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Abstract

First we remind the normal form near a stationary solution of an autonomous
Hamiltonian system. Second we consider the linear periodic Hamiltonian
systems. For them we find normal forms of Hamiltonian functions in both
complex and real cases. The real case has a specifficy in the case of parametric
resonance. Then we find normal forms of the Hamiltonian functions for
nonlinear periodic systems. By means of additional canonical transformation of
coordinates, such system always is reduced to an autonomous Hamiltonian
system, which preserves all small parameters and symmetries of the initial
system. Its local families of stationary points correspond to families of periodic
solutions of the initial system.
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1. Introduction

The resonant normal form of autonomous Hamiltonian system near a
stationary solution, taking in account only eigenvalues of the matrix A of
its linear part and without any restriction on the matrix A, was
introduced in [1], Section 12. Appeared, that it is equivalent to a

Hamiltonian system with a smaller number of degree of freedom.

Later it was introduced a more simple ultraresonant normal form
which takes in account the Jordan blocks of the matrix A [2]. But these
additional simplifications do not allow additionally to reduce the number

of degrees of freedom.

Theory of the resonant normal form was given in details in Chapter I
of [3] and here it is shortly remind in Section 2. The analogous theory of
resonant normal form for periodic Hamiltonian system was given in

Chapter II of [3]. However there are two defects:
e the case of parametric resonance was given not so good and;
e the normal form is not reduced to an autonomous system.
Here we correct these defects in Sections 3 and 4 correspondingly.

2. Normal Form of the Autonomous Hamiltonian
System [3, Chapter I]

Let us consider the Hamiltonian system

o o

é]_anja n;z—fj,

j:17 MR n7 (1)

with n degrees of freedom in a vicinity of the stationary solution
§:(§1’~--’§n):0’ n:(nl’-"’ 1Aln):O' 2

If the Hamiltonian function y(§, m) is analytic in the point (2), then it is

expanded into the power series

(& m) = vaqﬁpn“, ®3)
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where p=(py,..., Pp), a4 =(q1,...,9,) € Z", p,q > 0, EP = e1eb2 . ghn.
Here y,q are constant coefficients. As the point (2) is stationary, then

the expansion (3) begins from quadratic terms. They correspond to the
linear part of the system (1). Eigenvalues of its matrix are decomposed in
pairs:

Let A = (Aq, ..., A,,). The canonical changes of coordinates

€ n) - (xy) (€9
preserve the Hamiltonian structure of the system.
Here
X = (21,05 %), ¥y = (015 s D)

Theorem 1. There exists a formal canonical transformation (4),

bringing the system (1) to the normal form

og . og .
x: = ==, yi = ——=, ]:1,...,”, (5)

where the series
g(x, y) = ngqxpyq (6)

contains only terms with (p -q, ?\.) = 0, and the square part g9(x,y) has
its own normal form (i.e., the matrix of the linear part of the system is the

Hamiltonian analog of the Jordan normal form).

Here (p, A) = pjA; +... + p,A, is the scalar product.

If A # 0, then the normal form (5) is equivalent to a system with

smaller number of degrees of freedom and with additional parameters.
The normalizing transformation (4) conserves small parameters and

linear automorphisms

E&m-oEq) o7
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Local families (i.e., coming through the point (2)) of periodic solutions of

systems (5), (6) satisfy the system of equations

og og .
== = Ax; = = Ay =1, ...

where a is a free parameter. For the real initial system (1), the
coefficients gpq of the complex normal form (6) satisfy to special

properties of reality and after a standard canonical linear change of

coordinates (x,y) — (X,Y) the system (5) transforms into a real
system. There are several methods of computation of coefficients gpq of

the normal form (6). The most simple method was described in the book

[4].
3. Normalization of a Linear Hamiltonian System

3.1. Linear system

We consider the linear system

dg _
d_w - A(W)(;, (7)

where the vector ¢ = ((y, ..., ), A(¥) is a matrix depending of v

analytically. After the change of coordinates

¢ =Bz 8)
system (7) goes to the system
ds _pifap_ 4B
- B (AB v )z 9
Let now the system (7) be Hamiltonian system
dg ; dn;
T R ) R B T (10)

dy ~om;’  dy ETN
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i~e'> m = 271, C.s = (g’ Tl) = (E.sl’ cee &n’ LIV T]n), A(w) = JF(W), where

