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Abstract 

The aim of this paper is to give an extension to a Favard classes for integral 
resolvent of a scalar Volterra integral equations similar to the one for semigroups 
and resolvent families (i.e., dregularize-k  resolvent family with ( ) 1=tk ). In 
fact, we recover several well-known results for semigroups if we consider 
( ) 1=ta  and for resolvent families if we consider ( )ta  arbitrary and ( ) .1=tk  

1. Introduction 

The Favard class for semigroups was developed in 1967 by Butzer 
and Berens presented in the monograph [5], for a very detailed reference, 
see in the monograph [10]. Applications appear in particular in [9, 21, 
24], but are certainly not restricted to this. However, these concepts have 
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been slightly introduced to Volterra integral equations in [14, 17, 3], in 
particular for the semigroup theory the Favard class plays an important 
role in localization and determination of the space of control operators    
p-admissible (resp., ( )qp, -admissible) for well-posed linear (resp., 

bilinear) systems in [20, 4]. 

In this paper, we introduce the Favard spaces for a integral resolvent, 
extending some of the well-known theorems for semigroup and resolvent 
family. 

In Section 2, we give some preliminaries about the concept of integral 
resolvent, and the relationship between linear integral equation of 
Volterra type with scalar kernel. 

It is well-known that for a Cauchy problem there are strong relations 
connecting its semigroup solution and its associated generator. Likewise, 
for a Volterra scalar problem, there are some results connecting its 
integral resolvent family and the domain of the associated generator 
which will be reviewed in Section 2. 

In Section 3, we define the Favard spaces for integral resolvent of a 
scalar Volterra integral equations, and for these spaces we account for some 
results which are similar to those of semigroups and resolvent families. 

2. Preliminaries 

In this section, we collect some elementary facts about scalar Volterra 
equations and integral resolvent. These topics have been covered in 
detail in [23, 17]. We refer to these works for reference to the literature 
and further information. 

Let ( )⋅,X  be a Banach space, A be a linear closed densely defined 

operator in X and ( )+∈ R1
locLa  is a scalar kernel, we consider the linear 

Volterra equation: 

( ) ( ) ( ) ( ) ,0,
0

≥+−= ∫ ttfdssAxstatx
t

  (2.1) 

where ( )., Xf +∈ RC  
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We denote by ( )[ ]AD  the domain of A equipped with the graph-norm. 

We define the convolution product ∗  of the scalar function a with the 
vector-valued function f by 

( ) ( ) ( ) ( ) .0,:
0

≥−=∗ ∫ tdssfstatfa
t

 

Definition 2.1 ([23]). A function ( )Xx ,+∈ RC  is called: 

(1) strong solution of (2.1) if ( ( )[ ])ADx ,+∈ RC  and (2.1) is satisfied. 

(2) mild solution of (2.1) if ( ( )[ ])ADxa ,+∈∗ RC  and 

( ) [ ] ( ) .0, ≥∗+= ttxaAtfx   (2.2) 

Obviously, every strong solution of (2.1) is a mild solution. Conditions 
under which mild solutions are strong solutions are studied in [23]. 

Definition 2.2 ([23]). Equation (2.1) is called well-posed if for each 

( ),AD∈υ  there is a unique strong solution ( )υ,tx  on +R  of 

( ) ( ) ( ) ( ) ,0,, ≥∗+= ttAxatatx υυ   (2.3) 

and for a sequence ( ) ( ) 0, →⊂ nn AD υυ  implies ( ) 0, →ntx υ  in X 

uniformly on compact intervals. 

Definition 2.3 ([23]). Let ( )+∈ RCa  be a scalar kernel. A strongly 

continuous family ( )( ) ( );0 XtR t L⊂≥  (the space of bounded linear 

operators in X) is called an integral resolvent for Equation (2.1), if the 
following three conditions are satisfied: 

(R1) ( ) ( ) .00 IaR =  

(R2) ( )tR  commutes with A, which means ( ) ( )( ) ( )ADADtR ⊂  for all 

,0≥t  and ( ) ( )AxtRxtAR =  for all ( )ADx ∈  and .0≥t  
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(R3) For each ( )ADx ∈  and all ,0≥t  the resolvent equations hold: 

( ) ( ) ( ) ( ) .
0

xdssARstaxtaxtR
t

−+= ∫  

Note that the integral resolvent for (2.1) is uniquely determined and 
further information on an integral resolvent can be found in [17]. 

