Research and Communications in Mathematics and Mathematical Sciences
Vol. 11, Issue 1, 2019, Pages 63-87

ISSN 2319-6939

Published Online on November 12, 2019

© 2019 Jyoti Academic Press

http://jyotiacademicpress.org

BESSEL COLLOCATION APPROACH FOR SOLVING
ONE-DIMENSIONAL WAVE EQUATION WITH
DIRICHLET, NEUMANN BOUNDARY
AND INTEGRAL CONDITIONS

SUAYIP YUZBASI

Department of Mathematics
Faculty of Science

Akdeniz University

TR-07058, Antalya

Turkey

e-mail: syuzbasi@akdeniz.edu.tr

suayipyuzbasi@gmail.com

Abstract

In this paper, a collocation method based on Bessel functions of first kind is
applied to solve the one-dimensional wave equation subject to the Dirichlet,
Neumann boundary, and the integral conditions. Firstly, the matrix forms of
these functions with two variables are constructed. Secondly, the matrix forms
of the solution form and its partial derivatives are organized and thus each
terms of wave equation are written in matrix form. Similarly, the matrix forms
of the Dirichlet, Neumann boundary, and the integral conditions of the problem
are constructed. By using the collocation points, these matrix equations and
matrix operations, the wave problem is reduced to a system of linear algebraic
equations. Finally, the solutions of this system determine the coefficients of the
assume approximate solution in Bessel series form. An error analysis technique
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is presented for the method. To demonstrate the validity and applicability of the
technique, some numerical examples are solved. The method is easy to
implement and produces accurate results. Also, the results of the method are
compared with the results of previous methods in literature.

1. Introduction

The solutions of the hyperbolic non-local initial-boundary value
problems are used in the solutions of the model problems in science and
engineering. Therefore, the development of numerical methods for the
solutions of these problems has been an important research subject in
many branches of science and engineering. The hyperbolic partial
differential equations with given initial conditions and a standard
boundary condition and an integral condition replacing the classic
boundary condition are encountered in mathematical modelling of many
problems in physics [1-9].

In this study, we deal with the one-dimensional wave equation [10, 11]

2 2
L, 0] = g, 1), Live, 0] = S0 - OV xcfo, )10, 7] (1)
ot ox

with the Dirichlet boundary condition
vix, 0) = fix), x<[0,1], @)
v(0,t) = 81), tel0,T], ®3)
Neumann boundary condition
vi(x, 0) = fo(x), x € [0, 1], 4@
and the nonlocal condition (or the integral condition)

l

Iv(x, t)dx = go(t), 0<t<T, )
0

where q, fi, fo, g and g9 are known functions and also ¢(x, t) is

defined for (x, t) € [0,1]x [0,T1], fi(x), fo(x) € C[O, 1], g1(¢), g2(¢) € C[O, T].
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Recently, the one-dimensional wave equations have been solved by
using numerical methods, such as the finite difference method [10], the
Bernstein Ritz-Galerkin method [11], the method of lines [12], the
variational iteration method [13], a numerical method based on an
integro-differential formulation [14], the Legendre tau method [15],
homotopy perturbation method [16], Lagrange interpolation, and
modified cubic B-spline differential quadrature methods [17]. In addition,
some partial differential equations considered with the integral condition
have been solved with the aid of various numerical methods considered in
[2, 5, 9, 18-25]. Also, Yuzbasi and Sahin [23] have applied the Bessel
collocation approach to solve singularly perturbed one-dimensional
parabolic convection-diffusion problem.

In this paper, by means of the collocation method in [23], the
solutions of one-dimensional wave equations will be computed in the

truncated Bessel series form

N N
V@ 1) = D ap oy s 1) Ty (s 1) = T (x0), ©
r=0s=0
so that a, ¢;r,s=0,..., N are the unknown Bessel coefficients and

J,(x),n=0,1,2,..., N are the Bessel functions of the first kind
defined by

N

= k 2%+n
(-1 (1)
];k!(k+n)! 3 , neN,xel0,n).

|
Jn(x) =

2. Main Matrix Relations

To obtain the numerical solution of the one-dimensional wave
equation with the presented method, we evaluate the Bessel coefficients
of the unknown function. For this purpose, let us write the solution

function (6) in type [23]
v(x, t) = J(x)Q(t)A, (7)
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I(x) = [To() 1 (0) Iy () venys Q)

