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Abstract 

The relation between fundamental spacetime structures and dynamical 
symmetries are treated from the geometrical and topological viewpoint. To this 
end analyze, taking into account the concept of categories and quasi 
Hamiltonian structures, a recent research [64] where one linear and one 
quadratic in curvature models were constructed and where a dynamical 



DIEGO JULIO CIRILO-LOMBARDO 2

breaking of the SO(4, 2) group symmetry arises. We explain there how and why 
coherent states of the Klauder-Perelomov type are defined for both cases taking 
into account the coset geometry and some hints on the possibility to extend they 
to the categorical (functorial) status are given. The new spontaneous 
compactification mechanism that was defined in the subspace invariant under 
the stability subgroup. The physical implications of the symmetry rupture as 
the introduction of a noncommutative structure in the context of non-linear 
realizations and direct gauging are analyzed and briefly discussed. 

1. Introduction 

As we recently have been discussed [64], studies of higher-dimension 
theories that involve (spontaneously) broken symmetries and non-
commutativity in the quantum case are motivated by searches for a 
unified theory and consequently by a consistent theory of quantum 
gravity. Dimensional reduction of such theories is not unique and 
becomes extremely involved when gravity is included. We believe that 
the guiding principles for the reduction are provided by the observed (or 
desirable) physical field content and by the group theoretical structure 
itself. It is possible, however, to include more fundamental structures 
(categories) that allow a more natural way of describing all the properties 
of spacetime that interest us. In the other hand, symplectic geometry 
grew out of the theoretical study of classical and quantum mechanics. At 
first, it was thought that it differs considerably from Riemannian 
geometry, which developed from the study of curves and surfaces in three 
dimensional Euclidean space, and went on to provide the language in 
which General Relativity is studied. This fact was understandable given 
that symplectic geometry started from the study of phase spaces for 
mechanical systems but, with the subsequent seminal works of Cartan 
that introduce the symplectic structure into the geometry of the 
spacetime calculus, that thinking changed radically due the introduction 
of the concept of categories and functors. In this paper, we review and 
give some new results our recent research introducing some new ideas 
and results both, from the physical and mathematical viewpoint. 
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1.1. Noncommutative structures 

From the technical point of view, we have to extend physical fields 
into an extra (internal) space with preserving the general non-
commutative quantum structure. However from the point of view of only 
group manifolds, the development of a mechanism that permit us to 
display the set of physical fields in interaction with the corresponding 
four dimensional world implies that some of the original symmetries of 
the higher-dimension manifold have been broken. There exist many 
theoretical attempts to realize the above ideas such as string and brane 
theories but none of them can be treated as the final answer: formulation 
of such theories contain serious problems that are still non solved. In 
spite of the fact that in these theories the solution seems to include a 
non-commutative structure [1, 2], the concrete implementation of these 
symmetries in a substructure of any (super) manifold seems to be very 
complicated from the technical and geometrical viewpoints. However, the 
possible answer to this question as for the problems of the geometrical 
quantization procedures which include a categorization mechanism. A 
possibility is given in Section 6 where we explain the generalized 
Rothstein theorem presented by us before and may include naturally the 
desired categorization. 

1.2. Gauge theories of gravity 

However if well there exist another way to attack the unification 
problem that is in the context of gauge theories of gravity [3-5], the 
quantum picture is still not clear. The main problem is to conciliate the 
gauge theories, the breaking of symmetry and the mechanism of 
quantization in a fiber bundle structure. We will not go into details of 
each proposed theory of gravitation here, only the possibility of 
implementing a consistent geometric quantization scheme. As is well 
known the first model of gauge gravitation theory was suggested by 
Utiyama [6] in 1956 generalizing the original SU(2) gauge model of Yang 
and Mills to an arbitrary symmetry Lie group he met the problem of 
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treating general covariant transformations and a pseudo-Riemannian 
metric which had no partner in the Yang-Mills gauge theory see also      
[3, 4, 7-11] and references therein. Since the Poincaré group comes from 
the Wigner-Inonu contraction of de Sitter groups SO(2, 3) and SO(1, 4) 
and it is a subgroup of the conformal group, gauge theories on fibre 
bundles with these structure groups were also considered [12-18]. 
Because these fibre bundles fail to be natural, the lift of the group Diff(X) 
of diffeomorphisms of the fiber onto the base should be defined [19, 20]. 
However, these gauging approaches contain the problem with a non-
linear (translation) summand of an affine connection being a soldering 
form, but neither a frame (vierbein) field nor a tetrad field. Thus the 
latter doesn’t have the status of a gauge field [21-23]. At the same time, a 
gauge theory in the case of spontaneous symmetry breaking also contains 
classical Higgs fields, besides the gauge and matter ones [24-32]. 
Therefore, basing on the mathematical definition of a pseudo-
Riemannian metric, some authors formulated gravitation theory as a 
gauge theory with a reduced Lorentz structure where a metric 
gravitational field is treated as a Higgs field [33-37]. Consequently, all 
the above attempts to implement a clean geometrical quantization 
procedure fail justifying the possibility of more fundamental algebro-
geometric structures at the level of the base differentiable manifold. 

