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Abstract

In this paper, some sharp maximal function inequalities for the Toeplitz type
operator related to the fractional and singular integral operators satisfying a
variant of Hormander’s condition are proved. As an application, we obtain the
boundedness of the operator on Lebesgue, Morrey and Triebel-Lizorkin spaces.

1. Introduction

As the development of singular integral operators (see [18, 19]), their
commutators have been well studied. In [3, 18, 19], the authors prove
that the commutators generated by the singular integral operators and

BMO functions are bounded on L”(R") for 1 < p < o. Chanillo (see [1])

proves a similar result when singular integral operators are replaced by
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the fractional integral operators. In [8, 15], the boundedness for the
commutators generated by the singular integral operators and Lipschitz

functions on Triebel-Lizorkin and LP(R")(1 < p < ®) spaces are

obtained. In [9, 10], some Toeplitz type operators related to the singular
integral operators and strongly singular integral operators are
introduced, and the boundedness for the operators generated by BMO
and Lipschitz functions are obtained. In [7], some singular integral
operators satisfying a variant of Hormander’s condition are introduced,
and the boundedness for the operators are obtained (see [7, 22]). The
purpose of this paper is to prove the sharp maximal function inequalities
for the Toeplitz type operator related to some singular integral operators
satisfying a variant of Hormander’s condition. As an application, we
obtain the boundedness of the Toeplitz type operator on Lebesgue,
Morrey and Triebel-Lizorkin spaces.

2. Preliminaries

First, let us introduce some notations. Throughout this paper, @ will

denote a cube of R" with sides parallel to the axes. For any locally

integrable function f, the sharp maximal function of fis defined by

# = su L -
MH() ) = sup o [ V) - fola.

where, and in what follows, fg = |Q|_1IQ f(x)dx. We say that f belongs to

BMO(R™) if M*(f) belongs to L”(R") and define |f| g0 = |M™ (f)] -
It has been known that (see [20])

If - fys ol < CHlflsaror

Let

= su i
M) = sup o [ 110

For n > 0, let M, (f)(x) = M(f")/"(x).
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For 0 <nm<nand 0 <r<n/n, set

1/r
nr(f)(x)—sup(lQll L o ] |

The A, weight is defined by (see [6])

A, = {w e Ik (R"): sup(lQl‘[ w(x)dx)(lQlj )1 (p- 1)de o oo},

1< p<oo

A ={wel? (R"): M(w)(x) < Cw(x), a.e.},

loc

and
- U A
p=1

For B>0 and p >1, let FIE”DO(R") be the homogeneous Triebel-

Lizorkin space (see [15]).

For B > 0, the Lipschitz space Lipﬁ(Rn ) is the space of functions f
such that

()= fO)I _

x, yeRn |x - y|B
X£Y

ziny -

Definition 1. Let ® = {¢1, ..., ¢;} be a finite family of bounded

functions in R". For any locally integrable function f, the ® sharp

maximal function of fis defined by

M3(F)() = sup inf j|f<y) Jeiti(q = )ds.
Qax {1,

atl@l

where the infimum is taken over all l-tuples {c, ..., ¢;} of complex

numbers and x¢ is the center of Q.
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Remark. We note that Mg ~M#if 1 =1 and o =1.
Definition 2. Given a positive and locally integrable function f in

R™, we say that f satisfies the reverse Holder’s condition (write this as

f € RH (R")), if for any cube @ centered at the origin we have

1
0 < sup flx) < C@ij(y)dy-

Definition 3. Let ¢ be a positive, increasing function on R* and

there exists a constant D > 0 such that

¢o(2t) < Do(t) for ¢ > 0.
Let f be a locally integrable function on R". Set, for 0 <n <n and
1<p<n/n,

1 pd l/P
Il zp.0 —xezgzm(mj.mx’d)lf(y)l yj ,

where Q(x, d) = {y € R" : |x — | < d}. The generalized fractional Morrey

space is defined by
Lp,n,(p(Rn) = {f € L%oc(Rn) : "f"Lp’”’(I> < OO}'

We write LP"?(R") = LP?(R") if n =0, which is the generalized
Morrey space. If o(d)=d",n > 0, then L”?(R") = L”»"(R"), which is the

classical Morrey spaces (see [16, 17)). If ¢(d) = 1, then L”*?(R" )= LP(R"),

which is the Lebesgue spaces (see [6]).

