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Abstract 

First we remind the normal form near a stationary solution of an autonomous 
Hamiltonian system. Second we consider the linear periodic Hamiltonian 
systems. For them we find normal forms of Hamiltonian functions in both 
complex and real cases. The real case has a specifficy in the case of parametric 
resonance. Then we find normal forms of the Hamiltonian functions for 
nonlinear periodic systems. By means of additional canonical transformation of 
coordinates, such system always is reduced to an autonomous Hamiltonian 
system, which preserves all small parameters and symmetries of the initial 
system. Its local families of stationary points correspond to families of periodic 
solutions of the initial system. 
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1. Introduction 

The resonant normal form of autonomous Hamiltonian system near a 
stationary solution, taking in account only eigenvalues of the matrix A of 
its linear part and without any restriction on the matrix A, was 
introduced in [1], Section 12. Appeared, that it is equivalent to a 
Hamiltonian system with a smaller number of degree of freedom. 

Later it was introduced a more simple ultraresonant normal form 
which takes in account the Jordan blocks of the matrix A [2]. But these 
additional simplifications do not allow additionally to reduce the number 
of degrees of freedom. 

Theory of the resonant normal form was given in details in Chapter I 
of [3] and here it is shortly remind in Section 2. The analogous theory of 
resonant normal form for periodic Hamiltonian system was given in 
Chapter II of [3]. However there are two defects: 

● the case of parametric resonance was given not so good and; 

● the normal form is not reduced to an autonomous system. 

Here we correct these defects in Sections 3 and 4 correspondingly. 

2. Normal Form of the Autonomous Hamiltonian  
System [3, Chapter I] 

Let us consider the Hamiltonian system 

,,,1,, nj
j

j
j

j …�� =
ξ∂
γ∂−=η

η∂
γ∂=ξ  (1) 

with n degrees of freedom in a vicinity of the stationary solution 

( ) ( ) .0,,,0,, 11 =ηη==ξξ= nn …… ηξ   (2) 

If the Hamiltonian function ( )ηξ,γ  is analytic in the point (2), then it is 

expanded into the power series 

( ) ,, qp
pq ηξηξ γ=γ ∑   (3) 
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where ( ) ( ) .,0,,,,,,, 21
2111 np

n
ppn

nn qqpp ξξξ=∈== ……… pqpqp ξZ   

Here pqγ  are constant coefficients. As the point (2) is stationary, then 

the expansion (3) begins from quadratic terms. They correspond to the 
linear part of the system (1). Eigenvalues of its matrix are decomposed in 
pairs: 

.,,1, njjnj …=λ−=λ +  

Let ( ).,,1 nλλ= …λ  The canonical changes of coordinates 

( ) ( )yx,, →ηξ   (4) 

preserve the Hamiltonian structure of the system. 

Here 

( ) ( ).,,,,, 11 nn yyxx …… == yx  

Theorem 1. There exists a formal canonical transformation (4), 
bringing the system (1) to the normal form 

,,,1,, njx
gyy

gx
j

j
j

j …�� =
∂
∂−=

∂
∂=  (5) 

where the series 

( ) qp
pq yxyx gg ∑=,   (6) 

contains only terms with ,0, =− λqp  and the square part ( )yx,2g  has 
its own normal form (i.e., the matrix of the linear part of the system is the 
Hamiltonian analog of the Jordan normal form). 

Here nnpp λ++λ= …11, λp  is the scalar product. 

If ,0≠λ  then the normal form (5) is equivalent to a system with 
smaller number of degrees of freedom and with additional parameters. 
The normalizing transformation (4) conserves small parameters and 
linear automorphisms 

( ) ( ) .~,~,~, tt →→ ηξηξ  
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Local families (i.e., coming through the point (2)) of periodic solutions of 
systems (5), (6) satisfy the system of equations 

,,,1,, njayx
gaxy

g
jj

j
jj

j
…=λ=

∂
∂λ=

∂
∂  

where a is a free parameter. For the real initial system (1), the 
coefficients pqg  of the complex normal form (6) satisfy to special 

properties of reality and after a standard canonical linear change of 
coordinates ( ) ( )YXyx ,, →  the system (5) transforms into a real 

system. There are several methods of computation of coefficients pqg  of 

the normal form (6). The most simple method was described in the book 
[4]. 