1.3. Cartan forms, pullbacks and quantization 

The most satisfactory answer to the formulation of gravity as a gauge 
theory was developed in the pure geometrical context in the works of 
Volkov et al. [38, 39]; in the context of supergravity by Arnowitt and Pran 
Nath [40]; and finally by Mansouri [41] who was able to solve some of the 
problems listed before by means of a principal fiber bundle imposing a 
condition of orthogonality of the generators of the fiber and base 
manifold. Such conditions that break the symmetry of the original group 
are implemented by means of a particular choice of the metric tensor. 
This approach was implemented in a supergroup structure obtaining a 
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gauge theory of supergravity. Note that the underlying geometry must be 
reductive (in the Cartan sense) or weakly reductive in the case of 
supergravity. In these cases, a geometrical quantization procedure can be 
incorporated because there is a correct supergroup structure with a 
Cartan weakly reductive geometry. 

1.4. Cosets and number of fields 

As always, even the problem to determine which fields transform as 
gauge fields and which not, as well as which fields are physical ones and 
which are redundant, nonetheless remains. Also the relation between the 
coset factorization (as in the case of the non-linear realization approach 
[47-49]) and the specific breaking of the symmetry in the pure topological 
theories of grand unification (GUT) is still unclear. 

1.5. Higher structures in field theory 

Gerbes appear in descriptions of the classical fields on manifolds and 
their boundaries by Dan Freed. There have to be links via “twisted         
K-theory” with Mickelsson’s work on QFT [63] (and references therein), 
anomalies and gerbes. The latter involves (twisted) projective 
representations (as opposed to linear representations) of the group of 
classical symmetries, on a Hilbert space of quantum states. Such 
“anomalies” can often be expressed in terms of Dixmier-Douady classes 
(in the integer-valued third cohomology group) or in terms of gerbes, or 
via twisted K-theory. I think that it would be nice to understand this 
point better. 

1.6. Coset coherent states and quasi-Hamiltonian structures 

Let us remind the definition of coset coherent states 

( ){ } .| 000 GVVgGgH ⊂=∈= U   (1) 

Consequently, the orbit is isomorphic to the coset, e.g., 

( ) .00 HGV O   (2) 
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Analogously, if we remit to the operators, e.g., 

,000 ρ≡VV   (3) 

then the orbit 

( ) ,0 HGV O   (4) 

with 

( ){ }00| VVgGgH θ=∈= U  

{ ( ) ( ) } .| 00 GggGg ⊂ρ=ρ∈= ?UU  (5) 

The orbits are identified with coset spaces of G with respect to the 
corresponding stability subgroups 0H  and H being the vectors 0V  in the 

second case defined within a phase. From the quantum viewpoint 
H∈0V  (the Hilbert space) and F∈ρ0  (the Fock space) are 0V  

normalized fiducial vectors (an embedded unit sphere in H ). 

In the case of Hamiltonian and quasi-Hamiltonian structures, the 
typical case can be exemplified as follows: 

( ) GmapsG →∑∑ :  

( ) g⊗Ω ∑


1  

now 

,: Gg →∑  

and we have a connection such is invariant under 

dggAggA 11 −− +→  

is the action with A Hamiltonian? We define ,: gt →∑  then: 

( ) ,,, AtFtAH At ∫∫
∑∂∑

+=  
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where AAdAFA +=  and looking at the Poisson bracket between 2 

actions: 

{ } [ ] 21, ,, 2121 dttHHH tttt ∫
∑∂

+=  

we see that the problems appear when the boundaries certainly exist: 

0≠∂∑  no momentum map. Consequently, the problem can be solved 

from the point of view of the Atyah-Bott theorem redefining the 
symplectic structure with the help of the moduli-space of the flat 
connections (in a future work [46] this problem will be explicitly 
exemplified). 

2. Invariant SO(2, 4) Action and Breakdown Mechanism 

The explicit construction given recently [64] of geometrical 
Lagrangians based in a group manifold with conformal structure is 
reviewed here in order to understand how it can be connected with the 
general dynamics and quantization procedures. 

2.1. Linear in ABR  

AB
AB RS µ= ∫  (6) 

in this case we note first, that the SO(2, 4)-valuated tensor ABµ  acts as 

multiplier in S (without any role in dynamics, generally speaking). 
Having this fact in mind, let us consider the following points: 

(i) If we have two diffeomorphic (or gauge) nonequivalent SO(2, 4)-valuated 

connections, namely, ABΓ  and ,~ABΓ  their difference transforms as a 

second rank six-tensor under the action of SO(2, 4) 

,CDDBCAAB GG κκ =   (7) 

.~ ABABAB Γ−Γ≡κ   (8) 



DIEGO JULIO CIRILO-LOMBARDO 8

(ii) If we now calculate the curvature from ABΓ~  we obtain 

,~ ABABAB RR κD+=   (9) 

where the SO(2, 4) covariant derivative is defined in the usual way 

.ADDBCBCAABAB d κκκκ  Γ+Γ+=D   (10) 

(iii) Redefining the SO(2, 4) six vectors as AA vV /≡2  and BBV ϕ≡1  

(in order to put all in the standard notation), the 2-form ABκ  can be 
constructed as 

[ ] .dUv BAAB ϕ/→κ   (11) 

Then we introduce all into the ABR~  (U scalar function) and get 

[ ]( )dUvRR BAABAB ϕ/+= D~  

[ ] [ ]( ) .dUvvR BABAAB /ϕ−ϕ/+= DD  (12) 

The next step is to find the specific form of ABµ  such that ABAB µ=µ~  

(invariant under tilde transformation) in order to make the splitting of 

the transformed action S~  weakly reductive as follows. 