We also notice that when ( ) ,1=ta  then ( )tR  corresponds to a 
semigroup.-0C  

If there exists an integral resolvent for (2.1), then a mild solution of 
(2.1) may be obtained by the formula 

( ) ( ) ( ) ( ) .0,
0

≥−+= ∫ tdssfstRAtftx
t

 

Suppose ( )tR  is an integral resolvent for (2.1), let ( )Xf ,+∈ RC  and 

( )Xx ,+∈ RC  be a mild solution for (2.1). Then xR ∗  is well-defined and 
continuous and we obtain from (R3) and (2.1) 

( ) ,fRxAaRxRxRAaRxa ∗=∗∗−∗=∗∗−=∗  

hence ( ( )[ ])ADfR ,+∈∗ RC  and from (2.1), we obtain 

( ) ( ) ( ) ( ) .0,
0

≥−+= ∫ tdssfstRAtftx
t

 

The following result establishes the relation between well-posedness 
and existence of an integral resolvent. 

In what follows, R  denotes the range of a given operator. 

Lemma 2.4 ([17, Theorem 2.4]). (2.1) is well-posed if and only if (2.1) 
admits an integral resolvent ( )( ) .0≥ttR  If this is the case, we have in 

addition ( )( ) ( ),ADtRa ⊂∗R  for all 0≥t  and 

( ) ( ) ( ) ( ) ,
0

xdssRstaAxtaxtR
t

−+= ∫   (2.4) 

for each .0, ≥∈ tXx  
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From this we obtain that if ( )( ) 0≥ttR  is integral resolvent of (2.1), we 

have ( ) ( )⋅∗ RaA  is strongly continuous. 

Remark 2.5. Recall from [23, Chapter 1] that given ( ),1
loc

+∈ RLa  a 

strongly continuous family ( )( ) ( )XtS t L⊂≥0  is called resolvent family for 

Equation (2.1), if the following three conditions are satisfied: 

(S1) ( ) .0 IS =  

(S2) ( )tS  commutes with A, which means ( ) ( ) ( )ADADtS ⊂  for all 

,0≥t  and ( ) ( )AxtSxtAS =  for all ( )ADx ∈  and .0≥t  

(S3) For each ( )ADx ∈  and all ,0≥t  the resolvent equations hold: 

( ) ( ) ( ) .
0

xdssASstaxxtS
t

−+= ∫  

The importance of the resolvent family ( )tS  is that, if it exists, then 

the solution ( )tx  of (2.1) is given by the following variation of parameters 

formula in [23]: 

( ) ( ) ( ) ,
0

dssfstSdt
dtx

t
−= ∫   (2.5) 

for all ,0≥t  and 

( ) ( ) ( ) ( ) ( ) ,0
0

dssfstSftStx
t

′−+= ∫   (2.6) 

where 0≥t  and ( ),,1,1 XWf +∈ R  gives us a mild solution for (2.1). 

Definition 2.6 ([8]). 

− An integral resolvent ( )( ) 0≥ttR  is called exponentially bounded, if 

there exist 0>M  and R∈ω  such that ( ) tMetR ω≤  for all ,0≥t  and 

the pair ( )ω,M  is called type of ( )( ) .0≥ttR  
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− The growth bound of ( )( ) 0≥ttR  is { ( ) ,,inf0
tMetR ω≤∈ω=ω R  

},0,0 >≥ Mt  if 00 <ω  the integral resolvent is called exponentially 

stable. 

Note that, contrary to the case of semigroup,-0C  an integral 

resolvent for (2.1) need not to be exponentially bounded (see [8, 23, 17]). 
However, there is checkable conditions guaranteeing that (2.1) possesses 
an exponentially bounded integral resolvent. 

