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Abstract 

High stress concentration at the free edges of Adhesively Bonded Joints (ABJs) 
is responsible for their debonding failure. This paper is to investigate the 
debonding initiation and growth in ABJs by means of a semi-analytic stress-
function variational method and Cohesive-Zone-Model (CZM) based Finite 
Element Method (FEM). In particular, effects of the geometries, material 
properties, and debonding toughness of the adhesive layers on the free-edge 
stresses and global load-carrying capacity, i.e., the characteristic full-range 
load-displacement diagram, of an adhesively single-sided strap joint (ASSSJ) 
were examined. In the modelling, debonding initiation at the free edges of the 
ABJs is controlled according to a linear cohesive law in terms of the critical 
interfacial peeling (Mode-I) and shearing (Mode-II) fracture toughness. 
Numerical results show that the critical tensile force to trigger the debonding 
initiation in the ASSSJ increases nearly linearly with increasing interfacial 
debonding toughness and decreases slightly with increasing adhesive layer 
thickness. The effective longitudinal stiffness of the ASSSJ is nearly 
independent of the modulus of the adhesive layer and decreases by increasing 
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adhesive layer thickness. In addition, the full-range load-displacement diagram 
of the ASSSJ during the entire debonding process exhibits a flat, seemingly, 
“yield” region corresponding to the stable debonding process, which indicates 
the excellent, controllable mechanical durability of the ASSSJ. The present 
studies demonstrate the capabilities of stress-function variational method and 
CZM-based FEM for determining the load-carrying capacity of ABJs, which are 
applicable to explore the failure mechanisms, reliable design, active debonding 
suppression, and extension of the mechanical durability of ABJs for use in broad 
structures. 

1. Introduction 

Modern aerospace, aeronautical, and ground vehicles highly depend 
upon the development and deployment of high-performance materials 
and structures to fulfill their ever-increasing functionalities including 
lightweight, high specific strength and stiffness, and excellent agility, 
durability, and corrosion resistance, among others. Adhesively bonded 
joints (ABJs) offer a high-efficiency mechanical option for reliable load 
transfer and connection of separated parts in various structural 
applications of broad industrial sectors from microscale electronic 
packaging to macroscale bridge repairing. Figure 1 illustrates a few 
typical ABJs commonly integrated in a variety of structures. Compared 
to conventional mechanically fastened bolts as well as riveted and welded 
joints, ABJs carry several superior advantages such as significantly 
simplified structural design and fabrication, reduced joining space and 
weight, enhanced mechanical durability and fatigue tolerance, increased 
anticorrosion capability, and suppression of noises and material wears    
[1-4]. 
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Figure 1. Schematic adhesively bonded joints (ABJs). 

Due to the unique geometrical configuration of an ABJ where several 
identical or dissimilar adherents are joined together by adhesives to form 
a wedge-like structure at a small region, high stress concentration exists 
at its free edges as the result of mismatch of elastic properties and 
coefficients of thermal expansion of the joined materials across the 
bonding lines [5-8]. Accurate stress analysis of ABJs is deemed 
fundamental to the structural design and failure analysis of ABJs 
subjected to external mechanical and thermomechanical loads. Yet, it is 
rather challenging to accurately solve a set of governing Partial 
Differential Equations (PDEs) of elasticity to simultaneously satisfy the 
multiple boundary conditions (BCs) of traction and displacement at the 
free edges and bonding lines of ABJs. With various extents of 
simplification and deliberation, several successful ABJ models have been 
developed for determining the stress field of ABJs. Historically, 
Volkersen [9], Goland and Reissner [10] are the pioneers in stress 
analysis of ABJs, who first formulated the systematic approaches to 
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calculate the approximate stress fields in ABJs within the framework of 
elasticity. Their treatments of the adhesive layers of ABJs have been 
extensively adopted by many later investigators in this area, in which 
Volkersen [9] has regarded the adhesive layer as a simple one-
dimensional (1D) shear spring, while Goland and Reissner [10] have 
simplified the adhesive layer as a uniformly stressed layer with no stress 
variation across the layer thickness. As a matter of fact, Volkersen’s and 
many follow-ups’ stress field solutions of ABJs do not satisfy the simply 
shear-free condition at the free edges. Goland and Reissner’s solutions 
are able to satisfy the traction conditions at the free edges while the 
traction-free conditions at the top and bottom surfaces of the adherents 
are not exactly satisfied though various elasticity approaches in their 
work were used to suppress such fictitious surface stresses. 