3. Normalization of a Linear Hamiltonian System 

3.1. Linear system 

We consider the linear system 

( ) ,ζζ vAvd
d

/=
/

  (7) 

where the vector ( ) ( )vAm /ζζ= ,,,1 …ζ  is a matrix depending of v/  
analytically. After the change of coordinates 

( )zvB /=ζ   (8) 

system (7) goes to the system 

.1 zz







/
−=

/
−

vd
dBABBvd

d   (9) 

Let now the system (7) be Hamiltonian system 

,,,1,, njvd
d

vd
d

j

j

j

j …=
ξ∂
γ∂−=

/

η
η∂
γ∂=

/

ξ
 (10) 
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i.e., ( ) ( ) ( ) ( ),,,,,,,,,2 11 vJvAnm nn /Γ=/ηηξξ=== ……ηξζ  where 

( )v/Γ  is a symmetric matrix, 







−

=
0

0
n

n
E

E
J  and the Hamiltonian 

function ( ) .,2
1 ζζ v/Γ=γ  Here nE  is the identical nn ×  matrix, and 

⋅⋅,  is the scalar product. If the transformation (8) is canonical, i.e., 

( ) ( ) const., =δδ=//∗ JvJBvB   (11) 

(star is the symbol of transposition of a matrix), then system (9) is also a 
Hamiltonian system and 

,,2
1,2

1,2
1 def zzzzzz Gvd

dBJBBBg =
/δ

+Γ
δ

= ∗∗  (12) 

i.e., ( ).,,11 yxz =/δ+Γδ= ∗−∗− vdJdBBBBG  

Now we consider the Hamiltonian system (10), where the matrix 
( ) ( )vJvA /Γ=/  has in v/  period ,2π  i.e., ( ) ( ).2 vAvA /=π+/  We will try to 

obtain Hamiltonian (12) of the most simple form by means of linear 
canonical change of coordinates (8). Let ( )vZ /  be the fundamental matrix 

of solutions to system (7). Then 

( ) ( ) ,2 NvZvZ /=π+/  

where N is a constant matrix, .0det ≠N  It is canonical for Hamiltonian 
system. If matrix N can be written in the form 

( ),2exp JLN π=   (13) 

where L is a constant symmetrical matrix, then 11GBBL ∗=  according to 

Section 1 of Chapter I [3], where 1B  is a constant canonical matrix and G 

is the normal form of matrix L. So transformation (8) with 
( ) ( ) ( )JGvvZvB /−/=/ exp  reduces Hamiltonian system (10) to normal form 

,const., ==
/

GJGvd
d zz   (14) 
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with Hamiltonian function .,2
1 zz Gg =  But writing (13) exists not for 

any canonical matrix N (see Williamson [5]). Let n21 ,, νν …  be the 

eigenvalues of the matrix N. Together with number ,bj =ν  they have 

the number .1−b  Moreover elementary divisors of the matrix NE −ν  
have following properties: 

● if 1±≠b  and there are k  elementary divisors ( ) ,lb−ν  then there 

are exactly k  elementary divisors ( ) ;1 l
b−−ν  

● if 1±=b  and l is odd, then the elementary divisor ( )lb−ν  presents 

even number times. 