As the Morrey space may be considered as an extension of the
Lebesgue space, it is natural and important to study the boundedness of

the operator on the Morrey spaces (see [2, 4, 5, 11, 14]).
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In this paper, we will study some singular integral operators as
following (see [22]).

Definition 4. Let K € L?(R") and satisfy
Il <,
[K(x) < Cle[™,

there exist functions By,...,B; e} (R™-{0}) and ®={¢;,...,4; ' < L*(R")

loc

such that |det[(|)j(yi)]|2 e RH,(R™), and for a fixed & >0 and any

x| > 2|y > 0,

L I
K- 3)- Y Biwwto) < c—PL
=1

|x _ y|n+5 )
For f e Cy, we define the singular integral operator related to the

kernel K by

(@) = [ K= ().

Moreover, let b be a locally integrable function on R”™. The Toeplitz

type operator related to T is defined by

m

70 = Y (TP M1, T72 + TP T, M T) ),

J=1

where 771 are T or +I (the identity operator), T72 and T/* are the
bounded linear operators on LP(R") for 1< p <o, T"3 = +I,
j=1..,m My(f)=0bf and I, is the fractional integral operator
(0 < a < n) (see [2]).
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Remark. Note that the classical Calderén-Zygmund singular
integral operator satisfies Definition 4 (see [20, 21]). Also note that the
commutator [b, T](f) = bT(f)- T(bf) is a particular operator of the

Toeplitz type operator T®. The Toeplitz type operator T% is the non-
trivial generalizations of the commutator. It is well known that
commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [18, 19]). The main purpose of this

paper is to prove the sharp maximal inequalities for the Toeplitz type
operator T, As the application, we obtain the L”-norm inequality,
Morrey and Triebel-Lizorkin spaces boundedness for the Toeplitz type

operators T°.
3. Theorems and Lemmas

We shall prove the following theorems.

Theorem 1. Let T be the singular integral operator as Definition 4,

0<Bp<LO0<a<nl<s<n/(a+p)andbe Lipg(R"). If TY(g) =0
for any g € L*(R")(1 < u < ), then there exists a constant C > 0 such

that, for any f € C3(R") and X € R",

ME(T () (%) < CIIbIILipBZ(Mg,s(laTj’g(f))(f) + Mp.o, o(T7H() (F)).
=1

Theorem 2. Let T be the singular integral operator as Definition 4,

0<B<min(l,3),0<a<nl<s<n/a and be Lipg(R"). If TY(g) =0
for any g € L*(R")(1 < u < ), then there exists a constant C > 0 such

that, for any f € C5(R") and X € R",
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~

i 1
su inf
QBIJ)? {eosc15mmcr} |Q|1+B/n

IQlTb(f) (x)—co — Zci¢i(x0 - x)|dx

1=1
< Clpl i, D (Mo(1TH2(1) (%) + Mo, o (174 (£)) (%)),
j=1

where the infimum is taken over all (I +1)-tuples {cy, c;, ..., ¢;} of

complex numbers and x is the center of Q.

Theorem 3. Let T be the singular integral operator as Definition 4,
l<s<w,0<a<n and b e BMO(R"). If T*(g) =0 for any g € L*(R™)

(1 <u<w), then there exists a constant C >0 such that, for any

feCy(R") and X € R",

MET(1))(F) < COPlppo ) (Mo(TTV2(1) (F) + My o(T74(F)) (F)).
=1

Theorem 4. Let T be the singular integral operator as Definition 4,

0<B<l0<a<nl<p<n/(a+B),1/qg=1/p-(a+B)/n and
b e Lipg(R™). If T*(g) = 0 for any g € L“(R")(1 < u < ®), then T® is
bounded from LP(R") to LY(R").