By adopting the fundamental assumptions of ABJs by Volkersen [9], 
Goland and Reissner [10], a number of ABJ models have been established 
to improve the accuracy of stress analysis of bonded joints and ABJs in 
the past three decades. Delale et al. [11] have formulated a general ABJ 
model capable of universally determining the stress field in adhesively 
bonded single-lap joints and single-sided strap joints, in which the 
adherent layers are treated as elastic plates under cylindrical bending 
and the deformations across the adhesive layer are assumed to be 
constant. However, the shear stress predicted by this model does not 
satisfy the shear-free condition at the adherent ends. In addition, refined 
Finite Element Analysis (FEA) indicated that the interfacial stresses 
predicted by this model are overshot in a large region from the adherent 
ends [12]. Chen and Cheng [13] have proposed an ABJ model for stress 
analysis of adhesively bonded single-lap joints by assuming that the axial 
stresses are linearly varying across the adherent thickness (i.e., Euler-
Bernoulli beam) and the shear stress is constant across the adhesive 
layer. In this model, the entire stress field in the ABJ can be expressed in 
terms of two unknown normal stress functions via triggering the stress 
equilibrium equations in two-dimensional (2D) elasticity. These two 
unknown stress functions can be further determined via solving two 
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coupled 4th-order Ordinary Differential Equations (ODEs) according to 
the principle of complementary strain energy. The stress field gained in 
this ABJ model can satisfy all the traction BCs, and the predicted 
location of the peak interfacial shear stress appears at a distance of ~20% 
the adherent thickness from the adherent ends as validated 
quantitatively by FEA [12, 14-16]. However, due to the over 
simplification of the adhesive layer, this ABJ model yields a physically 
questionable zero normal stress in the adhesive layer along the bonding 
line. In addition, by using a simple shear-lag model of the adhesive layer 
and ignoring the bending effect of the adherents. Her [17] has obtained 
the closed-form solutions to the axial force in adherents and the shear-
force in adhesive layer of adhesively bonded single/double-lap joints, 
respectively. But, the static equilibrium of the joint and the shear-free 
conditions at the adherent ends are not satisfied. Tsai et al. [18] have 
extended the classic ABJ model formulations by Volkersen [9], Goland 
and Reissner [10] via adopting a linear variation of the shear 
deformation across the adhesive layer. This model is able to recover the 
classic Volkersen’s, Goland and Reissner’s models in the limiting cases. 
Furthermore, by modelling the adhesive layer as two distributed linearly 
elastic shear and tension springs, Lee and Kim [15] have derived the 
closed-form solutions to the axial force in adherents and the shear force 
in adhesive layer of adhesively bonded single-lap joints, which were 
validated by their detailed FEA except that the shear-free conditions at 
the adherent ends are not satisfied. Radice and Vinson [19] have 
formulated a higher-order ABJ model, in which the Airy stress potential 
for 2D elastic ABJ body is expressed as a series of power functions with 
respect to the thickness coordinate and is consequently determined via 
solving the resulting Cauchy-Euler equations in favor of Rayleigh-Ritz 
minimization of the potential energy of the ABJs. Recently, Khan et al. 
[20] have formulated a theoretical ABJ model to take into account the 
effect of transverse shear of the ABJ adherents. In their model, the ABJ 
adherents are treated as Timoshenko’s beams and this model was used to 
guide reduction of the interfacial shear and peeling stresses via material 
tailoring.  
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In addition, several layer wise joint models have been formulated for 
improving the stress analysis of ABJs. For instance, Hadj-Ahmed et al. 
[21] have formulated a layer wise ABJ model with the multi-layers of the 
ABJ to be modeled as a stack of Reissner plates that are coupled through 
the inter laminar normal and shear stresses. The governing equations of 
the ABJs are obtained via minimizing the strain energy of the ABJ. Diaz 
et al. [16] have proposed an improved layer wise ABJ model, in which the 
ABJ was modeled as a stack of Reissner–Mindlin plates. As a result, a set 
of eight governing ODEs was extracted via evoking the constitutive laws 
and solved to satisfy the traction BCs. This ABJ model can be well 
validated by FEA for free-edge interfacial stress prediction. Moreover, 
Yousefsani and Tahani [22, 23] have provided another version of the 
layer wise ABJ model. In their model, the displacements of artificially 
divided sub-layers of an ABJ were treated as field variables, and a set of 
governing ODEs was obtained via minimizing the potential energy of the 
joint. For accurate interfacial stress prediction, 18 artificial sub-layers 
were used in their numerical examples. Such layer wise ABJ models were 
further extended for stress analysis of smart joints integrated with 
piezoelectric patches in their recent efforts [24]. 

Furthermore, to approach well-conditioned interfacial stresses in 
ABJs, especially to satisfy the traction-free conditions at the multiple 
free-edges of ABJ adherents, earlier investigations by Chang [25-28] 
introduced sine and cosine series expansions of the interfacial peeling 
and shear stresses on the bonding lines with their coefficients to be 
determined via minimizing the strain energy of the ABJs, in which the 
axial stresses in the elastic adherents are assumed to be linearly varying 
across the adhered thickness as that of classic Euler-Bernoulli beam 
theory. In principle, Chang’s approach is exact, without adoption of 
additional simplifications beyond the classic Euler-Bernoulli beam 
theory; the interfacial stress solutions are expressed as the sums of 
infinite trigonometrical series, which can be further calculated in elegant 
closed-form expressions. But, refined FEA indicates that Chang’s 
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approaches carry noticeable stress deviations near the free edges of 
ABJs, due mainly to the harsh treatment of the deformation (deflection) 
compatibility of (adhesively) bonded dissimilar adherents in bending 
within the framework of Euler-Bernoulli beam theory of composite beams 
[29, 30]. 

To overcome the above theoretical obstacle in stress analysis of ABJs 
within the classic Euler-Bernoulli beam theory, Wu et al. [2, 3, 12, 30-32] 
have formulated a general high-efficiency stress-function variational 
method for accurate determination of the interfacial stresses in a variety 
of ABJs including bonded joints and adhesively bonded monolithic and 
composite joints. In the process of this method, two unknown interfacial 
shear and normal (peeling) stress functions are adopted at each interface; 
the axial stresses in the adherents and adhesive layers are both assumed 
to be linearly varying across the thickness as that of classic Euler-
Bernoulli beams. By evoking the 2D stress equilibrium equations, the 
rest planar stress components in the ABJs are expressed exactly in terms 
of the unknown interfacial stress functions [33]. Such treatment is able to 
guarantee that all the stress components are consistent across the 
bonding lines [3]. Finally, these unknown interfacial stress functions are 
determined via solving a set of coupled ODEs, which is extracted 
according to the complimentary strain energy of the joints, to satisfy the 
deformation compatibility across the interfaces in the weak form without 
adoption of additional assumptions. In the simple case of bonded joints 
made of two adherents, a set of two coupled ODEs with respect to two 
interfacial stress functions can be obtained [2, 31]; in the case of ABJs 
made of two adherents adhesively bonded through an adhesive layer, a 
set of four coupled ODEs with respect to two pairs of the interfacial shear 
and peeling stress functions at two interfaces are obtained [3, 12]. The 
interfacial shear and peeling stresses of the ABJs determined by this 
method can exactly satisfy the traction-free conditions at the free edges of 
the adherents; by using finite element method (FEM), numerical 
validation indicates the high accuracy of this semi-analytic stress-
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function variational method for stress analysis of ABJs [2, 3]. Moreover, 
this method can be conveniently extended for stress analysis of 
adhesively bonded composite joints with the adherents made of angle-
plied composite laminates [34-37]. More detailed review of recent 
development of stress analysis of ABJs can be found in review papers     
[38-42] and relevant references therein. 