We will use the Laplace transform at times, suppose Xg →+R:  is 

measurable and there exist ,,0 R∈ω>M  such that ( ) tMetg ω≤  for 

almost ,0≥t  then the Laplace transform 

( ) ( )
0

,tg e g t dt
∞

−λλ = ∫  

exists for all C∈λ  with .Re ω>λ  

A function ( )+∈ R1
locLa  is ω  (resp., +ω )-exponentially bounded if 

( ) +∞<ω−∞
∫ dssae s

0
 for some R∈ω  (resp., ).0>ω  

The following proposition stated in [23, Theorem 1.4], establishes the 
relation between an integral resolvent and Laplace transform. 

Proposition 2.7. Let ( )+∈ RCa  be ω-exponentially bounded then 

(2.1) admits an integral resolvent ( )( ) 0≥ttR  of type ( )ω,M  if and only if 

the following conditions hold: 

(1) ( ) 0ˆ ≠λa  and ( ) ( ),ˆ
1 Aa ρ∈
λ

 for all ω>λ  where ( )Aρ  is the set 

resolvent of A. 



SOME GENERATION RESULTS OF INTEGRAL … 49

(2) ( ) ( )
1

ˆ
1:

−







 −

λ
=λ AIaK  called the resolvent associated to ( )tR  

satisfies: 

( ) ( ) ( )( ) .!

1

0
ω>λ≤

λω−λ +−∞+

=∑ allforMn
K nn

n
 

Under these assumptions, the Laplace-transform of ( )⋅R  is well-defined 

and it is given by ( ) ( )R Kλ = λ  for all .ω>λ  

Assuming the existence of an integral resolvent ( )( ) 0≥ttR  for (2.1), it 

is natural to ask how to characterize the domain ( )AD  of the operator A 
in terms of the integral resolvent. For very special case, the answer to the 
above question is well-known. For instance, when ( ) 1=ta  or ( ) ,tta =      
A is the generator of a ( )( ) 00 semigroup- ≥ttC T  or a cosine family ( )( ) 0≥ttC  

and we have: 

( ) ( )( ) ,1lim:
0 






 =−∈=

+→
AxxxttXxAD

t
T  

and 

( ) ( )( ) ,2lim: 20 





 =−∈=

+→
AxxxtC

t
XxAD

t
 

respectively (see [25, 10]). 

It was proved in [19, 17] if ( )ta  is continuous and nondescreasing 
and 

( )
( ) ,suplim

0
∞<

+ ta
tR

t
 

that: 

( ) { ( ) ( )
( ) ( ) }.lim

0
Axtaa

xtaxtRXxAD
t

=
∗
−∈=

+→
 (2.7) 

From now and in view of this result we say that the pair ( )aA,  is a 

generator of an integral resolvent ( )( ) .0≥ttR  
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3. Favard Spaces for an Integral Resolvent with Kernel 

The following definition which corresponds to a natural extension, in 
our context, of the Favard class frequently used in approximation theory 
for semigroups and resolvent families (see, e.g., [21, 10, 17, 3]). 

Definition 3.1. Let (2.1) admits a bounded integral resolvent ( )( ) 0≥ttR  

on X, for +ω -exponentially bounded ( ).1
loc

+∈ RLa  For ,10 ≤α<  we 

define the Favard spaces (frequency and temporal) of order α  associated 
to ( )aA,  as follows: 

( ) ( ) ,ˆ
1sup:

1













∞<





 −

λ
λ∈=

−
α

ω>λ

α xAIaAXxAF  

( ) ,sup






 ∞<λλ∈= α

ω>λ
xAKXx  

and 

( ) ( ) ( )
( ) ( )

.sup:~
0 











∞<
∗

−
∈=

α>

α

taa
xtaxtRXxAF

t
 

Remark 3.2. 

(i) When ( ) ,1=ta  we recall that ( )( ) 0≥ttR  corresponds to a bounded 

0C -semigroup generated by A. In this situation we obtain 

( ) ( ) ,sup 1
0 






 ∞<−λλ∈= −α

>λ

α xAIAXxAF  

and 

( ) ( ) ,sup:~
0 






 ∞<

−
∈=

α>

α

t
xxtXxAF

t

T  

and we have ( ) ( ).~ AFAF αα =  This case is well-known (see, e.g., [10]). 
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(ii) The Favard class of A with kernel ( )ta  can be alternatively 

defined as the subspace of X given by 

( )