Theorem 5. Let T be the singular integral operator as Definition 4,
0<B<l,0<a<nl<p<n/(a+B),1/g=1/p-(a+B)/n,0<D<2"

and b € Lipg(R"). If T (g) =0 for any g € I*(R")(1 < u < ), then

T is bounded from LP***B(R™) to LT*(R™).
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Theorem 6. Let T be the singular integral operator as Definition 4,

0<B<min(,3),0<a<nl<p<n/al/q=1/p-a/n and
b e Lipg(R"). If T'(g) =0 forany g e L“(R")(1 < u < ), then T® is
bounded from LP(R") to FS’W(R’Z ).

Theorem 7. Let T be the singular integral operator as Definition 4,
O<a<nl<p<n/a,1/q=1/p-oa/nand b € BMO(R"). If
TY(g) =0 for any g e I{R")(1 < u < »), then T® is bounded from
LP(R") to LY(R").

Theorem 8. Let T be the singular integral operator as Definition 4,
O<a<nl<p<n/a,1l/g=1/p-a/n,0<D<2" and b € BMO(R").
If TX(g) =0 for any g € I*(R")(1 < u < ), then T? is bounded from
LP%9(R™) to [S9(R™).

Corollary. Let [b, T](f) = bT(f) — T'(bf) be the commutator generated

by the singular integral operator T as Definition 4 and b. Then Theorems
1-8 hold for [b, T].

To prove the theorems, we need the following lemmas.

Lemma 1 (see [22]). Let T be the singular integral operator as

Definition 4 and 1 < p < . Then T is bounded on LP(R").

Lemma 2 (see [22]). Let 1 < p <o, w € A, and ® = {7, ..., §;} <

L”(R™) such that | det[¢;(y;)]|*> € RH,,(R™). Then

[ MO P wids < o ME(E) @) w)dx,

for any smooth function f for which the left-hand side is finite.
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Lemma 3 (see [15]). For 0 < B <1 and 1 < p < «, we have

~

1
"f"Fg’w ® Zupr’/”lef(x) - foldx

> Q)

. 1
SQUBP lIclf W J‘Qlf(x) - Cldx

ig r

Lemma 4 (see [2, 6]). Suppose that 0 <o <n,1<s<p<n/a and

1/r=1/p-oa/n. Then

ez < Cliflp

and

1Mo, s (N < Clflzp-

Lemma5.Let 1 < p <, 0< D < 2" and ® = {¢y, ..., ¢;} < L*(R")

such that | det[¢; (yi)]|2 e RH,(R™). Then, for any smooth function f for
which the left-hand side is finite,

IM(F)zpo < C||M$(f)||prso-

Proof. For any cube @ = Q(x, d) in R", we know M(yq) € 4; for
any cube @ = Q(x, d) by [6]. Noticing that M(yg) <1 and M(yq)(x) <

d" /(x — xo| - d)" if x € Q°, by Lemma 2, we have, for f € LP?(R"),

J i @rdr = [ M@ g
< [ M) (Y Mg N

< cf  MED @) Mlrg) (x)ax

- CUQMZE(IC) (x)? M(xq) (x)dx + ];J.Qk‘*‘lQ\ngMg(f) () M(xq) (x)dx
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sCI Mq,(f)(x)Pd“Zj oo M) @ )1”| kl?llQl J

LR GOES %LMQM% (f) <x)Pz’mdy]

0

< AMEPIP, o D 2 " o2 d)

< CIMEWNIP, o > (27" D) o(d)
k=0

< AAME(, . 0(d),

thus

[ M@y P [ ME() ) ax "
o(d)Jq UI

and
IM(F)]| poo < CIME )] .o
This finishes the proof.