0 E,

j and the Hamiltonian
-E, 0

I'(p) is a symmetric matrix, o/ :(

function y = %(C, IF(y)). Here E, is the identical nxn matrix, and

(-, ) 1s the scalar product. If the transformation (8) is canonical, i.e.,

B*(»)JB(y) = 8J, & = const. (11)

(star is the symbol of transposition of a matrix), then system (9) is also a

Hamiltonian system and

1y BB s g gy 4B\ 1
g_28(z,BFBz)+28<z,Bde z> = 2<Z’ Gz), (12)

ie, G =8B TB+6 'B*JdB/dy, z = (x, y).
Now we consider the Hamiltonian system (10), where the matrix
A(y) = JT(p) has in p period 2mn, i.e., A +2n) = A(p). We will try to

obtain Hamiltonian (12) of the most simple form by means of linear

canonical change of coordinates (8). Let Z(y) be the fundamental matrix

of solutions to system (7). Then
Z( + 2n) = Z(y)N,

where N is a constant matrix, det N # 0. It is canonical for Hamiltonian

system. If matrix NV can be written in the form

N = exp(2nJL), (13)

where L is a constant symmetrical matrix, then L = B{GB; according to
Section 1 of Chapter I [3], where B; is a constant canonical matrix and G

is the normal form of matrix L. So transformation (8) with
B(y) = Z(y) exp(- ¥JG) reduces Hamiltonian system (10) to normal form
dz

P = JGz, G = const., (14)
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with Hamiltonian function g = %(z, Gz). But writing (13) exists not for

any canonical matrix N (see Williamson [5]). Let vq, ..., vy, be the

eigenvalues of the matrix N. Together with number v; = b, they have

the number b'. Moreover elementary divisors of the matrix vE — N

have following properties:
e if b # +1 and there are k elementary divisors (v — b)l, then there

/
are exactly k£ elementary divisors ( - b_l) ;

e if b = +1 and [ is odd, then the elementary divisor (v — b)l presents

even number times.
3.2. Complex normal form

For the complex system (7), the matrix N is also complex.
Nonreduced over field of complex numbers C elementary divisors of the

matrix vE — N belong to one of the following cases:
(€1) (v-b) and (v - b7f, b = +1;
(C2) (v-b) and (v -b), b = +1, [ is odd;
(€3) (v-1)%;

(C4) (v +1)%.

By means of a constant canonical change of coordinates {, matrix
I'(p) can be transformed to a such block form, that each mentioned cases

corresponds to its own four blocks of dimension /, and zeros stay out of
these blocks. So it is enough to consider each of these cases, assuming

[ = n. In cases (C1) — (C3), there is writing (13); here elementary divisors
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(k—a)l of the matrix AE - JL belong to the cases (C1) — (C3) of
Subsection 1.2 of Chapter I [3], where

= —Lnb = —1n|b| +—argb +1im,
and m 1s arbitrary integer; namely: in case (C1)
G- (o C ]
C 0

where C is the Jordan block I x [ :

a 0 0 0 0 0

€ a 0 0 0 0

0 0 € 0 0 01,

0 0 0 € a 0

0 0 0 0 € a

l.e.,
l /-1
82 = azx]yj +e) XYt (15)

j=1 j=1

case (C2) with b =1 belongs to case (C1) with a = im; case (C2) with

b = -1 belongs to case (C1) with a = im + %; in case (C3)

o o
C oA)

where C is the Jordan block of order [ with a = 0, c = #1 and diagonal

G

matrix A = {1, 0, ..., 0}, ie.,

1
82 =€) Xj¥j11 +§Gy12; (16)
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in case (C4) writing (13) is absent and the complex normal form

dz

@ = JG(p)z

has

G- (o C J
C oA exp(ip)
where C is the Jordan block of order [ with a = im + i, c = +1 [6], i.e.,

2

-1

82 =0a Z XjYjreg XYty Gy1 exp(iy). a7
j=1 j=1

Let us consider the double cases (C3) and (C4).