3.2. Complex normal form 

For the complex system (7), the matrix N is also complex. 
Nonreduced over field of complex numbers C  elementary divisors of the 
matrix NE −ν  belong to one of the following cases: 

(C1) ( )lb−ν  and ( ) ;1,1 ±≠− − bb
l

ν  

(C2) ( )lb−ν  and ( ) lbb l ,1, ±=−ν  is odd; 

(C3) ( ) ;1 2l−ν  

(C4) ( ) .1 2l+ν  

By means of a constant canonical change of coordinates ,ζ  matrix 

( )v/Γ  can be transformed to a such block form, that each mentioned cases 

corresponds to its own four blocks of dimension l, and zeros stay out of 
these blocks. So it is enough to consider each of these cases, assuming 

.nl =  In cases (C1) − (C3), there is writing (13); here elementary divisors 
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( )la−λ  of the matrix JLE −λ  belong to the cases (C1) − (C3) of 

Subsection 1.2 of Chapter I [3], where 

,argln2
1Ln2

1 imbi
ibba +
π

+
π

=
π

=  

and m is arbitrary integer; namely: in case (C1) 

,
0

0








=

∗

C
CG  

where C is the Jordan block :ll ×  

,

0000
0000
00000
0000
00000























ε
ε

ε
ε

a
a

a
a

…
…
…
…
…

 

i.e., 

;1

1

11
2 +

−

==
∑∑ ε+= jj

l

j
jj

l

j
yxyxag  (15) 

case (C2) with 1=b  belongs to case (C1) with ;ima =  case (C2) with 

1−=b  belongs to case (C1) with ;2
iima +=  in case (C3) 

,0









∆σ
=

∗

C
CG  

where C is the Jordan block of order l with 1,0 ±=σ=a  and diagonal 

matrix { },0,,0,1 …=∆  i.e., 

;2
1 2

11

1

1
2 yyxg jj

l

j
σ+ε= +

−

=
∑  (16) 
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in case (C4) writing (13) is absent and the complex normal form 

( )zz vJGvd
d

/=
/

 

has 

( )
,

exp
0










/∆σ
=

∗

viC
CG  

where C is the Jordan block of order l with 1,2 ±=σ+= iima  [6], i.e., 

( ).exp2
1 2

11

1

11
2 viyyxyxag jj

l

j
jj

l

j
/σ+ε+= +

−

==
∑∑  (17) 

Let us consider the double cases (C3) and (C4). 

(C3*) Two elementary divisors ( ) l′− 21ν  and ( ) l′− 21ν  correspond to 

normal form (14) of the case (C2) with ima =  and with arbitrary 
integral m (only now ll ′= 2  is even). 

(C4*) Two elementary divisors ( ) l′+ 21ν  and ( ) l′+ 21ν  correspond to 

normal form of case (C1) with 

( ) ( ) .21Ln2 1 iima +=−π= −  

Thus, by the complex change (8), where ( )vB /  is canonical 2π-periodic 

matrix, the initial Hamiltonian function 

( )ζζ v/Γ=γ ,2
1  

is reduced to a normal form, which is a sum of forms (15), (16), and (17). 

It is constant, if each elementary divisor ( ) l21+ν  presents even number 

times among elementary divisors of matrix .NE −ν  Williamson [5, 
Theorem 1] proved, that the condition is necessary and sufficient for 
complex reducibility. 
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3.3. Real system 

For a real system (10), the matrix N is real. So elementary divisors of 

matrix NE −ν  have following properties. Let elementary divisor ( )lb−ν  

present exactly k  times. 

● If number b is complex, i.e., ,0ImRe ≠⋅ bb  and ,1≠b  then 

elementary divisors ( ) ( )ll bb 1, −−− νν  and ( )lb 1−−ν  present also exactly 

k  times. 

● If number b is real or ,1,1 ±≠= bb  then ( )lb 1−−ν  presents 

exactly k  times. 

● If 1±=b  and l is odd, then k  must be even. 