Lemma 6. Let 0 <a<n,0<D<2" 1<s<p<n/a and 1/r =

1/p-a/n. Then

2o (O zro < Cllf oo,
and

”M(l,s(f)"Lr?(P < C"f"pr“y(P-
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Lemma 7. Let T be the singular integral operator as Definition 4.

Then, for 1 < p <o, 0 < D < 2",

TP zpo < CUf oo

The proofs of two Lemmas are similar to that of Lemma 5 by Lemmas

1 and 4, we omit the details.

4. Proofs of Theorems
Proof of Theorem 1. It suffices to prove for f € Cy(R") and some
constant Cg, the following inequality holds:
1 m
b i, 2 ~
@] 7))~ Coldx < Clply, D (My (1,173 (@)

j=1
b My, o (T4 F)).

Without loss of generality, we may assume 771 are T(j=1,..,m). Fix

acube @ = Q(xg, d) and ¥ e Q. We write, by T(g) = 0,

T(f) (@) = DT ML T2 (F) (6) + D TP 1, MyTY A (F) () = Ap(x)
j=1 j=1

+ By(x) = Ap_pg (x) + Bp_p, (%),

where

m m
Abbe (x) = ZTJ’IM(b—bQ 12Q IonTjiz(f) (x) + ZT]’IM(bbe M(2Q)c
j=1 j=1

x I,TH2(f) (x) = Ay(x) + Ag(x),
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and

m m
Bb*bQ (x) = ZT]’:BIOLM(Z)*I)Q )XZQ T],4(f) (x) + ZTL?’I&M(b*bQ )X(2Q)C
j=1 j=1

< TI4(f) (%) = By(x) + By ().

Then

1 1
@J.Q‘Ab—bQ (f) (x) - Co‘dx < @J.Q|A1(x)|dx

1
+ @J.Q|A2(x)— C0|dx = I]_ + Iz,

and
I%I | Q‘Bb_bQ (F) () ~ By(xo | dx < I%I | SRl
+ |%|J.Q|BQ(3C)_ By (xg)dxc = I3 + 1y,
where @ is any a cube centered at x, Cy = z;n:l Z§=1 g;d)i(xo —x) and
85 = [ onBil®o = IM(b-bg yyaqie LT () (9)dy.

For I;, by L°-boundedness of T (see Lemma 1) and Hélder’s

inequality, we obtain

1 1 .
Q J‘QlTLlM(b—bQ 29 1,77%(f) (x)|dx
1/s
1 1 .
= (@ J.Ranj’lM(b—bQ 2@ IaTJ’Q(f) (x)|sdx]

) 1/s
< 0O [ 1Mo g g T ()0



BOUNDEDNESS OF TOEPLITZ TYPE OPERATOR ... 47

) 1/s
< c@ ([ (b6 bl 27721

1/s
—1/s n s—pB/n 1 j S
< ClQl 1/ "b”Lipﬁlelﬁ/ |2Q|1/ B/ [W JleIuT],z(f) (x)l dx]

< C"b"Lipﬁ Mﬁ,s(I(ij’Z(f)) (3?),

thus

I < Z@J‘Ran]’lM(b*bQ )XQQIaTJ’2(f) (x)ldx

j=1

m
< Clbll i, > M, s (T T72() (F).
=1
For Iy, we get, for x € Q,

|Tj’lM(b—bQ )X(zQ)CIQTj,z(f) (x) - COl

l
= |TJ’1M(b—bQ )X(QQ)CI(XT]’2(}[) (x) - Zg;(l)i(xo - x)l
=1

<

—_—

o (= 9) = 2Bl = Wil = ) 60) boq g DT (1) )

0
k=1

l
: Zj RSP LAl ;Bi(xo = 9)0i(x0 — x)[|b(y) - bog
x I,T72(f) (y)|dy

o0 _ 6 .
<oy ], 30l ) — b 12,752(7) ()

dS\y—x0\<2k+1d |y _ x0|n+6
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o0

dS

<Cy ——
= (2kd)n+8

(2" @) bl 5, (20)"