A= [ao,o Qo1 "

and if N is odd,
1
01012°
1
on'a!
D=| o
0 0
0 0

J(x) = X(x)DT, X(x) = [1 x x2 ~--xN],

J(¢) 0 0

|0 J() 0

lo 0 - : ’
0 0 0 J(t) (N+1)X(N+l)2

T
Qo,N 1,0 ©1,1 - @,N " AN, 0 ON,1 T aN,N] )

®)

N1
-1 (-1) 2 0
11122 (N—ljy(N—ljvngl
2 U2/
N1
0 (_1) 2
(N—lj,(N+1), N
A
2 2
N-3
1 )2 0 *
012122 (N_3jv(N+1)v2N*1
2 )2 )
1
0 _ 0
o(N —1)2N !
0 - 0 1 =
0! N2 J(N+1)(N+1)
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if N is even,

N
1, -l o (-1)2
0l012° 11122 (ﬁ)g(ﬁ)zzN
2 )2
N-2
1 1)z o
ort (N - ZJY(EJQN%
2 2
N-2
D= 0 1 (_ 1) 2
012122 (N—2JI(N+2),2N
2
0 0 0 %Nl 0
Ol(N -1)2N-
L 0l N2 JN+1)x(N+1)

The matrix forms of the relations between the matrix X(x) and the

matrices XM (x) and X®(x) becomes as follows [23]:

XO(x) = X(x)B? and X@)(x) = X(x) (B, )
where
0 1 0 07
0o o0 2 0
BT -
o o o0 - N
o o 0 - 0]

By using Equations (8) and (9), we have the matrix relation

JD(x) = X(x)B'D? and J@(x) = X(x)(BT *D”. (10)
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Since D7 is an inverse matrix, by using relations (8) and (10) as follows
[25]

IO ) = XB()DT = X(x)(BTYDT, k=1, 2
X(x) = J(x) (D)
we gain the relation between the matrix J(x) and its derivatives J®(x)
and J®(x) as
JD(x) = J(x)P and IP(x) = J(x)P2, (11)
so that
PF = (DT BTYDT, k=1, 2.

In the same way to Equation (9), the derivatives Q(l)(t) and Q(2)(t) can

be expressed as follows [23]

Q" () = QWP and Q®() = QUP?, (12)
where
P 0 0]
R 0
P -
L0 0 o Plvinuveny?

3. Method for Solution

With the aid of the relations (7), (11) and (12), we first gain the

matrix forms of the terms v, (x,¢) and vy(x, t) of Equation (1) and

v,(x, t) given in Equation (4) as

vy (x, £) = I(x)Q(t)PA, (13)
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e (%, ) = J(2)P?Q()A, (14)

and
uy (x, t) = J(x)Q()PZA. (15)

We substitute the expressions (14) and (15) into Equation (1) and then

find the matrix equation as

{I@)QWP? - J)P2QU)A = glx, 1), (16)
Briefly, Equation (16) can be expressed in the matrix form as

where
Wi(x, t) = [wy, k]lX(NH)2 = J(x)Q()P2 - J(x)P2Q(t), k = 0,1, ..., (N +1)%

When we substitute the collocation points defined by

l . T

Nl = =01 N j=01..N, (18)

xX; =

into Equation (17), we obtain a system of the matrix equations
D 2 2
J(x;)Q(t; )P* - I(x; )P7Q(¢;) = q(x;, t;).
Briefly, the main matrix equation of this system is written as
WA = Q. (19)

In here,

W = [W(x, tg) W(xg, 1) W(xg, t5) W(xy, to) W(xy, 1) W(xy, ty)--

T

W(xp, to)Wxy, t1) - W(xy, ty )](]\]4,1)2><(N+1)2 ’

T
A =ag 0001 = o, NOL0GL1 QLN AN.0ANL AN N L g s
(N+1)“x1
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and