Though the above analytic and semi-analytic methods as well as 
various FEMs are capable of determining the interfacial stresses of ABJs 
in high accuracy, these methods are unsuitable for predicting the 
debonding process of ABJs, especially the characteristic load-
displacement diagram during the entire debonding process. So far, 
fracture mechanics models have been developed for determining the 
stress intensity factor and fracture toughness based on various fracture 
tests of layered structures and ABJs [43-51]. However, these fracture 
models are unable to analyze and predict the general debonding process 
in ABJs. On the other side, in modelling the fracture mechanisms in 
solids, CZM has been typically adopted at the front of a crack tip [52-54], 
which eliminates the stress singularity at crack tip and therefore makes 
the fracture event physically more meaningful as well as the 
computational simulation of crack growth more tractable. Several CZMs 
have been formulated and successfully integrated into FEMs [55] and 
available in commercial FEM software packages such as ANSYS®. CZMs 
are typically classified according to their effective traction-separation 
relationships such as cubic polynomial, trapezoidal, smoothed 
trapezoidal, exponential, linear softening, and bilinear softening CZMs, 
among others. So far, CZM-based FEMs are broadly utilized for 
modelling crack initiation and propagation in monolithic and composite 
materials as well as debonding growth in ABJs. Among a large number of 
CZM-based studies of fracture and debonding initiation and growth in 
various materials and ABJs, Feraren and Jensen [56] have performed 
CZM-based FEA of interface fracture near flaws in ABJs to understand 
the effects of location and direction of the crack growth on the joint 
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strength. Gustafson and Was [57] have investigated the influence of 
adhesive constitutive parameters in CZM-based FEA of ABJs including 
Double Cantilever Beam (DCB), End-Notched Flexure (ENF), and Single 
Lap Joint (SLJ) models, and pointed out that the model results of DCB 
model mainly depend upon one parameter of the CZM, while ENF and 
SLJ models depend upon multiple parameters of the CZM. In their CZM-
based FEA, a parameterized trapezoidal traction law was used, which 
was controlled by the cohesive strength, critical energy release rate, and 
the trapezoidal shape factor for both Mode-I and Model-II cases. 
Furthermore, de Moura and Goncalves [58] have utilized CZM-based 
FEM to simulate the high-cycle fatigue crack growth in ABJs under 
Mode-I loading, in which Mode-I DCB specimen was considered and a 
bilinear CZM was adopted. Their numerical results were in excellent 
agreement with several Paris laws employed as input and showed a great 
potential of the CZM-based FEM for predictive fatigue analysis of ABJs. 
In addition, Carneiro and Campilho [59] have conducted the CZM-based 
FEA of adhesively bonded T-joints to evaluate the influence of adhesive 
fillings on the stress distribution, damage evolution, and the strength of 
the joints. These studies have demonstrated the great potential of CZM-
based FEMs for computational prediction of the initiation and growth of 
cracks and debonding. Detailed progress on CZM and related numerical 
implementation for crack growth simulation can be found in the recent 
review paper by Park and Paulino [55]. 

With above detailed review on ABJs and related analytical and 
numerical methods for stress analysis and debonding prediction, the 
present study is planned in two categories. First, the robust stress-
function variational method developed by the first author and his           
co-workers [2, 3] is further utilized to examine the effects of elastic 
modulus and thickness of the adhesive layer on the interfacial shear and 
peeling stresses of an adhesively single-sided strap joint (ASSSJ) in 
Subsection 2.1. The gained interfacial stresses are to be used as a prior to 
predict the debonding initiation, which is validated by CZM-based FEM 



XIANG-FA WU and URACHING CHOWDHURY 180

in Subsection 2.2. Second, CZM-based FEM is adopted to simulate the 
entire debonding process of the ASSSJ and to extract the characteristic 
full-range load-displacement diagram of the ABJ. Dependencies of the 
full-range load-displacement diagram upon the geometries, material 
properties, and debonding toughness of the adhesive layer are examined 
in details. Discussions of the computational results on the design, 
durability extension, and failure analysis of ABJs are made. Finally, 
concluding remarks are drawn in consequence. 

2. Problem Formulation and Solution 

Debonding failure in ABJs initiates at the interfaces between 
adherents and adhesive layers near the free edges due to localized stress 
concentrations and then grows continuously along the bonding lines till 
the complete debonding of the adhesive layers. Without loss of generality, 
the computational study herein is to determine the interfacial stresses 
and the entire debonding process of an ASSSJ made up with a slender 
cover layer adhesively bonded onto two identical slender substrate layers 
as illustrated in Figure 2(a). Geometries of the model joint are assumed 
as the follows. The uniform cover layer carries the length 2L, thickness 

,1h  and width b; the uniform substrate layers have the thickness ,2h  

width b and length much larger than L; the thickness of the uniform 
adhesive layer is .0h  The coordinate systems are selected such that the 

x-coordinate is made from the symmetric mid-span of the joint to direct 
along the layer axis; ,, 21 yy  and ,0y  respectively, are the coordinates 

with the origins located at the centroids of cross-section of the cover, 
substrate, and adhesive layer. The substrate layers are under uniaxial 
tension of a pair of collinear tensile forces 0P  far away the cover layer. 