1/s
1 ; s
s (W Izm QIIOLT”(f) ) dy]

< Clbll i, Mp, o (TT72(F)(F)D 270
k=1

< el iy, My o (L T2() (),

thus

m
1 j j
I < oy | o 2T Msbq e (1) () = Cold
j=1

< Clblipy D Mp,o(T72(F) (F).
j=1

Similarly, by (L°, L" )-boundedness of I, with 1 <s<n/a and 1/r =

1/s—a/n (see Lemma 4), we get

U] ) . 1/r
I3 < ;(@IRn|IaM(b—bQ)X2QTJ’4(f)(x)| dxj
m ) 1/s
s ey Jar ([ (o) - gl 747 i
i

< C”b"Lipﬁ ZlQl_l/r|2Q|B/n|2Q|1/S—(|3+OL)/n
j=1

1/s
1 j, 4 s
x (ijm ") dxj
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< Clbl iy > Mpar, s (T74(9) (@),
j=1

o 1 ! 1|
fos ZWJQJ(zQ)Clb(y)_ b2Q|||x -o" i

0 — "%

x| T74(f) (3)|dydx

m o
d
S " "LlpB| | 2kds\y7x0\<2k+1d|x0 _ yln—a+1

< [T (F) (3)|dy

< C||b||Lipﬁ ZZ(2kd)Bd(2kd)fnJroc—l(2kd)n(lfl/s)(zkd)n/s,ﬁ,a
=1 k=1

1/s
1 i 4 s
X [|2k+1Qlls(B+a)/n J.2k+lQ|Tj (f) (y)l dyJ

m o]
< Clblipy D Mpa, s (T4 (3D 27
j=1 j=1

< Clblipy D Mpeor, s (T74() (®).
j=1

These complete the proof of Theorem 1.
Proof of Theorem 2. It suffices to prove for f € Cy(R") and some

constant Cg, the following inequality holds:

1

R J ) ) cola < CBliiy 2 M LT (O)E)

+ My o(TH*(£)) (%))
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Without loss of generality, we may assume 771 are T(j=1,..,m). Fix

a cube @ = Q(x(, d) and X € Q. Similar to the proof of Theorem 1, we

have

| le/n j IT5(£) () - Co ~ Balay

1+ﬁ/nJ | Ay (x)] dx | |1+B/n.[ |Ag(x) - Co|dax

+|Q|1+,3/n [ IBiax ||1fﬁ/njQ|B2(ac>—Bz(xo»ozx

=I5+I6+I7+18.

By using the same argument as in the proof of Theorem 1, we get, for

1/r=1/s-a/n,
1/s
<@ty (lQl J 7 M0 g 1) )
m ) 1/s
< c@ry ([ o) - bl l1T72(1) |
j=1
< CIQIP™ Y QI bl 2@ " I?
j=1

<[ ity 7720 (x>|3dxj1/s

< ClBl i, > Mo (LT3 (F)) (F),
j=1
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m 0 m
. 1
1. <|Q /" —j J' K G - 9) = 3 B -
5 <1Q) j§1 @02 iy el )~ LBl =)

x 0 (xg — x)| % |b(y) — bag| | I T 2(f) (v)| dydx

B/n o — x0| 3
< ael ZJ‘2kd<y x0\<2k+ld| |n+6 [6(x) b2Q|
x | 1,T72(f) ()| dy
f’/n d6 k 7\B k 7\n
< Clel” W(z @), (27 )
o]

1/s
% [leilQl J‘2k+1Q|IU-TJ,2(f) (y)|8dyJ
< bl Mo (T4 2(F) () 2070

< Clllip, M (1,T7%(F) (%),

1/r
<Py, (|Q|j Mo T 1) 0l |

1/s

<aQrmy [j () ~ ol 151 ) |

< C"b”Lipﬁ Z|Q|*B/n71/rl2Q|B/n|2Ql1/s,a/n
j=1

1/5
x| J.4 s
[I2Q|1-sa/n [T @) de
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< Clbly iy > Mo, s(TH4(M) (@),
j=1

