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Abstract 

This paper reports the elasticity solutions to the stress intensity factors (SIFs) 
and strain energy release rates (ERRs) of orthotropic elastic double cantilever 
beams (DCBs) under antiplane cracking. The known solution of a single screw 
dislocation in an infinite anisotropic elastic medium and conformal mapping 
technique are employed for the solving procedure. The present solutions are 
able to examine the effect of specimen geometries on the SIF of the DCB 
specimens and overcome the geometrical limitation of the classic beam theory 
that all DCB fracture specimens rely on. The upper and lower limits of the SIFs 
are obtained in explicit expressions. In the limiting cases, the present solutions 
can recover the SIF solutions of conventional DCB specimens. 
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1. Introduction 

Interlaminar fracture tests are commonly used for evaluating the 
delamination toughness of composite laminates. A number of fracture 
specimen configurations have been proposed in the last four decades, 
such as those based on double-cantilever beam (DCB) for pure Mode-I 
fracture tests, end-notched flexure (ENF), end-loaded split (ELS), and 
cracked lap shear (CLS) specimens for Mode-II fracture tests [1, 2], four-
point end-notched flexure (4ENF), and mixed-mode bending specimens 
for mixed-mode tests [3, 4]. Accordingly, classic beam theory has been 
well formulated for extracting the stress intensity factors (SIFs) and 
strain energy release rates (ERRs) of these fracture specimens. To date, 
classic beam theory as a convenient engineering approach is broadly used 
for fracture study of isotropic elastic beams, and layered composite 
materials [5-7], and its validity is mainly examined by finite element 
analysis (FEA). Yet, classic beam theory is an engineering approach with 
obvious constraints of the specimen geometries in use, which may lead to 
noticeable deviation in the SIF estimate in the case of the crack length 
comparable to the beam height. This happens in the case of antiplane 
interlaminar fracture tests based on the DCB fracture specimens, where 
thick specimens are desirable in order to avoid torsional instability in the 
fracture test. Besides, antiplane (out-of-plane) delamination is one of the 
main concerns of material durability in laminated composites such as the 
common edge-delamination failure of fiber-reinforced polymer composites 
[8-11]. In an antiplane interlaminar fracture test, the beam thickness is 
typically selected large and the corresponding crack length is short by 
comparison with those employed in Mode-I and Mode-II fracture tests in 
order to avoid the possible torsional instability (twisting). As a result, the 
specimen geometries may break the assumptions of elementary beam 
theory. So far, little numerical simulation is available to confirm the 
validity of elementary beam theory for thick beams under antiplane 
loading. On the other hand, in the fracture study of cracked in-plane 
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elastic beams, no exact elasticity solutions are available for anisotropic 
DCB specimens, except for a few special in-plane cases of infinite-length 
isotropic, elastic strips with cracks embedded at the mid-plane [12-15]. 
However, in the case of antiplane deformation, exact elasticity solutions 
are usually available for cracked beams and joints due to the relatively 
simple mathematical formulation [16-19] by means of special 
mathematical techniques including dual integral equations, conformal 
mapping, etc. This provides an efficient way to finding the exact elasticity 
solution for antiplane composite DCB specimens. 

In this work, we consider the exact SIFs and ERRs of an orthotropic 
DCB specimen under antiplane delaminating in order to provide the 
theoretical basis for data reduction of interlaminar fracture tests. The 
explicit solutions are obtained via solving the resulted antiplane 
elasticity problem with multiple boundary conditions (BCs) using the 
known solution of single screw dislocation in an infinite anisotropic, 
elastic medium, and conformal mapping technique [19-22]. Comparison of 
the present solutions with those based on elementary beam theory is 
made at varying aspect ratio of the specimen.  

2. Problem Formulation and Solution Procedure 

  The composite DCB specimen under consideration in this study is 
modelled as an orthotropic solid, which is the continuum mechanics 
approach of a unidirectional fiber-reinforced polymer matrix composite 
(PMC). Firstly, the complex potential is introduced for such a cracked 
orthotropic medium under antiplane singularity (a single force or a screw 
dislocation). This complex potential will be further used to formulate the 
exact elasticity solution of the antiplane DCB specimen. Hereafter, the 
orthotropic medium is assumed with the plane-ξη  as a mirror plane. In 

this case, the in-plane and antiplane deformations are decoupled and can 
be treated independently. Under antiplane deformation, the out-of-plane 
(antiplane) displacement and stress components of an anisotropic body 



XIANG-FA WU 158

(with the plane-ξη  as a mirror plane) may be expressed in terms of an 

analytic function ( )ζϕ  [22], i.e., 

( ) ( )[ ],lm2,3 ζϕ−=ηξ Bu  

( ) [ ( )],Re2, /
23 ζϕ−=ηξσ   (1) 

( ) [ ( )],Re2, /
13 ζµϕ=ηξσ   

where the prime ( )/  denotes the derivative with respect to the complex 

variable ,µη+ξ=ζ  and B and µ  are two material constants defined as 

,2
455544 SSSB −=  

[ ] ,55
2
45554445 SSSSiS −+=µ  (2) 

ijS  are the elements of the material compliance matrix. In the case of 

orthotropic material, 5544SSB =  and 5544 / SSi=µ  is a positive 

imaginary. 