In reality, ABJs with a finite width are typically in a general three-
dimensional (3D) stress state, especially near the free edges and corners 
of the ABJ adherents. To simplify the process, the ASSSJ under the 
present consideration is treated in the two-dimensional (2D) plane-stress 
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state and no residual stresses exist in the initial load-free state at the 
reference temperature. Temperature change ∆T is treated as uniform 
throughout the joint. The adherents and adhesive layer are treated as 
isotropic, linearly thermo-elastic solids. For the convenience of the model 
formulation, parameters and variables with subscripts 1, 2, and 0 stand 
in the cover, substrate and adhesive layers, respectively. In addition, the 
stress field gained in the plane-stress state can be conveniently converted 
to that in the 2D plane-strain state by simply replacing the Young’s 

modulus ( )iE  by ( ) ,1 2
ii Eυ−  Poisson’s ratio iυ  by ( ),1 ii υυ −  and 

coefficients of thermal expansion iα  by ( ) ,1 ii α+ υ  where ,1,0=i  and 2. 

2.1. Interfacial stress analysis of ABJs by stress-function 
variational method 

The primary stress-function variational method for stress analysis of 
bonded joints and ABJs has been formulated in the recent studies by the 
first author and his co-workers [2, 3]. The derivations of this method 
were summarized in the Appendix, where the interfacial shear and 
peeling stresses of an ASSSJ were determined in high accuracy and 
validated by detailed FEA. The stress-function variational method is 
further utilized herein to examine the effects of the adhesive modulus 
and thickness on the interfacial stress variations and to further correlate 
to the debonding failure predicted by CZM-based FEA in the present 
study. 

For the present ASSSJ, the stress analysis was made on the right 
symmetric half-portion (Figure 2(b)); the nontrivial shear and peeling 
stresses on the bonding interfaces are illustrated in Figure 2(c). The high 
interfacial stresses at the free edges are responsible for the debonding 
failure of the joint. In addition, CZM-based FEA is further adopted for 
predicting the entire debonding process and the load-carrying capability 
of the joint in Subsection 2.2. 
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Figure 2. Schematic of an adhesively single-sided strap joint (ASSSJ) 
and related shear and peeling stresses: (a) the joint is made up with a 
slender cover layer adhesively bonded onto two identical slender 
substrate layers, (b) the right symmetric half-joint, and (c) schematic 
shear and peeling stresses on the adhesive layer. 

Due to loss of lateral structural symmetry, the ASSSJ undergoes 
planar elongation and lateral deflection. The adherents and adhesive 
layers of the ASSSJ were treated to be slender, and their axial stresses 
were assumed to be linearly varying, following the classic Euler-Bernoulli 
beam theory, while the shear and lateral normal stresses were 
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determined by triggering the 2D stress equilibrium equations. Free-body 
diagrams (FBDs) of the representative segments of the cover, substrate 
and adhesive layers are shown in Figures 3(a)-(c), respectively, in which 
the stresses and related stress resultants, i.e., the axial force ,iS  shear 

force ,iQ  and bending moment ( ),2,1,0=iMi  are defined to follow the 
standard sign conventions in Mechanics of Materials [29]. 

 
(a) 

 
(b) 
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(c) 

Figure 3. Free-body diagrams of the representative differential 
segmental elements of the adhesively single-sided strap joint (ASSSJ):   
(a) the cover layer, (b) the adhesive layer, and (c) the right substrate 
layer. 

The unique feature of the stress-function variational method is for 
defining a pair of independent shear and normal (peeling) stress 
functions at each interface of the joint. For the present ASSSJ, the 
unknown interfacial shear and peeling stress functions on the upper and 
lower interfaces are defined as [3]: 

( ) ( ) ( ) ( ).and,,, 22221111 xgxfxgxf =σ=τ=σ=τ   (1) 

The shear-free conditions at the adhered edges at 0=x  and L specify: 

( ) ( ) ( ) ( ) .00and,00 2211 ==== LffLff   (2) 

The rest traction conditions of the axial tractions, shear-forces and 
bending moments at the upper/lower adhered and adhesive layer ends of 
the ASSSJ as well as the process for solving the stress functions ( ),1 xf  

( ) ( ),, 12 xgxf  and ( )xg2   are listed in Appendix. 
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To examine the dependencies of the interfacial shear and peeling 
stresses upon the adhesive modulus and thickness, as shown in Figure 2, 
the ASSSJ is considered to be made of a steel (St) cover layer ( 2101 =E  

)30.0,GPa 1 =υ  and two identical aluminum (Al)-alloy substrate layers 

( ),33.0,GPa70 22 == υE  which are adhesively bonded together 

through an epoxy-type adhesive with varying elastic modulus 
( ,10,50 =E  and 20GPa, and 48.01 =υ ) and thickness ( ,5.0,2.00 =h  

).mm0.1and,7.0  The adherents and adhesive layers have the same 

width; other geometries of the joint are: mm0.21 =h  (steel), mm0.22 =h  

(Al-alloy), and L = 20mm (see Figure 2). A uniform tensile traction of the 
magnitude MPa0.10 =p  was applied to the substrate layers. By using 

the stress-function variational method, Figures 4-6 show detailed 
numerical results of variations of the interfacial shear and peeling 
stresses at the upper and lower interfaces of the ASSSJ. In each figure, 
the shear and peeling stress variations are plotted on the upper and 
lower interfaces separately at four different adhesive thicknesses for a 
given adhesive modulus. 