Bl I 1|
o QR f g ) Pae -

PEECTY

< | T74(f) (v) dydx

< ClQl—B/nZZ"b”LipB|2k+1Q|B/nJ d

j=1k=1 2hd<|y-xo \<2]"+ldm
x |T4(F) ()| dy

< C"b”Lipﬁ sz—ﬁ(gkd)ﬁd(gkd)fnﬂx—l(zkd)n(l—l/s)(zkd)n/sfa
=1 k=1
1/s

1 . s
) [W J gl T (DG dy

< C||b||Lipﬁ ZMa,s(Tj’4(f)) (E)sz(ﬁ—l)
j=1 [

< Clel iy 2 M o(T74(F)) ().
j=1

These complete the proof of Theorem 2.

Proof of Theorem 3. It suffices to prove for f € Cy(R") and some

constant Cg, the following inequality holds:

L) () - Coldx = Clblyag > (My(LT72()) ()
o jQ\ ol unBMo];

+ My o(TH4(£))(%)),
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where @ is any a cube centered at xq, Cy = ZﬁIZizl gj.q)i(xo —x) and

i e B j.2 .
g = IRnBl(xO ¥)(b(y) = bag )M(bbe)ngT () (y)dy. Without loss of

generality, we may assume T/l are T(j=1,..,m). Fix a cube

@ = Q(xg, d) and X € Q. Similar to the proof of Theorem 1, we have

i ] 7@ = Co ~ Buwo fax

_[ | Ay (x)|dx + = IQ|A2(X)—Co|dx

Bl @
tig ] BN« o [ Ba(e) - Byt

= Ig + IlO + Ill + 112.

For Iy, <choose 1<r<s, by Holder's inequality and the
L -boundedness of T, we obtain
L ity 1,T92(f) (x)|da
Rl Jo (b-bg 2 ta
1 j.1 .2 r U
<{jar [ 77 M-t s T (1) @
Y - 1/r
< COU( [ 1M s 1T )G )
(s=r)/sr

. 1/s
< C|Q|_1/V[J‘2Q|IQT/’2(f) (x)|sdxj (J.2Q|b(x) _ lesr/(S—r)dxj

1 - \ 1/s
P LR

< Clbllar0 M5 (1,TH2() (%),
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thus

l
0 < 2 J o/ Mot o T () @l

:l
< Clbllgyo O Ms(IT72(1) (%).
j=1

For Iy, by using the same argument as in the proof of Theorem 1, we

get, for x € @,

l
77 M-t e LT () () = i = x)
i=1

-[2kd£y—x0 |<2F+1q

!
|K(x - y) - ZBi(xO = )i (xg — %) [|6(y) - bag|
i1

IA
M

x| I, T2(f) (3)ldy

Jx — xo|6

2200 \p(y) = byg || 1,772 d
Zijd<y x0‘<2k+1d|y |n+5| (») 2Q|| o (f)(y)| Yy

1/s
CZ(z d)'“S( 7 )n[wm IO dy}

1/s
* (ﬁ J.2k+1Q|IaTJ’2(f) (y)|sdyJ

0 1/s
- 1 j s
< Cllano 3|t [T 2000 |

k=1

< Clpl g0 Mo(TT2 () (%)Y k2™
j=1

< Clollgago Mo (1772 (1) (%),
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thus

m

1 , .