(C3*) Two elementary divisors (v — 1)21’ and (v - 1)21’ correspond to

normal form (14) of the case (C2) with a =im and with arbitrary

integral m (only now [ = 2[' is even).

(C4*) Two elementary divisors (v + 1)21’ and (v + 1)21’ correspond to

normal form of case (C1) with
a=2n) " 'Ln(-1) = im + %

Thus, by the complex change (8), where B(y) is canonical 2r-periodic

matrix, the initial Hamiltonian function

1

is reduced to a normal form, which is a sum of forms (15), (16), and (17).
It is constant, if each elementary divisor (v + I)ZZ presents even number

times among elementary divisors of matrix vE — N. Williamson [5,
Theorem 1] proved, that the condition is necessary and sufficient for
complex reducibility.
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3.3. Real system

For a real system (10), the matrix N is real. So elementary divisors of
matrix vE — N have following properties. Let elementary divisor (v — b)l

present exactly k£ times.

e If number b is complex, ie., Reb-Imb # 0, and |b| #1, then

elementary divisors ( - I;)l, (v - b_l)l and (v - b__l)] present also exactly

k times.

e If number b is real or [b| =1, # £1, then (v—b_l)l presents

exactly & times.
o If b = +1 and /1s odd, then &£ must be even.

So elementary divisors of matrix vE — N belong to one of following

eight cases:

®1D (- -b) and (v-b7tf

b] = 1;

-5, becC Reb-Imb =0,

R2) (v-b) and - b71f, beR b>0b%1;
R3) (v-0)(v-b), b =1, b = +1;

R4) (v-1) and (v -1Y, [ is odd;

R5) (v -1)%;

R6) (v+1) and (v +1), I is odd;

®R7) (v-b) and (- 671f, b e R, b <0, b1,

R8) (v +1)%.
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By means of a real constant canonical change of coordinates, matrix
['(y) can be transformed to a such block form, that each of mentioned

cases corresponds to its own four blocks of dimension / and zeros stay out
of these blocks. So it is enough to consider each of these cases, assuming

[ = n. In cases (R1) — (R7) there exists writing (13) with real matrix L;

here elementary divisors (A —a)l of matrix AE — JL belong to cases

(R1) — (R5) of Subsection 1.3 of Chapter I [3], where

1 1 .
a —%Lnb —%lnb+zm.

Here the number In b is uniquely determined by number b, but the
integer m must be calculated by the following method. We compute any
solution to a linear subsystem of form (7) belonging to a case among
(R1) — (R7). Number of oscillations each of its coordinates in period 27 is

the number m. If we make the additional transformation
fj = X; exp(—imy), yj =Yj exp(imy), Jj=1,..,1,

then we obtain the eigenvalue %:0<ImX < 1. Here in cases (R3) and

(R5) there is an additional real invariant o = #1. Thus, in cases

(R1) — (R7), there is constant complex normal form of Hamiltonian function
g9 = %(z, Gz),
that can be translated into real normal form
1
f2 = E(Z’ FZ)

by means of the standard canonical transformation
Z =Qz, det@ =1.

Here substitution
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where 2n-matrix P = 6_1Q, preserves Hamiltonian function. Concrete

form of matrices @ and P for each of cases (R1) — (R7) is described in
Chapter I [3]. So in cases (R2) — (R7) either

xj=Xj =%, yj=Yj=Yy;, Jj=1..1 (18)

or

1 . — 1
= (X -Y) =iy, ;= e
j /_21'( i=Y) =W, v /_Zi(

Theorem 2. Complex writing of the real normal form in case (R8) is

system (17) with such standard transformation

1

xj = 51X [1+iexp(-it)] - Y;[i + exp(- it)]},
1 . . . :
Vi =5 {X[i — exp(it)] + Y;[- 1 + i exp(it)]}. (20)
Here X = ixjeit, yj=- iyje‘it, e=1,0c=%i,j=1,..,1

Then
GW) = G),
and Hamiltonian function of the normal form (17) is

l -

82 = szjyj + izxjyj+1

1
Jj=1 Jj=1

+ %(Xlz + Y2 + X? siny - 2X,Y; cosp — YiZ sin p).