Introduce an arbitrary antiplane singularity being located at ( )00 , ηξ  

in an infinite orthotropic medium embedded with a semi-finite crack 
along the negative axis-η  as shown in Figure 1. The complex 

displacement potential ( )ζϕ  for this problem has been given in the 

literature [22]: 
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In the above, the prime denotes the derivative with respect to the 
complex variable ,, 000 µη+ξ=ζζ  and q is the quantity of the antiplane 

singularity defined as: 

,44 π
+

π
−= ip

B
bq  (4) 
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where b is the Burgers vector of the screw dislocation and p is the line-
force. The SIF and ERR induced by this antiplane singularity can be 
evaluated as [22]: 

( ) .2,22lim 2/
0 IIIIIIIII KBGK =ξφπξ−=

→ξ
 (5) 

In the particular case of an antiplane singularity in an infinite 
orthotropic medium embedded with a semi-infinite crack, the 
corresponding SIF is: 

[
( ) ( )

].2 2/1
0

2/1
0 ζ

+
ζ

π= qqK III  (6) 

 

Figure 1. An orthotropic elastic medium ( )plane-ζ  under antiplane 

singularity. 

In the above, the displacement potential ( )ζϕ  is an analytic function 

with respect to .ζ  Therefore, the displacement solution of an orthotropic 

DCB specimen, as illustrated in Figure 2, can be constructed by using 
relations (3) and (4) and the conformal mapping technique. Consider the 
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orthotropic DCB specimen with the crack embedded at the mid-plane and 
subjected to an antiplane singularity at one arm at ( ),, 00 yx  as shown in 

Figure 3(a), where a and H denote the crack length and the beam half-
width, respectively. Introduce the conformal mapping: 

( )
( )

,12

2
−

+
=

ag
azg

   (7) 

with 

( ) ( ),2sinh H
zzg
µ
π=   (8) 

which maps the region of the orthotropic DCB onto the entire plane with 
a semi-infinite cut along the negative axis,-ξ  as shown in Figure 3(b). 

Herein, the complex variable z is defined as ,yxz µ+=  and •  denotes 

the absolute value of a complex variable. Substitution of (7) and (8) into 
(6) leads to the SIF of the orthotropic DCB under an antiplane 
singularity at 0z  

( ) { ( ) [ ( ) ]}.coshcoshResinh22 0
H

az
H
aiqH

a
H
a

a
K III µ

+π
−

µ
π−

µ
π

µ
π

π
π=  

(9) 

Here, Re( ) is the real part of an analytic function, and .000 yxz µ+=  

The corresponding ERR can be obtained by inserting (9) into (6). Relation 
(9) can be used as the Green’s function to construct the SIFs and ERRs 
for a large family of antiplane DCB specimens subjected to arbitrary 
antiplane loadings. In particular, this solution can be used for examining 
the effect of geometries in the SIFs as a correction of the elementary 
beam theory used for antiplane DCB samples. Furthermore, in the 
limiting case of isotropic materials, i.e., ,1=µ  relation (9) can recover 

these given in the literature [20, 23]. 



ELASTICITY SOLUTIONS TO THE STRESS … 161

 

Figure 2. Schematic of a DCB specimen in antiplane fracture test. 

3. Examples and Discussions 

3.1. Orthotropic DCB specimens with concentrated loads acting 
within the beam arms and crack surfaces 

First, consider an orthotropic DCB beam with the coordinate system 
as shown in Figure 4. The beam is loaded with a pair of concentrated 
antiplane forces (in opposite directions) of magnitude P at two symmetric 
points ( )00, yx  and ( )00, yx −  to simulate a DCB antiplane fracture test 
as shown in Figure 4(a). By setting ( )π= 4/iPq  and 000 yzz µ±=  in (9) 
and revoking the method of superposition, it leads to the SIF: 

( ) { ( ) [ ( ) ]}.coshcoshResinh2 00
H

yax
H
a

H
a

H
a

a
PK III µ

µ++π
−

µ
π

µ
π

µ
π

π
=  

(10) 

In the above, once the location of the force is given, the SIF can be 
determined in closed-form. This solution can be used for examining the 
effects of the force location, specimen geometries, and crack length on the 
SIF value. 
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(a) 

 
(b) 

Figure 3. A cracked orthotropic DCB specimen under an antiplane 
singularity: (a) an edge-cracked orthotropic elastic layer (z-plane); (b) a 
semi-infinite crack in elastic medium ( ).plane-ζ  
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(a) 

 
(b) 