I < QI IQZlT]’lM(b—bQ )x(zQ)CI“T]’z(f) (x) - Coldx
=1

< Clpllgago Y, M (1T () (%)
j=1

For I;; and I;5, by using the same argument as in the proof of Theorem 1,

weget,forl <t<sand1l/r=1/t-a/n,

m _ 1/r
I < Z;(l%l J.Rn|IaM(b—bQ)XQQTJA(f)(x)lrdxj
m ) 1/t
< 1@ ([ (86~ bgl 7747 o Y|
=1

< CélQl” ( [T ) <x)|3dx]1/s

(s—t)/st
X U |b(x) - b "/ (St)dxj
2Q

m 1/s
1 J,4 s
< CZ[|2Q|1—(xs/n IleT (f)(x)l dx]

Jj=1

(s—t)/st
1 _ st/(s—t)
x (—lel j2Q|b(x) b | dxj

< OBl g0 ), Ma,s (T4 () (#),
j=1
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. 1|

PEECT

< 1
I; < ;@IQI(2Q)C|b(y)—b2Q|

< | T74(f) (v) dydx

m [oe]
d P4
<C E E —J. b(y)-b T d

j=1k=1 (2’€d)n70Hr1 deﬁ\y—xo\dk*ldl () 2Q|| (f) (v)dy

< CZZd(de)—nﬂxfl(de)n(de)n/s’(de)n(l/sfa/n)

1 , 1/s
s
% (|2k+1Q| J‘zkHle(y) - le dy]

1/s
1 . s
) [W J g7 NG) dy)

< CPollgpgo D Mo, o(THH(1)) ()Y k27
j=1 k=1

< Wllgaro 2, Mo o(T74 () ().
J=1

This completes the proof of Theorem 3.

Proof of Theorem 4. Choose 1 <s < p in Theorem 1 and set

1/v=1/p-a/n, wehave, by Lemmas 2 and 4,

1% e < 1MTP(Flza < CIMETO ()10

< C"b”LipB Z("MB,S(IaTj’Q(f))"Lq + "MB+(x,s(Tj’4(f))"Lq )
j=1
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< Clbl gy, D LTy + 1754
j=1

< CPol i, 2 (1T Dlp + 10 )
j=1

< C"b"LipB IAlzp-

This completes the proof of Theorem 4.

Proof of Theorem 5. Choose 1< s < p in Theorem 1 and set

1/v=1/p-a/n, wehave, by Lemmas 5, 6, and 7,

I7°Dllzzo < 1MTP (D0 < CAMETO (a0

m
s C"b”LipB Z("MB,S(IOLTJ’2(f))"Lq’(P + ||M[3+(x,s(T]’4(f))"Lq,(P )
=1
m . .
< C"b”LipBZ("IOLT]’Z(f)"LU’Bv‘P T2 () ppospo)
=1

m
< Pl D (AT 2t + Wlpaepo)
j=1

< Ol .0

This completes the proof of Theorem 5.
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Proof of Theorem 6. Choose 1 < s < p in Theorem 2, we have, by

Lemmas 2 and 3,

1
Clsup
Q> |Q|1+B/n

IA

7 (g

J T ()~ Cofe

14

Cll iy 2 (M (L7 (g + 1M, (T (P )
j=1
< Clbll iy 2 (1T Pl + 17740 )
j=1

< Cllplyipy 2 U7 2P +1fl0 )
j=1

< Clol iy 171 -
p

This completes the proof of Theorem 6.

Proof of Theorem 7. Choose 1 < s < p in Theorem 3, we have, by

Lemmas 2 and 4,

I7°Dllza < 1T (e < CIMET (e

m

< C"b”BMoZ(”Ms(IaTj’Z(f))"Lq [ My, o (T7* ()

J=1

< Clgaro > (T2l +1T74 (Pl )
j=1

< Clollgyro O (T 2(Flye +1fl 0 )
j=1

< Clll asollfl e -

This completes the proof of Theorem 7.
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Proof of Theorem 8. Choose 1 < s < p in Theorem 3, we have, by

Lemmas 5, 6 and 7,

17°(f)l 9.0

IA

|M(TP(F) 00 < CIMETO ()00

IA

CWlsato > 1ML T (o + Mo (154 (FD] ga.0)
=1

m
< Clblpago ) 1T *(Dligaco + 1774 (P oo )
=1

m
< Clgaso > (772N oo + ] pece)
j=1

< Clol gprollfl e

This completes the proof of Theorem 8.
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