Figures 4-6 show that the interfacial shear stresses well satisfy the 
shear-free BCs at the right and left free-edges. Both the shear and 
peeling stresses exhibit stress concentrations near the free edges while 
quickly decaying to zero at a distance within around 20% the adhered 
thickness; such stress concentrations behave much more significant at 
the left edge than at the right edge. In addition, the free-edge interfacial 
shear stresses do not alter noticeably across the adhesive layer for all the 
cases under study; however, the free-edge interfacial peeling stresses 
vary abruptly across the adhesive layer up to 2 to 5 folds with the peak 
values all occurring at the upper interfaces. For the present ASSSJ, the 
upper steel cover layer is much stiffer (with less lateral deflections) than 
both the adhesive layer and Al-alloy adherents. Under the action of axial 
tensile forces applied to the lower Al-alloy adherents, a large bending 
moment exerts at the upper interface close to the left free-edge. 
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Correspondingly, a lower bending moment exerts at the right free-edge 
due to the lateral deflection of the slender Al-alloy adhered (with only 1/3 
elastic modulus of steel). Therefore, the soft adhesive layer (with the 
elastic modulus only 1/14, 1/7, and 1/3.5 of Al-alloy) at the left free edge 
exerts large lateral deflections in order to maintain the static equilibrium 
of the slender structure, i.e., the high free-edge interfacial peeling stress 
at the upper interface. Thus, for all the cases, stress analysis as shown in 
Figures 4-6 predicts that debonding failure will initiate from the left free-
edge of the upper adhesive-adhered interface, to be validated by         
CZM-based FEA in Subsection 2.2. 

Moreover, Figures 4-6 also indicate the clear dependencies of the 
interfacial shear and peeling stresses upon the elastic modulus and 
thickness of the adhesive layer. When the adhesive thickness is fixed      
at either ,35.0,25.0,1.020 =hh  and ( ),mm0.25.0 2 =h  either the 

interfacial shear or the peeling stress increases slightly with increasing 
elastic modulus 0E  of the adhesive layer. This can be understood such 

that a softer adhesive layer (with a lower value of elastic modulus 0E ) 

provides a relatively larger lateral deflection to suppress the bending 
moment due to loss of the lateral structural symmetry of the joint, i.e., 
the lower interfacial shear and peeling stresses. Furthermore, at fixed 
elastic modulus 0E  of the adhesive layer, in general, either the 

interfacial shear or peeling stress decreases by increasing thickness of 
the adhesive layer. In this case, a thicker adhesive layer corresponds to a 
larger lateral deformation of the adhesive layer due to the less lateral 
stiffness, which can consequently suppress the bending moment, i.e., the 
lower interfacial shear and peeling stresses, as predicted. 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4. Variations of the interfacial shear and peeling stresses at the upper 
and lower interfaces between the adhered and adhesive layer of the ASSSJ 
at varying adhesive layer thickness. (Thickness ratio: ,25.0,1.020 =hh  

;5.0and35.0  Modulus ratio: ,141,3 2021 == EEEE  and GPa.702 =E ) 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5. Variations of the interfacial shear and peeling stresses at the upper 
and lower interfaces between the adhered and adhesive layer of the ASSSJ 
at varying adhesive layer thickness. (Thickness ratio:  ,35.0,25.0,1.020 =hh  
and ;5.0  Modulus ratio: == 2021 ,3 EEEE  ,71  and GPa.702 =E ) 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Variations of the interfacial shear and peeling stresses at the upper 
and lower interfaces between the adhered and adhesive layer of the ASSSJ at 
varying adhesive layer thickness. (Thickness ratio: ,35.0,25.0,1.020 =hh  
and 0.5; Modulus ratio: == 2021 ,3 EEEE  ,5.31  and GPa.702 =E ) 
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Besides, in principle, the stress field at the free-edge of bonded 
dissimilar materials behaves generally oscillating singular [5, 60-63] 
with the singularity exponent depending upon the material properties of 
bonded materials, i.e., Dundurs’ parameters [64]. In the present 
approach, such oscillating singular behaviour of the stress field is not 
particularly approached as the interfacial stress functions were obtained 
naturally by solving a set of well-conditioned ODEs of the system via 
minimizing the complementary strain energy, which is similar to those 
semi-analytic approaches for determining the free-edge stresses in 
laminated composites [2, 3, 36, 37, 65-75]. In addition, various FEM 
approaches of the free-edge stress field in ABJs show that these free-edge 
interfacial shear and peeling stresses go up rapidly with refining meshes 
near the free edges, and such a varying tendency of the interfacial 
stresses is very close to the predictions by the stress-function variational 
methods [2, 3]. 

Furthermore, exploration of the oscillating singular stress field near 
free-edges of bonded materials is important to understand the nature of 
the stress field of ABJs. However, such oscillating singular stress field is 
inconvenient in practice to establish reliable and universal failure 
criteria to predict the debonding initiation and growth in ABJs. In 
addition, the stress-function variational method and other robust 
numerical methods are capable of accurately determining the stress filed 
near free edges of ABJs. But, these methods are not suitable for 
establishing the debonding criteria and modelling the debonding 
initiation and growth in ABJs. Alternatively, it is more convenient to 
utilize CZM-based FEA to directly simulate the debonding process of 
ABJs, in which the failure criterion is based on cohesive law. Thereafter, 
CZM-based FEA was employed to simulate the entire debonding process 
of the above ASSSJs subject to axial tensions and to extract the 
characteristic full-range force-displacement diagram and its dependency 
on the mechanical properties and geometries of the adhesive layer. 
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2.2. CZM-based modelling of interfacial debonding of ABJs 