1
1lim sup .x X A I A x

a

−
α

λ→∞

   ∈ λ − < ∞   λ   
 

As a consequence of ( )tR  being bounded, the above space coincides with 

( )AF α  in Definition 3.1 and that 

( ) ( ) ( )
( ) ( )

.sup:~
10 











∞<
∗

−
∈=

α≤<

α

taa
xtaxtRXxAF

t
 

Proposition 3.3. Let la ∗+= 11  with ( );loc
+∈ RBVl  the space of 

functions of locally bounded variation and ( )aA,  be a generator of a 

bounded integral resolvent ( )( ) 0≥ttR  on X. In this case, 

( ) ( ) ( ) .sup~
10 






 ∞<

−
∈=

α≤<

α

t
xtaxtRXxAF

t
 

Proof. We write 

( ) ( ) ( )
( ) ( ) 











∞<
∗

−
∈=

α≤<

α

taa
xtaxtRXxAF

t 10
sup~  

( ) ( )
( ) ( ) 











∞<










∗
×

−
∈=

α

α

α≤< taa
t

t
xtaxtRXx

t 10
sup  

( ) ( )
( ) ( ) 











∞<

















∗
×

−
∈=

α

α≤< taa
t

t
xtaxtRXx

t 10
sup  

( ) ( )
( ) ( )

























∞<



























 ∗

×
−

∈=
αα≤<

t
taat

xtaxtRXx
t

1sup
10
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( ) ( ) .sup
10 






 ∞<

−
∈=

α≤< t
xtaxtRXx

t
 

( ( ) ( ) ).1limtodue
0

=
∗

+→ t
taa

t
   

We prove that ( )AF α  is stable by ( )tR  for any scalar kernel a. 

Proposition 3.4. We have ( ) ( ( )) ( ),AFAFtR αα ⊂  for all ] ]1,0∈α  

and .0≥t  

Proof. For all ( )ADx ∈  and ,0≥t  we have by (R2): 

( ) ( ) ,AxtRxtAR =  

then 

( ) ( ) ( ) ( ) ( ) ( ) ,ˆ
1

ˆ
1 AtRtRatARtRa −

λ
=−

λ
 

i.e.,  

( ) ( ) ( ) ( ) ,ˆ
1

ˆ
1







 −

λ
=






 −

λ
AIatRtRAIa  

then under Proposition 2.7; 

( ) ( ) ( ),ˆ
1and0ˆ Aaa ρ∈
λ

≠λ  

hence we have 

( ) ( ) ( ) ( ) .ˆ
1

ˆ
1 11 −−







 −

λ
=






 −

λ
AIatRtRAIa   (3.1) 

Now, if ( ),AFx α∈  then 

( )

1
1sup ,A I A x

a

−
α

λ>ω

 
λ − < ∞  λ 
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by (3.1) and the boundedness of ( ),tR  we have 

( )
( ) ( )

( )

1 1
1 1sup supA I A R t x AR t I A x

a a

− −
α α

λ>ω λ>ω

   
λ − = λ −      λ λ   

 

( )
( )

1
1sup R t A I A x

a

−
α

λ>ω

 
= λ −  λ 

 

( )
( )

1
1supR t A I A x

a

−
α

λ>ω

 
≤ × λ −  λ 

 

,< +∞  

then ( ) ( )AFxtR α∈  for all ,0≥t  hence we deduce that ( ) ( ( )) ⊂α AFtR  

( ),AF α  for all ] ]1,0∈α  and .0≥t    

The proof of the following proposition is immediate. 

Proposition 3.5. The Favard classes of order α  of A with kernel 

( ) ( )AFta α,  and ( )AF α~  are Banach spaces with respect to the norms 

( ) ( ) ,ˆ
1sup:

1
xAIaAxx AF

−
α

ω>λ






 −

λ
λ+=α  

and 

( )
( ) ( )
( ) ( )

,sup:
10

~
α≤< ∗

−
+=α

taa
xtaxtRxx

tAF  

respectively. 