So elementary divisors of matrix NE −ν  belong to one of following 
eight cases: 

(R1) ( ) ( )ll bb −− νν  and ( ) ( ) ,0ImRe,,11 ≠⋅∈−− −− bbbbvb
ll Cν  

;1≠b  

(R2) ( )lb−ν  and ( ) ;1,0,,1 ≠>∈− − bbbb
l Rν  

(R3) ( ) ( ) ;1,1, ±≠=−− bbbb ll νν  

(R4) ( )l1−ν  and ( ) ll ,1−ν  is odd; 

(R5) ( ) ;1 2l−ν  

(R6) ( )l1+ν  and ( ) ll ,1+ν  is odd; 

(R7) ( )lb−ν  and ( ) ;1,0,,1 −≠<∈− − bbbb
l Rν  

(R8) ( ) .1 2l+ν  
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By means of a real constant canonical change of coordinates, matrix 
( )v/Γ  can be transformed to a such block form, that each of mentioned 

cases corresponds to its own four blocks of dimension l and zeros stay out 
of these blocks. So it is enough to consider each of these cases, assuming 

.nl =  In cases (R1) − (R7) there exists writing (13) with real matrix L; 

here elementary divisors ( )la−λ  of matrix JLE −λ  belong to cases   

(R1) − (R5) of Subsection 1.3 of Chapter I [3], where 

.ln2
1Ln2

1 imbba +
π

=
π

=  

Here the number ln b is uniquely determined by number b, but the 
integer m must be calculated by the following method. We compute any 
solution to a linear subsystem of form (7) belonging to a case among    
(R1) − (R7). Number of oscillations each of its coordinates in period π2  is 
the number m. If we make the additional transformation 

( ) ( ) ,,,1,exp~,exp~ ljvimyyvimxx jjjj …=/=/−=  

then we obtain the eigenvalue .1~Im0:~  λλ  Here in cases (R3) and 

(R5) there is an additional real invariant .1±=σ  Thus, in cases         
(R1) − (R7), there is constant complex normal form of Hamiltonian function 

,,2
1

2 zz Gg =  

that can be translated into real normal form 

ZZ Ff ,2
1

2 =  

by means of the standard canonical transformation 

.1det, == QQzZ  

Here substitution 

,, zz P  
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where 2n-matrix ,1QQP −=  preserves Hamiltonian function. Concrete 
form of matrices Q and P for each of cases (R1) − (R7) is described in 
Chapter I [3]. So in cases (R2) − (R7) either 

,,,1,,~ ljyYyxXx jjjjjj …=====   (18) 

or 

( ) ( ) .,,1,
2
1,

2
1 ljxiYiX

i
yyiYiX

i
x jjjjjjjj …==+==−=  (19) 

Theorem 2. Complex writing of the real normal form in case (R8) is 
system (17) with such standard transformation 

{ ( )[ ] ( )[ ]},expexp12
1 itiYitiXix jjj −+−−+=  

{ ( )[ ] ( )[ ]}.exp1exp2
1 itiYitiXiy jjj +−+−=  (20) 

Here .,,1,,,, ljiieiyyeixx it
jj

it
jj …=±=σ=ε−== −  

Then 

( ) ( ),vGvG /=/  

and Hamiltonian function of the normal form (17) is 

1

1

11
2 +

−

==
∑∑ +λ= jj

l

j
jj

l

j
yxiyxg  

( ).sincos2sin2
2

111
2
1

2
1

2
1 vYvYXvXYXi

/−/−/++±  

4. Nonlinear Normal Form 

4.1. Nonlinear normalization 

We consider the Hamiltonian system with n degrees of freedom 

,,,1,, njvd
dd

vd
d

j

j

j

j …=
ξ∂
γ∂−=

/

η
η∂
γ=

/

ξ
 (21) 
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where γ  is a power series in ηξ,  with 2π-periodic in v/  coefficients, 

which is expanded into a convergent Poisson series 

( ),exp vimm
m

/γ=γ ∑ qp
pq ηξ   (22) 

beginning from quadratic form 2g  in ., ηξ  We make the linear canonical 

transformation ,,, yx→ηξ  which is 2π-periodic in v/  and brings the 

square part of Hamiltonian function of system (21) to complex normal 
form being a sum of parts (15), (16), (17). Then on the main diagonal of 
matrix JG are its eigenvalues .,,,,, 11 nn λ−λ−λλ ……  Denote  