A number of CZMs have been successfully integrated into FEMs for 
high-efficiency, robust computational simulations of crack initiation, and 
growth in monolithic and composite materials. In the present study, the 
bilinear CZM available in ANSYS®(Version 16) [76] was utilized for 
modelling the entire debonding process in ASSSJs subjected to axial 
tension and exacting the corresponding full-range force-displacement 
diagram as the characteristic mechanical behaviour of ASSSJs useful for 
reliable design and failure prediction. As a matter of fact, debonding in 
ABJs is typically a mixed-mode fracture process, i.e., both the normal and 
tangential interfacial stresses at the bonding surfaces contribute to the 
total fracture energy of the ABJs. Thus, a power-law fracture criterion is 
typically used to define the completion of debonding as: 

( ) ( ) ,122 =+
IIC
II

IC
I

G
G

G
G   (3) 

where ICG  and IICG  are the pure Mode-I and Mode-II fracture 

toughness, respectively, which are the interface properties of ABJs 
during a debonding event. IG  and IIG  are, respectively, the pure Mode-I 

and Mode-II strain energy release rates, defined as the works done by the 
node normal and tangential forces during the complete node release 
process in CZM-based FEA of ABJ debonding: 

,
0

nnI dG
n

δσ= ∫
δ

  (4) 

and 

.
0

ttII dG
t

δσ= ∫
δ

  (5) 

In Equations (4) and (5), nσ  and nδ  are, respectively, the node normal 

stress and opening displacement, and tσ  and tδ  are, respectively, the 

node tangential stress and tangential opening displacement, as shown in 
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Figure 7(a). Variations of the node stresses nσ  and tσ  and the node 

displacements nδ  and tδ  were determined iteratively by the nonlinear 

numerical solving process of the FEM code, in which the nn δ−σ  and 

tt δ−σ  relations were assumed to follow the bilinear CZM as illustrated 

in Figure 7(b). In a bilinear CZM, the nn δ−σ  and tt δ−σ  diagrams 

consist of a linearly elastic loading region (OA) and a linearly elastic 
softening (AC). During the debonding process, the normal and shear 
nodal stresses reach the peak values at point A, and then softening 
happens and the normal and shear nodal forces linearly decrease to zero 
at C. The triangular area formed by OAC is the critical debonding 
toughness for either Mode-I or Mode-II. The control parameters of the 
bilinear CZM for either opening (Mode-I) or shear (Mode-II) failure are 
the normal (shear) force stiffness ( ),tn kk  peak normal (shear) stress 

(40MPa for the adhesive layer in this study), and critical Mode-I (II) 
debonding toughness ( ).IICIC GG  
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(a) 

 
(b) 

Figure 7. (a) Schematic node normal and tangential stresses and 
displacements in CZM-based FEM modelling of debonding process and 
(b) schematic nn δ−σ  and tt δ−σ  relations of a bilinear CZM. 
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In the present CZM-based FEA of the debonding process of an 
ASSSJ, the configuration of the ASSSJ was selected as the same as that 
used in Subsection 2.1 (as shown in Figure 2(b)), the left symmetric half-
joint is considered in the numerical simulation. In this study, the main 
interest is to extract the full-range force-displacement diagram of the 
ASSSJ during the entire debonding process, especially the effects of the 
geometries and material properties of the adhesive layer including the 
thickness, Young’s modulus, and interfacial debonding toughness 
( ).and IICIC GG  Thus, for the CZM-based FEA, the geometries and 

material properties of the steel and Al-ally adherents of the ASSSJs were 
selected as the same as those in Subsection 2.1, while four thicknesses 
( ),mm0.1and,07,5.0,2.00 =h  four values of debonding toughness 

( 2mJk0.1and,75.0,5.0,25.0=ICG  ),5.1with ICIIC GG =  and three 

Young’s moduli ( )GPa15and,10,50 =E  of the adhesive layers were 

selected for examining their influences on the mechanical behaviour of 
the ASSSJs during the debonding process. The failure stress of the 
adhesive layer was assumed as 40MPa. Herein, IICG  of the adhesive 

layer was assumed to be 1.5 times ICG  of the adhesive layer for all the 

computational cases. This selection is based on the experimental 
observation of certain types of epoxy-based resin [36, 37]. In addition, 
ANSYS® (version 16) was used for the present computational study; four-
node elements (PLANE182) and mapped uniform quadrilateral meshes 
were utilized for the entire ASSSJs, and two-node contact elements 
(CONTAC12) were introduced along both the upper and lower interfaces 
between the adherents and the adhesive layer. The minimum mesh size 
in the adhesive layer was controlled as one-tenth thickness of the 
adhesive layer, which shows very good numerical convergence and 
stability by comparison with results based on varying mesh sizes. The 
external tensile loads of the ASSSJs were exerted via fixing the 
horizontal displacements of the left end of the Al-alloy adhered as a 
constant value; the rest BCs of the ASSSJ follow the symmetric 
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conditions and removal of rigid-body motion. The rest options of the 
nonlinear numerical process were set as defaults by ANSYS®. As results, 
the debonding initiation and growth were determined by the CZM, 
meanwhile the effective axial tensile force of the ASSSJs were calculated 
by summing the horizontal nodal forces at the left end of the Al-alloy 
adhered. The latter forms the final full-range force-displacement diagram 
of the ASSSJ at varying geometries and material properties of the 
adhesive layer once the displacement of the left end of the Al-alloy 
adhered varies [77]. 