F = [q(xg, to)q(xo, t1) - q(xo, tn)a(xy, to)a(xy, t1)---qlxy, tn) - q

(e toalens 1) gl )L o

Since we find the matrix forms of the conditions (2)-(4), we first
substitute the relations (7) and (13) into Equations (2)-(4) and thus the

corresponding matrix forms of the conditions (2)-(4) are written as

v(x, 0) = J(x)Q(0)A = fi(x), 0<x </, (20)
v (x, 0) = J(x)Q(O)PA = fo(x), 0<x <1, (21)
v(0, t) = JO)Q()A = g,(t), 0<¢<T. (22)

To get the matrix form of the condition (5), we put Equation (7) into the
condition (5)

l [ l
j J(x)Q(t)Adx = { j J(x)dx}Q(t)A _ { '[ X(x)dx}DTQ(t)A, 0<t<T,
0 0 0

and thus, we have the matrix form of the condition (5) as
LDTQMA = go(t), 0 <t < T, (23)
so that

l2 13 lN+l
L_{ngm—N+1 |

When the collocation points (18) is placed into the matrix forms (20)-(23),

we have
v(x;, 0) = J(x;)QO)A = fi(x;), vy(x;, 0) = I(x;)QO)PA = fo(x;),

(0, ;) = JO)Q;)A = g1(¢;), LDTQ(£))A = g5(¢)).
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Hence, the fundamental matrix equations of the conditions (2)-(5) are
written as follows, respectively,

UA =[F] or [U;F],
UA=[F] o [U;F)
VA = [G;] or [V;Gy],
VA = [Gy] or [V; Gyl

so that

— = = T
U =[UgU; - UxI", U = [GU; - Uy, V = [VoVy - Vi I,

V=[Vov, ""_IN]T, F, = [fi(x) filx) Al
Fy = [fa(x) f2(x1)~-f2(xN)]T, G; = [g1(to) gl(tl)"'gl(tN)]T,

T . .
Gy = [ga(ty) g2t1)---g2tn)] .1 =0,1,..., N, j=0,1,.

= .., N,
U; = J(x;)Q0) = w1 wig w3

Ui(N+1)? b

U; = J(x;)QO)P = [ﬁil Uig Uig = Wy gy J’

Vj = JOQ() = i vjz vis vy

and

— T — — — -
V; =LD"Q(¢;) = l“jl Viz iz " Vina)? J
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To find the solution of Equation (1) under conditions (2)-(5), we form the

augmented matrix [15] as

U ; F,
U : F,
W:qQl=|v . 6| 24)
v ; G,
LW ; Q |

Thus, the Bessel coefficients matrix is
~\1lxz
A- (Wj Q.

In here, [VNV, Q} is computed by using the Gauss elimination technique

and then removing the zero rows of gauss eliminated matrix. The Bessel

coefficients matrix is easily calculated by using the command

‘A =W\ Q’ in MATLAB. The determined coefficients is placed in

Equation (6) and thus, we obtain the desired approximate solution

N N
() = DD o, (1), (25)

r=0s=0
4. Error Estimation for Solution

In this section, by using error computation [28, 29] and the residual
correction technique [30, 31], error estimation is made for the suggested
method. For our purpose, we deal with the residual function for the

present method as

RN(x’ t) = L[VN(x’ t)] - Q(x7 t)' (26)
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Here, vy(x, t) is the Bessel series solution (25) of the problem (1)-(5).

Hence, v (x, t) satisfies the equation

621/N 621/N

L[VN(x’ t)] = 9 9 = Q(x’ t) + RN(x’ t)’ (27)
ot ox

with the conditions

VN(x’ 0) = fl(x)’ lVNt(x’ 0) = f2(x)’ 0<x<]

w0 0) = &), [un(w v = g50), 05 ¢ < T, @9
0
Now, let us define the error function as
en(x, 1) = v(x, t) —vn(x, ). (29)

Here, v(x, t) is the exact solution of the problem (1)-(5).

By using Equations (1)-(5) and (27)-(28), we obtain the error
differential equation

L[BN(.X‘, t)] = L[U(x> t)] - L[UN(x7 t)] == RN(.X‘, t)’
with the homogeneous conditions

en(x,0)=0, epy(x,0)=0,0< x <1,

l
en(0, 1) = 0, IeN(x, f)dx =0,0<t<T,
0

or clearly, the error problem is

2 2
TN _ON _ _Ry(x, 1),
ot ox

en(x, 0) =0, epz(x, 0)=0,0 < x <1, (30)

l
en (0, ¢) = 0, JeN(x, f\dx =0,0<¢<T,
0

The error problem (30) in the same way as in Section 3 is solved and thus
we gain the approximation, ey p/(x, t) to en(x, t).
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Consequently, if the exact solution of Equation (1) is not known, then

the error function can be guessed by ey ps(x, ).

