we have that Hg isarank 1

operator on H(%, into H(% Now, since, for w = |w|ele,

(K ~1)(0) = (—L——1) = julee (Y w"e ™),
1 - we —

we have

0 o0
Z”wlnﬂei(nﬂ)e _ |w|n+2ei(n+2)6| _ Z|w|n+1|1 _ wl’ Vk e N,
ek n=~k
1

———— <o, and Hz :Hg; —>H_02l is
(1~ [uwf)'/? o

consequently | K, — 1||;§ <

a rank 1 linear operator.

Thus, by Remark 3.4 - (1), and by the proof of Theorem 9.4.4 - [12], we
have that
Wl
1 fuf?

1#g, o2, 2) =
Consequently, reasoning as in [12]-pages 200-201, we have that:
”Hf ”Sl(Hs,Hifz) is dominated by ||f||(Besl)§ < oo,
Moreover, there is a constant C > 0, independent of f, such that
1 sy a2,22) < C Wl

for f € (Besy),.

Conversely, let Hj e S,(H3, H_g), with a, {, 0. Since H3
has a Schauder basis [10], it follows that Hy e ( H(% ) (QDHH_(%,
that is Hj =37 0.fi ®g, with f,c(H2) g, ¢ HS, and

3 allfalirz el <
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By using Theorem 2.1 we can assume f,, € d(2) = H?. Then we have,
uniformly with respect to n, ||f,;||(chl o ||f,;||d(2), and ||f,;||(H§ j 2 Clfalg2,

where C > 0 is a constant not depending on n.
Consequently we have "Hfllsl(HZ,?) = ann"f,;"Hz”gn"Hz <

- , — — . 2 172
C lzn}‘n"fn"(Hg)*"gn"Hg :"Hf”Sl(Hz,Hg) <o, thatis Hy eS| (H*,H*),

and, by using the proof of Theorem 9.4.4 -p. 201 -[12], it follows that

[ IFlaaG) < o

Thus f € (Bes;),. O

What about the characterization of Hankel operators from other
ideals of operators, similar to Schatten classes S;,,1 < p < ?

We were only been able to give a characterization of Hankel
operators mapping H(% into ?, which are 2-nuclear operators. (See [8],
[91.)

We recall the definition of the analytic Besov space Besg, [12] as

follows:

Besy = {f : D — C, f analytic function such that

"f"Besg = U.le’(z)FdA(z)jl/g < of.

An operator T : X — Y, X, Y Banach spaces is called a 2-nuclear
operator [9], and is writting T € Ny(X, Y), if
T = Zai ® y;, such that ly x/(a) = (Z:"O‘i"2 M2 < oo,
i=1 i=1

e}

and wy y(y) = sup (O |y(;)*)* < oo,
1<t 4=
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T € Ny(X, Y) is a Banach space when equipped with the norm
"T||N2(X, Y); = inf{l2,X’(a)w2,Y(y)}-
Now let us denote by (Besy); := Besg N M. Then we have:

Theorem 3.6. Let f € M, f(z) = Zioak,zk, z € D. Then
Hj e Ny(H3, H?) & f e (Besy)y < Y af(k+1) < .

k=0

Moreover

15 ||N2(H§,?) ~ (Za,?(k + 1),
5=0

Proof. The second equivalence in the statement of the theorem is

nothing else than a particular case of Corollary 1.3 - [5].

So, it remains only to prove

H; e Ny(Hg, H?) < [ e (Besy)y.

Let f e (Besz)g. By using Theorem 9.4.13 - [12], and Proposition

2.11.27-[9], we get that Hj e Ny(HZ, H?).

7T™'e Ny(cop(2), H?),

Conversely, let Hf € NZ(H(%, H2). Then, Hf

where 77! : cop(2) > H, 3 is the isomorphism given by Corollary 1.7,

T W) =x,x, = [ ,n>0.
kZ:;Lk+1
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Equivalently, it follows that the operator given by the product of

matrices
1 i1 1
N ay as Qay % % ‘1*
a2 a3 a4 e e O § § Z
H = (13 (14 O 0 l l
ay 3 4
1
: 0 0 0 1

belongs to No(cop(2), H?).

Hence, by using relation (6.5) - [2] and Proposition 2.11.27 - [9], we
get that

a1 + Qg a1 +ag +asg a1 +ag9 +ag +ay
a
1 2 3 4
a9 + Qg Qg9 + ag + ay
%2 2 3
H = as + ay
as —2
a4 e
S 82(22, fz)

Thus, it follows that

o0 o0 o0
9 1 2 1 2
E a +— E (a; +aj1) T z (@; + i1 + Qjpg)” + o < o0,
i-1 27 = 3713

Since the sequence (q;); is monotone decreasing, we get

0 ) 0 0
. 2 2 2 2
Zzai :Zai +Zai +Zai + .- < 00,

1=1 1=1 =2

N
I
w

thatis f € Besj.
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