Figure 8 shows the typical configuration and Von Mises contour of 
the left symmetric half-joint in CZM-based FEA. It can be observed that 
debonding initiates and grows along the upper interface, corresponding to 
that predicted by the stress-function variational method in Subsection 
2.1. Furthermore, Figures 9-11 give detailed numerical results of the full-
range force-displacement diagrams and the onset and ultimate debonding 
forces of the ASSSJs at varying geometries and material properties of the 
adhesive layers. It can be noticed that under the action of axial tensile 
forces, the full-range force-displacement diagram of each ASSSJ during 
the entire debonding process consists of three regions, i.e., the beginning 
linearly elastic region prior to debonding initiation, the stable debonding 
growth region after the tensile force is higher than the debonding onset 
force, and the final unstable debonding region when the debonding 
growth reaches to the left end and catastrophic failure of the joint 
happens. The full-range force-displacement diagram of the ASSSJs 
during the debonding growth process is similar to that of typical ductile 
metals with a seemingly “yield” region and a “strain-hardening” region, 
which implies that ASSSJs carry excellent mechanical durability and 
toughness when treating debonding as “yielding”. 
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(a) 

 
(b) 

Figure 8. Typical configuration and Von Mises contour of the left 
symmetric half-joint in CZM-based FEA: (a) Prior to debonding and (b) 
after debonding growth. 

Besides, Figures 9 and 10 show that at fixed Young’s modulus of the 
adhesive layer ( ),GPa100 =E  the elastic stiffness of the ASSSJs prior to 

debonding slightly decreases with increasing thickness of the adhesive 
layer. This is because the elastic tangential compliance of the adhesive 
layer increases by increasing thickness of the adhesive layer. In addition, 
at fixed debonding toughness of the adhesive layer, the onset and 
ultimate debonding forces decrease by increasing thickness of the 
adhesive layer while the joint toughness (i.e., the area formed by the full-
range force-displacement diagram) increases by increasing thickness of 
the adhesive layer. Such observations are resulted from the fact that the 
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thicker the adhesive layer, the more compliant the joint is, i.e., the larger 
joint deformation and larger toughness.  Moreover, at fixed Young’s 
modulus and thickness of the adhesive layer, the onset force for 
debonding initiation, ultimate tensile force, final axial displacement, and 
the toughness of the ASSSJ decrease significantly by decreasing 
debonding toughness of the adhesive layer. This observation indicates 
that the debonding toughness of the adhesive layer dominates the 
mechanical behaviour of the ASSSJs. Thus, superior debonding 
toughness of ABJs is highly desired and crucial to develop high-
performance ABJs with high mechanical strength, durability, and 
toughness which can be achieved with various approaches from surface 
physics and chemistry to polymer science and engineering. 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 9. Predicted force-displacement diagrams of the ASSSJ at 
varying debonding toughness [ ( ) ( ) ( ),green75.0,blue5.0,black25.0=ICG  

( ) ].5.1,redmJk0.1and 2
ICIIC GG =  
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(a) 

 

(b) 
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(c) 

 
(d) 

Figure 10. Predicted force-displacement diagrams of the ASSSJ at 
varying adhesive layer thickness [ ( ) ( ) ( ),green7.0,blue5.0,black2.00 =h  

( )].redmm0.1and  
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Additionally, Figure 11 shows that at fixed thickness and debonding 
toughness of the adhesive layer, the Young’s modulus of the adhesive 
layer has no remarkable effect on the mechanical behaviour of the 
ASSSJs during the entire debonding growth process. This observation is 
resulted from the fact that comparatively, the Young’s modulus of the 
adhesive layer is much lower than that of the steel and Al-alloy 
adherents, and therefore variation of the Young’s modulus of the 
adhesive layer does not significantly alter the stress state of the ASSSJs 
in the present study. Consequently, Figure 12 summaries variations of 
the onset and ultimate debonding forces of the ASSSJs with respect to 
the debonding toughness of the ASSSJ at varying thickness 
( )mm7.0and,5.0,2.00 =h  and fixed Young’s modulus ( )GPa100 =E  of 

the adhesive layer, which are extracted from the diagrams shown in 
Figures 9 and 10. It can be found that the onset and ultimate debonding 
forces increases rapidly by increasing debonding toughness of the 
adhesive layer and decreases slightly by increasing thickness of the 
adhesive layer. These dependencies upon the thickness of the adhesive 
layer become more significant at the higher debonding toughness of the 
adhesive layer. 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 11. Predicted force-displacement diagrams of the ASSSJ at varying 
elastic modulus of the adhesive layer [ ( ) ( ),green10,blue20 =E  

( )].redGPa20and  
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(a) 

 
(b) 

Figure 12. Variations of the debonding onset force: (a) and ultimate force 
and (b) with the debonding toughness of the ASSSJ at varying adhesive 
layer thickness ( ) ( ) ( )[ ].blackmm7.0and,red5.0,green2.00 =h  
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The unique self-extension of the mechanical durability and toughness 
in ABJs can be utilized to avoid the catastrophic failure in adhesively 
bonded structures. Based on the robust stress-function variational 
method in Subsection 2.1, detailed stress analysis of ABJs indicated that 
the interfacial peeling and shear stresses in ABJs are highly localized at 
the free edges. Thus, a large portion of the bonded structure is functioned 
as redundant design to extend the service lifetime, durability, and 
toughness of bonded structures as demonstrated by the CZM-based FEA 
of the debonding process of ABJs in this study. 

3. Concluding Remarks 

The high-accuracy, robust semi-analytic stress-function variational 
method was successfully employed for interfacial stress analysis of a 
particular type of ABJs, i.e., the ASSSJs. Dependencies of the stress field 
of the ASSSJs upon the geometries and material properties of the 
adhesive layer were explored in detail. Debonding initiation happens at 
the free-edge with the highest interfacial peeling stress as predicted by 
the stress-function variation method and CZM-based FEA. Thus, these 
two different numerical methods employed in the present study can 
validate each other in some extent, which provide powerful tools for ABJ 
design and analysis. 