Figure 4. A cracked orthotropic DCB specimen under action of a pair of 
concentrated forces in opposite directions: (a) physical model; (b) 
geometrical configuration of specimen (z-plane). 
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In the limiting case of the pair of concentrated forces located at crack 
surfaces, i.e., ,00 =y  relation (10) reduces to the upper limit of the SIF 

for given force magnitude P and location :0x  

( ) ( ) [ ( ) ],coshcoshsinh2 0upper
H

ax
H
a

H
a

H
a

a
PK III µ

+π
−
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π

µ
π

µ
π

π
=  

(11) 

where 00 <x  for a physically meaningful fracture specimen, i.e., forces 

acting behind the crack tip. When ,00 >x  no SIF exists according to 

(10). Furthermore, when the pair of concentrated forces are located at the 
beam surfaces, i.e., ,0 Hy =  relation (10) leads to the lower limit of the 

SIF for given force magnitude P and location :0x  

( ) ( ) [ ( ) ].coshcoshsinh2 0lower
H

ax
H
a

H
a

H
a
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PK III µ
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+
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π
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π
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π
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(12) 

Therefore, relations (11) and (12) present the exact upper and lower 
limits of the SIF for a pair of concentrated forces applied symmetrically 
on an orthotropic DCB specimen. The ratio of the upper SIF limit over 
the lower SIF limit is:  

( )
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0
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+
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==ρ  (13) 

As a limiting case of geometry, by letting ,∞→a  the SIF solution (10) 
can be reduced for that of a semi-infinite antiplane crack embedded at 
the mid-plane of an infinite orthotropic layer loaded with the pair of 
antiplane forces: 

{ ( ) [ ( ) ( )]}.sincosexp1Re2 000
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Similarly, by setting ,00 →y  relation (14) leads to the SIF of the infinite 

layer with the pair of loads acting on the crack surfaces: 

( ).exp12 0upper
H
x

HPK III µ
π

−
µ

=   (15) 

Besides, when ,0 Hy →  relation (14) yields the SIF of the infinite layer 

with the pair of loads acting on the beam surfaces: 

( ).exp12 0lower
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x

HPK III µ
π

+
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=   (16) 

In this limiting case, the corresponding ratio of the upper SIF limit over 
the lower one is:  

( ).2cot 0
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x

K
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III

III
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π−

==ρ   (17) 

Relation (17) can also be obtained by letting ∞→Ha /  in relation (13). 

To determine the SIF of uniformly distributed forces of density p 
acting on the entire crack surfaces, the SIF value can be determined by 
integrating (10) with respect to 0x  in the interval of [ ]:0,a−  

( ) [( )],22tanh22
H
aKH

a
a
HapK III µ

π
µ
π

π
µ

π
π=   (18) 

where ( )K  is the complete elliptic integral of the first kind. In the 

limiting case of isotropic materials, i.e., ,1→u  result (18) recovers those 

given by Li [18] using the technique of dual integral equations and Wu 
and Dzenis [20] using conformal mapping technique. 
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3.2. Orthotropic DCB specimens with loads acting at specimen 
heads 

In this case, by setting ax −=0  in relation (10), the SIF corresponds 

to the antiplane orthotropic DCB specimens with the pair of antiplane 
forces acting at the specimen ends symmetrically as: 

( ) ( ) ( ).coscoshsinh2 0
H
y

H
a

H
a

H
a

a
PK III

π
−

µ
π

µ
π

µ
π

π
=   (19) 

Similarly, when the specimen loaded with uniformly distributed force of 
density p, the corresponding SIF can be determined by integrating (19) 
with respect to 0y  in the interval of [ ]:,0 H  

 

( ) [ ( )] .sin2sinhsinh2 2/1222/

0
ϕϕ+
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π
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π
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π= −π

∫ dH
a

H
a

a
HapK III  

(20) 

The ERRs of the above cracks can be determined by using the 
relationship between the ERR and SIF as given in (5). 

4. Concluding Remarks 

The displacement potential, SIF and ERR of orthotropic DCB 
specimens subjected to antiplane crack were determined in closed-form 
by simultaneously using the known solution of single screw dislocation in 
anisotropic medium and conformal mapping technique. The given explicit 
solutions can be directly used for experimental data reduction. 
Specifically, the given results (10), (11), and (12) can be utilized to 
examine the effect of specimen geometry on the SIF and ERR of a given 
DCB specimen. Furthermore, these elasticity SIF solutions overcome the 
constraints of the elementary beam theory, and therefore can be used as 
the corrections of the SIF solutions based on beam theory. Moreover, 
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since the present solutions are determined in the view of dislocation 
theory, the general solutions (9) and (10) can be considered as Green’s 
functions to construct a large family of solutions in orthotropic DCB 
specimens related to realistic fracture phenomena such as crack kink, 
curved cracks, etc. These solutions are generally difficult to be solved 
directly using method of dual integral equations. 
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