( ).,,1 nλλ= …λ  Hamiltonian (22) takes the form 

( ) ( ).exp,, vimgvg m /=/ ∑ qp
pq yxyx  (23) 

We call it as normal form, if 

(1) its form 2g  is normal form (15), (16), (17); 

(2) expansion (22) contains only resonant terms, for which 

.0, =+− imλqp   (24) 

Here ⋅⋅,  is the scalar product. 

Theorem 3. For the Hamiltonian (23), there exists the 2π-periodic in 
ϕ  formal canonical change of coordinates :,,,, ϕ→/ vuyx v  

( ) ( ) ( ),,,,, 12 ϕ+ϕ=/ϕ+== + wwbwyxz nbv  

which transforms Hamiltonian (23) into normal form 

( ) ( ),exp,, ϕ=ϕ ∑ imhh m
qp

pq vuvu   (25) 

with property (24). Here ( ) ( ).,,,,,, 11 nn vvuu ……== vuw  

Proof see in Chapters I and II [3]. 
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Theorem 4. The canonical transformation 

( ) ( ) ,,,1,Imexp~,Imexp~ njivviuu jjjjjj …=ϕλ=ϕλ−=  

reduces the Hamiltonian normal form (25) to constant power series 

( ) ,~~~~,~~ qp
pq vuvu mhh ∑=   (26) 

where 

,Im,,0Re, m−=−=− λλ qpqp   (27) 

m,, qp  are integer, .0, qp  Here ,~
mm hh pqpq =  if ,3qp +  

quadratic terms have form ( ) ,~~,~
2
1~,~~

2 wwvu Gh =  where matrix  

Λ−= Im~ JGGJ  with diagonal matrix { },, λλ −=Λ  so quadratic terms 

in ( ) wvu ~~,~ =  are almost absent. 

Proof is reduced to checking equality (11), which is evident here. Here 
.21 nppp +++= "p  For initial real Hamiltonian (22) complex 

coordinates z are connected with real coordinates ( )YXZ ,=  by the 

standard transformation, formed by changes (18), (19), (20), and 
coordinates w and w~  are connected by the same changes with 

corresponding real coordinates W and W~  [3]. Thus, we come to 
autonomous Hamiltonian system with n degrees of freedom, which is 
named as reduced normal form. 

4.2. Small parameters 

Let the initial Hamiltonian is expanded into a power series in small 
parameters ( ).,, sµµ= …1µ  According to Theorem 5.1 of Chapter I [3], 

the normalizing transformation does not change small parameters. So we 

obtain the autonomous Hamiltonian (26), (27), where coefficients m,h qp,
~  

are power series in small parameters .µ  For 0=µ  these coefficients 

with 1=+ qp  equal to zero, but with 2=+ qp  correspond to (27). 

However for 0=/µ  it is not necessary. 
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For a system, corresponding to Hamiltonian (26), (27) we can 
compute families of stationary points near the point .0,0~~ === µvu  It 

can be done by algorithms of power geometry [7]. Families of stationary 
points of the reduced normal form (26), (27) corresponds to families of 
periodic solutions to initial Hamiltonian system. Examples of such 
computations are in [8]. 

4.3. Linear canonical automorphisms 

Let the initial system (21) have the linear canonical automorphism 

,~,~ vvM /θ=/= ∗∗ ζζ  

where M is constant nn 22 ×  matrix and .const=θ  According to 
Theorem 2.3 of Chapter I [3], the reduced normal form (26), (27) also has 
a corresponding linear canonical automorphism. However it can have 
additional automorphisms, which are absent in initial system [9]. 
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