The unique full-range force-displacement diagram of ABJs extracted 
from CZM-based FEA can be regarded as the characteristic diagram of 
ABJs, which behaves similar to that of ductile metals with three 
obviously identified regions, i.e., linearly elastic region, strain-hardening 
region, and unstable failure region. This characteristic force-
displacement diagram can well explain the self-extension of the 
mechanical durability and toughness and can be used for reliable design 
and failure analysis and prediction of ABJs. The present computational 
study can be used as the theoretical basis of rational design, applications 
of ABJs, and broad adhesively bonded structures. 
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Appendix 

This Appendix is to summarize the stress-function variational 
method formulated by Wu and Zhao [3], which is further used for stress 
analysis of ASSSJs with varying stiffness and thickness of the adhesive 
layer in the present study. With the assumption that the axial stresses in 
the adherents and adhesive layer vary linearly across the thickness (i.e., 
Euler-Bernoulli beams), the rest shear and lateral normal stresses in the 
ASSSJs can be determined by evoking the stress equilibrium equations 
in 2D elasticity [33]. By minimizing the complementary strain energy of 
the ASSSJ segment, the four unknown interfacial stress functions ,, 21 ff  

,1g  and 2g  can be determined by solving a system of four coupled         

4th-order linear ODEs of constant coefficients [3]: 

[ ]{ ( )} [ ]{ } [ ]{ } { } { }.0// =+Φ+Φ+Φ DCBA IV   (A1) 

In the above, { } 14×Φ  is a dimensionless interfacial stress function vector:  

{ } { ( ) ( ) ( ) ( )} ,,,, 2211
TGFGF ξξξξ=Φ   (A2) 

( ) ( ) ( ) ,1
1

020
211 ζζ−==ξ ∫ dfhphxFF

x
  (A3) 

( ) ( ) ( ) ,1
2

020
222 ζζ−==ξ ∫ dfhphxFF

x
  (A4) 

( ) ( ) ( ) ,1
1

002
20

211 ζηη==ξ ∫∫
ζ

ddg
hp

hxGG
x

  (A5) 

( ) ( ) ( ) .1
2

002
20

222 ζηη==ξ ∫∫
ζ

ddg
hp

hxGG
x

  (A6) 

 

 

 



COMPUTATIONAL ANALYSIS OF THE MECHANICAL … 219

[A], [B], and [C] are three 44 ×  real-valued symmetric coefficient matrix 
that relate the elastic properties and layer thickness of the ASSSJ as 
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where 

./,/,/,/ 1221022021122002 EEeEEehhhhhh ====   (A10) 
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{ } 14×D  is a dimensionless mechanical or thermomechanical load vector: 

{ } { } ,,,, 4321
TDDDDD =   (A11) 

in which 

[ ( ) ] ( ) ,2
12131 020121

2
121202

1
121 pTEehhhhD ∆α−α++++= −−   (A12) 

( ) ,216 21
3

1212022 ehhhD −++−=   (A13) 

( ) ,2
1

02023 pTED ∆α−α−=   (A14) 

.04 =D   (A15) 

Solution to (A1) can be obtained by superimposing the general 
solution { }Ψ  of the corresponding set of homogeneous ODEs onto a 

particular solution { }0Φ  [2]: 

{ } { } { },0Φ+Ψ=Φ   (A16) 

[ ]{ ( )} [ ]{ } [ ]{ } { },0// =Ψ+Ψ+Ψ CBA IV   (A17) 

{ } [ ] { }.1
0 DC −−=Φ   (A18) 

To solve the system of homogeneous ODEs (A17), consider the general 
solution { }Ψ  to carry the form: 

{ } { } ( ),exp0 λξΨ=Ψ   (A19) 

where λ  and { }0Ψ  are, respectively, the eigenvalue and eigenvector of 

the characteristic equation corresponding to (A17): 

[ ]{ } [ ]{ } [ ]{ } { }.000
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4 =Ψ+Ψλ+Ψλ CBA   (A20) 

Equation (A20) is a generalized eigenvalue problem, which can be further 
converted into a standard eigenvalue problem by introducing: 

{ } { }.0
2

1 Ψλ=Ψ   (A21) 
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Therefore, the generalized eigenvalue problem (A20) is reduced to a 
standard eigenvalue problem as follows: 
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where I is a 44 ×  identity. This standard eigenvalue problem can be 
routinely solved by means of popular numerical algorithms available in 
the literature [e.g., the eig( ) function available in MatlabTM, etc.]. 
Finally, the formal solution (A16) can be expressed as:  
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where { } ( )8,,2,10 …=Ψ kk  are eigenvectors (the first 4 elements of each 

column) corresponding to eigenvalues ( ),8,,2,1 …=λ kk  respectively, 

and kc  and ( )8,,2,1 …=kkd  are the 16 real-valued or complex 

coefficients to satisfy the 16 traction BCs at the adhered ends (A24)-(A39) 
[3]: 
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Plugging (A23) into the 16 traction BCs (A24-A39) leads to a set of 16 
simultaneous algebraic equations: 
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In the above, ,,, 3,
0

2,
0

1,
0

kkk ΨΨΨ  and ( )8,,2,14,
0 …=Ψ kk  are, 

respectively, the 1st to 4th elements of the k-th eigenvector of the 

eigenvalue problem (A22); ( ) ( ) ( ),,, 3
0

2
0

1
0 ΦΦΦ  and ( )4

0Φ  are, respectively, 

the 1st to 4th elements of the particular solution vector { }.0Φ  In 

particular, when the joint is subjected to a uniform temperature change 
∆T and without mechanical loads, the right terms of traction BCs (A25), 
(A29), (A33), and (A37) are specified as zeros, which further influence the 
right terms of (A41), (A45), (A49), and (A53) accordingly. Once the 16 
unknown coefficients ( )8,,2,1 …=kkc  and ( )8,,2,1 …=kkd  are 

determined by solving the above set of 16 linear algebraic equations 
(A40)-(A55) numerically, expressions (A2)-(A6), and (A23) finalize the 
four interfacial stress functions if  (shear stress) and ig  (peeling stress)   

(i = 1, 2) as: 
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