5. Numerical Examples

In this section, some examples will be investigated to show the
reliability and the efficiency of the proposed scheme in this paper. The

errors have been computed by using

T 1/2
Ly = |vler, )= v, Oy =| [ [0ler, )= v, )Pandt |
00

and

Ly, = |v(x, t) —vy(x, t),, = max{v(x, t) —vy(x, ¢),0<x <[, 0<¢t < T}

Application of the error estimation introduced in Section 4 is made in
Example 1. The computations associated with the examples have been
done on an Intel PC using MATLAB.

Example 1 ([12]). We first consider Equations (1)-(5) with [ = T =1,
Ax) =0, fo(x) = xe™, g1() = 0, g5(t) = 20! +te™ and g, 1) =
— 2(x —t)e ™. The exact solution of the problem is [2, 10] w(x, t) = xte ™.

By applying the scheme described in Section 3, we find the

approximate solutions of the problem for N = 3, 5, 7, 10. In Table 1, we
show the values of Ly and L, for N = 3, 5, 7, 10. The actual and the

estimated maximum absolute errors are tabulated for some values (N, M).

In addition, Figure 1(a)-(d) show graphs of the absolute error functions

en(x, t) = [v(x, t) - vy (x, ¢) for N =3, 5, 7, 10. The estimated absolute
error functions, ey p(x, t) for (N, M) = (3, 4), (7, 8) are given in Figure

1(e)-(f). It is observed from Figure 1 and Table 2 that the error estimation

defined in Section 4 is very accurate.
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Table 1. The errors Ly and L, for Example 1

N 5 10
Ly 3.89x1073 6.89x107° 4.19x1077 1.06 x 1079
Lo 3.58 x 1072 1.05x1073 7.9x1078 4.2x107?

Table 2. Comparison of maximum absolute errors (actual

estimation) for some values (N, M) for Example 1

Actual maximum

Estimated maximum

(N, M) absolute error L, absolute error
(3, 4) 3.5809 x 1072 1.9944 x 1072
(4, 5) 8.1408 x 1073 6.2206 x 10~
(4, 6) 8.1408 x 107 3.6640 x 1074
(5,7) 1.0435¢-003 2.5119e-004

(7, 8) 7.8252 x 1076 1.3249 x 1076
(8,9) 5.8052 x 1077 2.7452 x 1077
(9, 10) 8.6434 x 1078 6.9753 x 1078
(10, 11) 4.2730 x 1079 3.3826 x 1078

75

and
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ea(x Ay

= 5(){ 1

" 02

t
(b) Plot of the absolute error function es(x, t) for N = 5.
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0.2
t

em(x,t)

(d) Plot of the absolute error function ejq(x, ¢) for N = 10.
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002 e
T

001 dd

Error

0.005 4.7

(e) Plot of the absolute error function eg 4(x, t).

Error

0.2

X 0 o t

(f) Plot of the absolute error function e; g(x, t).

Figure 1. For Example 1 (a)-(d), graphs of the absolute error functions
en(x, t) = v(x, t) - vy (x, ¢) for N =3, 5, 7, 10 and (e)-(f) the estimated
absolute error functions, ey p(x, t) for (N, M) = (3, 4), (7, 8).
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Example 2 ([11]). As a second example, let us consider Equations
(D-(6) with =T =1, fi(x) =0, fo(x) = 0, g1(¢) = 0, g5(t) = 0, q(x, t)

2
= (2x — 3x2 -4, 2 +6In(1+¢2) and the exact solution
(1+¢2)? 1+¢2

u(x, ) = In(1 +t2)(2x - 3x2).
By using the presented technique with NV = 3, 7, 10, the approximate

solutions are computed for N = 3, 7, 10 of the Example 2. Table 3 presents

some values of absolute error functions ey (x, t) = [v(x, t) — vy (x, ¢)| for
N =3, 7, 10. In Figure 2, the absolute error functions ey (x, t) = |v(x, ¢)
- vy (x, ¢)| for N=3, 7, 10 are plotted. Table 3 and Figure 2 show that

the accuracy increases when N is increased.
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es(x,t)

» 02
X U 0 t
(a) Plot of the absolute error function es(x, t) for N= 3.