4. Nonlinear Normal Form

4.1. Nonlinear normalization

We consider the Hamiltonian system with n degrees of freedom

dg; dn;
So_dy Ao g, 1)
dy on;’ dy a8
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where y is a power series in & m with 2n-periodic in y coefficients,

which is expanded into a convergent Poisson series

Y = D Ypqn&Pn® exp(imy), (22)
m

beginning from quadratic form gy in & n. We make the linear canonical
transformation &, 1 — x, y, which is 2zn-periodic in ¥ and brings the

square part of Hamiltonian function of system (21) to complex normal

form being a sum of parts (15), (16), (17). Then on the main diagonal of

matrix JG are its eigenvalues Aq, ..., A,, —A7, ..., —A,. Denote
A = (%, ..., A,,). Hamiltonian (22) takes the form
g(X, y, I/?) = ngqupyq eXp(imw)- (23)

We call it as normal form, if

(1) its form g9 is normal form (15), (16), (17);
(2) expansion (22) contains only resonant terms, for which
(p—q,A)+im = 0. (24)
Here (., -) is the scalar product.

Theorem 3. For the Hamiltonian (23), there exists the 2n-periodic in

¢ formal canonical change of coordinates X, y, v — u, v, @ :
z=(x,y)=w+b(W, 0), ¥ = ¢+by,1(W, 9),
which transforms Hamiltonian (23) into normal form
h(u, v, @) = Z:hpqmupvq exp(imo), (25)
with property (24). Here w = (u, v) = (uq, ..., Uy, U1, ..., U,).

Proof see in Chapters I and IT [3].
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Theorem 4. The canonical transformation

exp(-ilmjo), v;

i =0vjexp(iImijo), j=1,..,n,

reduces the Hamiltonian normal form (25) to constant power series
R, 9) = D hpgmiPFY, (26)
where

<p - q, Re )\'> = 0’ <p -q, Im }\'> =-m, (27)

p, q, m are integer, p,q = 0. Here ﬁpqm = hogm> if o]+ ]a] > 3,

1

quadratic terms have form ho(t, \Nf):§<v~v, GVNV>, where matrix

JG = JG - Im A with diagonal matrix A = {A, — A}, so quadratic terms

in (W, V) = W are almost absent.

Proof is reduced to checking equality (11), which is evident here. Here
|p| = p1 + P2 +---+ p,. For initial real Hamiltonian (22) complex
coordinates z are connected with real coordinates Z = (X, Y) by the
standard transformation, formed by changes (18), (19), (20), and

coordinates w and W are connected by the same changes with

corresponding real coordinates W and W [3]. Thus, we come to
autonomous Hamiltonian system with n degrees of freedom, which is

named as reduced normal form.
4.2. Small parameters

Let the initial Hamiltonian is expanded into a power series in small
parameters p = (ug, ..., tg). According to Theorem 5.1 of Chapter I [3],
the normalizing transformation does not change small parameters. So we

obtain the autonomous Hamiltonian (26), (27), where coefficients hp, q m
are power series in small parameters p. For p = 0 these coefficients
with ||p| + |al| = 1 equal to zero, but with ||p| + |q]| = 2 correspond to (27).

However for p # 0 it is not necessary.
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For a system, corresponding to Hamiltonian (26), (27) we can

compute families of stationary points near the point 4 = v =0, u = 0. It

can be done by algorithms of power geometry [7]. Families of stationary
points of the reduced normal form (26), (27) corresponds to families of
periodic solutions to initial Hamiltonian system. Examples of such

computations are in [8].
4.3. Linear canonical automorphisms

Let the initial system (21) have the linear canonical automorphism
¢ =MC", =07,

where M 1is constant 2n x 2n matrix and 0 = const. According to
Theorem 2.3 of Chapter I [3], the reduced normal form (26), (27) also has
a corresponding linear canonical automorphism. However it can have

additional automorphisms, which are absent in initial system [9].
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