Without loss of generality we may assume that ( ) ( ) 0
0

≠−∫ dssasta pt
 

for all 0>t  and some .1 ∞<≤ p  Otherwise, we would have for some 

00 >t  and 10 ≥p  that ( ) 0=ta  for almost all [ ] :,0 0tt ∈  and thus by 
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definition of an integral resolvent ( ) 0=tR  for [ ].,0 0tt ∈  This implies 

that A is bounded, which is the trivial case with ( ).ADX =  

In what follows, we will use the following assumption on a such that 

( ) ( ) ,0
0

≠−∫ dssasta pt
 

for all 0>t  and some .1 ∞<≤ p  

Assumption A1. There exist 0>a  and ,0>at  such that for all 

,0 att ≤<  we have: 

( ) ( ) ( ) ( ) .
00

dssastadssasta pt
a

t
−≥− ∫∫   

This is the case for functions a, which are positive (resp., 
( ) ] ],1,0⊂Ih  with ( ) ( ) ( ) [ ] Ittssastath ∈∈−= ,,0, ) at some interval 

[ [atI ,0=  for 1=p  (resp., 1>p ). 

On the other hand, note that for all +ω;a -exponentially bounded 

function, it is clear that ( )α∗ aa  is also +ω -exponentially bounded (due 

to xx +≤α 1  for 0≥x  and ] ]1,0∈α ). 

We will consider the following assumption on ( )+∈ R1
locLa  and  

.10 ≤α<  

Assumption A2. a is +ω -exponentially bounded and there exists 
,0, >αa  such that for all ω>λ  

( ) ( ) ( ) ...ˆ
0

, dttaaea t
a

αλ−
∞

α
α ∗λ≥λ ∫  
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Example 3.6. 

(i) The famous case ( ) 1=ta  satisfies the condition of Assumption A2 

for all 0≥α  due to 

( )
( ) ( )( ) ( )

0
1 for all 0,te a a t dt

a

α ∞ α−λλ ⋅ ∗ = Γ α + λ >
λ ∫  

which corresponds to the semigroup case (here Γ  denotes the Gamma 
function). 

(ii) Let ( ) .01, <β<−= βtta  We have ( ) ( )1a
β+1

Γ β +
λ =

λ
 for all ,0>λ  

and ( ) ( ) ( )( )
( )

12
2

12
1 +β⋅
+βΓ

+βΓ=∗ ttaa  for all .0≥t  Hence 

( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( )2 1

0 0

1 1 ,
1 2 1

t te a a t dt e t dt
a

αα ∞ ∞α α β+−λ α+β+1 −λ
α

Γ β + Γ β +λ ∗ = λ ⋅
λ Γ β + Γ β +∫ ∫  

( )( ) ( )
( )( ) ( )( )

2
1

1 2 1 .
1 2 1

α
β− αβ

−α α
Γ β + Γ αβ + α +

= λ ⋅
Γ β + Γ β +

 

Then a satisfy Assumption A2 for 01 <β<−  and .2
10 <α<  

The following result establishes the relation between the spaces 

( )AF α~  and ( )AF α  which is similar to [10, Proposition 5.12] and            

[3, Proposition 4.7]. 

Proposition 3.7. Let (2.1) admits a bounded integral resolvent ( )( ) 0≥ttR  

on X, for onentiallyexp-+ω  bounded ( )+∈ R1
locLa  and .10 ≤α<  

Assume that there is a constant 0>N  such that ( ) Nta ≤≤1  for all 
.0≥t  

(i) If a satisfies Assumption A1 with ,1=p  then ( ) ( ).~ AFAF αα ⊂  

(ii) If a is non negative satisfying Assumption A2, then ( ) ( ).~ AFAF αα ⊂   
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Proof. 

(i) Let ( )AFx α∈  and .10 ≤< t  Then ( ) .:sup ∞<=λλα
ω>λ

xKxAK  

Using the integral representation of the resolvent (see Proposition 2.7), 
we obtain 

( )
( ) ( )1 forx K x AK x

a
= λ − λ λ > ω

λ
 

: .x yλ λ= −  

Since ( )ADx ∈λ  and using (R2) – (R3), we have 

( ) ( ) ( ) ( ) dsAxsRstaxtaxtR
t

λλλ −=− ∫0
 

( ) ( ) dsAxsRsta
t

λ⋅⋅−≤ ∫0
 

( ) dssaAxM
t

∫⋅⋅≤ λ
0

 

( )
( )

( ) ( )1 1M AK x a t
a

α
α

= ⋅ λ λ ⋅ ⋅ ∗
λ λ

 

( )
( ) ( )1 1 .xMK a t

aα
≤ ⋅ ⋅ ∗

λ λ
 

On the other hand, ( )( ) 0≥ttR  and ( )ta  are bounded by M and N, 

respectively, we have 

( ) ( ) ( ) ( ) λλλλ +≤− ytaytRytaytR  

( ) ( ) λλ +≤ ytaytR .  