02

® 0 0 t

(b) Plot of the absolute error function e;(x, t) for N=17.
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(c) Plot of the absolute error function e;q(x, t) for N=10.

Figure 2. Graphs of the absolute error functions ep(x, ¢) = |v(x, ¢)

- vpy(x, t)| for N=3,7,10.

Table 3. Comparison of the absolute errors of v(x, ¢) for N =3, 7, 10 of

Example 2
(i, t5) N =3, eg(x;, tj) N =7, eq(x;, tj) N =10, ejg(x;, t})
0, 0) 5.1378e-005 3.4366e-005 1.8486e-006
(0.1, 0.1) 1.2218e-003 2.3335e-005 4.2913e-007
(0.2, 0.2) 1.7303e-003 2.2185e-006 5.6527e-007
(0.3, 0.3) 9.2713e-004 3.2261e-005 1.9086e-006
(0.4, 0.4) 5.9512e-004 1.7129e-005 6.2070e-007
(0.5, 0.5) 1.6496e-003 1.7738e-007 1.7617e-006
(0.6, 0.6) 1.2108e-003 1.1823e-004 7.7937e-006
(0.7, 0.7) 1.0464e-003 2.2970e-004 8.7023e-007
(0.8, 0.8) 4.6978e-003 8.0386e-005 1.3817e-005
(0.9, 0.9) 9.1120e-003 4.8088e-004 2.3497e-005

(1,1) 1.4561e-002 1.8319e-003 1.0376e-004
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Example 3 ([10]). Finally, we consider Equations (1)-(5) with [ = T =1,
fl(x) =0, f2(3€) = TECOS(TCX), gl(t) = sin(nt), gZ(t) =0 and q(xa t) = 0. The
exact solution of this problem is v(x, t) = cos(nx) sin(nt).

Table 4 denotes a comparison of the present method and the
finite difference method [10] for NV = 7. This comparison shows that our

method is very effective. Also, we give the absolute error function

eq7(x, t) = v(x, t) — v7(x, t)| for N= "7 in Figure 3.

Table 4. Comparison of the absolute errors for v(x;, 0.5) of the Example 3

Finite difference Present method

i method [10] N =1, e7(x;, 0.5)
0.1 1.5e-003 2.8149e-004
0.2 1.4e-003 2.5674e-004
0.3 1.7e-003 1.6368e-004
0.4 1.6e-003 7.3575e-005
0.5 1.5e-003 5.5188e-005
0.6 1.5e-003 2.5172e-004
0.7 1.9e-003 5.3196e-004
0.8 1.8e-003 7.8042e-004
0.9 1.7e-003 7.6521e-004

1 1.6e-003 2.6242e-004




BESSEL COLLOCATION APPROACH FOR ... 83

Plot of the absolute error function e;(x, t) for N=17.

Figure 3. Graphs of the absolute error functions epy(x,¢) =|v(x, t)

- UN(.’)C, t)l for N=1.

6. Conclusion

In this article, a collocation approach 1is presented for the
approximate solutions of onedimensional wave equation subject to
Dirichlet, Neumann boundary and nonlocal integral conditions. We
demonstrate the accuracy and efficiency of our technique with examples.
It seems from Tables and Figures that the errors decrease as N is
increased. By using the error estimation introduced in Section 4, the
absolute error functions are estimated and they are shown in Figure 1(e)-(f).
It is seen from Figure 1 and Table 2 that the error estimation is very
effective. When the exact solution of the problem is not known, then the

errors can be guessed with the error function ey p/(x, ¢). In addition, we

compare our method with the finite difference method [1] and this
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comparison indicates that our method is very effective and accurate and

easy to apply as well. The approximate solutions of Equation (1) by the
y pply pp q y

suggested method are calculated easily in shorter time with the computer
programs such as MATLAB, Maple, and Mathematica.
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