( ) λ+≤ yNM .  

( ) ( )xAKNM λ+= .  
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( ) ( )xAKNM λλ
λ

+= α
α

.1.  

( ) .1.
αλ

+≤ xKNM  

This implies 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

( )

( ) ( )

1 11 .x xMK a t M N KR t x a t x a
a a t a a t a a t

α α

α α α

⋅ ⋅ ∗ +
− λ λ λ≤ +

∗ ∗ ∗
 

( )
( ) ( )( ) ( ) ( ) ( )( )11 1. 1 . 1x x

a a

MK M N Ka t a t
a

−α −α
α α α α

+
≤ ⋅ ∗ + ⋅ ∗

λ λ λ 
 

( )
( ) ( )( ) ( ) ( ) ( )( )111. 1 1 .x x

a a

MK M N Ka t a t
a

−α −α−α −α
α α

+
≤ ⋅ λ ∗ + ⋅ λ ∗

λ λ 
 

The third inequality is realized under: ( ) Nta ≤≤1  for 0≥t  and 

Assumption A1 with ( )( ) ( )( )taataap a ∗≥∗= :1  and that 
( )

1 1.
a

≤
λ λ

 

Substituting ( ) ( ) ω>
∗

=λ ω
ta

N
t 1  for ] ]( )0as1,0 →∞→λ∈ tt t  with 

( ) ( ),111 aN ∗ω+=ω  we obtain 

( ) ( )
( ) ( )

( ) ,
1

α

α−
ω

α

α−
ω

α
+

+≤
∗

−

a

x

a

x NKNMNMK
taa

xtaxtR


 

for all .10 ≤< t  Thus ( ) ( )
( ) ( )

,sup
10

∞<
∗

−
α≤< taa
xtaxtR

t
 and hence ( ).~ AFx α∈  

(ii) Let ( )AFx α∈ ~  be given, then ( ) ( )
( ) ( )

.:sup
10

∞<=
∗

−
α≤<

x
t

J
taa

xtaxtR  For 

,ω>λ  we write 

( )
( )

( )1 ,AK x K x x
a

λ = λ −
λ
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then 

 ( )
( )

( )AK x K x x
a

α
α αλλ λ = λ − λ

λ
 

( )
[ ( ) ( ) ]ˆK x a x

a

αλ= λ − λ
λ

 

( )
( ) ( )( )

0
se R s x a s x ds

a

α ∞
−λλ= −

λ ∫  

( )
( ) ( )( ) ( ) ( )

( ) ( )( )0
. . .s R s x a s xe a a s ds

a a a s

α ∞ α−λ
α

−λ= ∗
λ ∗∫  

The fact that a is satisfying Assumption A2, gives us 

( ) ( )
( ) ( )

.
11

with
, αα
α

αα

∗

+=
+

≤λλ
a

NMLJxLxAK
a

x


 

Therefore, ( ) ,sup ∞<λλα
ω>λ

xAK  which ends the proof. 

 

Example 3.8. Let ] ].1,0∈α  

(i) Let ( ) .1=ta  Then a satisfies Assumption A1 with .1=p  

Furthermore a satisfies Assumption A2 (see Example 3.6 (i)) and by 

virtue of Proposition 3.7 we obtain ( ) ( ).~ AFAF αα =  Hence we recover a 

result for 0C -semigroups case which corresponds to [10, Proposition 5.12]. 

(ii) Let ( )
t

ta 1=  and .3
1=α  Then a satisfies Assumption A1 with 

.1=p  Furthermore a satisfies Assumption A2 (see Example 3.6 (ii)) and 

by virtue of Proposition 3.7 we obtain ( ) ( ).~ 3
1

3
1

AFAF =  
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Remark 3.9. We notice that we have not used the case 1>p  in the 

Assumption A1, we will use it in a future work on the notion of 
admissibility. 
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