(iv) Let us define 

AA ϕ=θ D~~   (13) 

with the connection ,~ ABABAB κ+Γ=Γ  then 

,~ BBAAA

A

ϕ+ϕ=θ

θ

κ
	�D  

( ) ( ) ,~ 2
dUvv ABAAA 



 ϕ⋅/ϕ−ϕ/+θ=θ  (14) 

where ( ) ( )B
B

B ϕϕ=ϕ
2

 and ( ) B
Bvv ϕ/=ϕ⋅/  etc. 
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In the same manner, we also define 

,~~ AA v/=η D  

( ) ( ) .~ 2
2 dUvvv BAAAA 



 /ϕ−ϕ⋅//+η=η  (15) 

(v) To determine ABµ  we propose to cast it in the form 

( )[ ]ABDCDCDC
ABCDEF

EF
sAB bva κ+ηη+θθ+ηθϕ/ρµ   (16) 

with bas ,,ρ  scalar functions in particular contractions of vectors and 

bivectors SO(2, 4)-valuated with ABCDEF  to be determined. The behaviour 

under the tilde transformation is 

,2
1~ dUdva ABEF

EF
sABAB  ξϕ/ρ−µµ  (17) 

where ( ) ( ) ( ) .222
ϕ⋅/−ϕ/=ξ vv BA  

(vi) Finally, we have to look at the behaviour of the transformed 
action 

AB
AB RS ~~~ µ= ∫  

.2
1 AB

AB
AB

ABs dRaS κκ D µ+ξρ+= ∫∫  (18) 

We see that till this point, the SO(2, 4)-valuated six-vectors  Fv/  and Eϕ  

are in principle arbitrary. However, under the conditions discussed in the 
first section the vectors go to the fiducial ones modulo a phase. 
Consequently, 

,22BA→ξ   (19) 

and the bivector comes to 

[ ] ( ) ,6,5:,, βα=αβ=∆→ϕ/→ αβαβαβ  ABABABdUv BAABκ   (20) 
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where we define the 2nd rank anti-symmetric tensor αβ  and 

1=αβ=














λβαµ−

µβ−αλ
=∆

∗

∗

Det  (unitary transformation)  (21) 

Below we consider two important cases with respect to the components    
m and .λ  

2.2. mA =  and λ=B  

(1) If the coefficients mA =  and λ=B  play the role of constant 
parameters we have 

( ) ,022 =λ→ξ mdd   (22) 

and 

( ) 0=λ→ αβ dUmdAB κD   (23) 

making the original action S invariant, e.g., 

SRRS AB
AB

AB
ABV =µ=µ= ∫∫  ~~~

0  (24) 

being 0
~

VS  the restriction of S~  under the subspace generated by 0V  and 

consequently breaking the symmetry from SO(2, 4) → SO(1, 3). 

(2) The connections after the symmetry breaking (when the mentioned 
conditions with λ  and m constants are fulfilled) become 

,~,~;~b.o.s.~ 6655 iiiiijijABABAB Γ=ΓΓ=ΓΓ=Γ→⇒+Γ=Γ κ  (25) 

but 

( ) .~ 5656 dUmλ−Γ=Γ  (26) 
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(3) Vectors Aθ~  and Aη~  after the symmetry breaking and under the 

same conditions become 

,b.o.s.~ ⇒ϕ+ϕΓ+ϕ=θ

θ

BBACCAAA

A

d κ��� 
��� 	�   

,00~
55 mm iiiii Γ=θ⇒+Γ+=θ=θ  

,0000~5 =+==θ  

.,b.o.s~ ⇒/+/Γ+/=η

θ

BBACCAAA vvvd
A

κ��� 
��� 	�   

,00~ 66 λΓ−=η⇒+λΓ−=η=η iiiii  

,0~ 66 =η=η  

and evidently .065 =µ=µ ii  

(4) Consequently from the last points, curvatures become 

{ } ,22 jijiijij mRR ηηλ+θθ+= −−   (27) 

,6516515




 Γη

λ
−θ=

















Γη





λ

+θω+θ= −

θ

−  iii
D

jjiii mDmmdmR

i �� ��� �
 (28) 

,56
1

16








Γθ






λ

−ηλ−=
−

− iii mDR  (29) 

( ) ,15656 i
imdR ηθλ+Γ= −   (30) 

where D is the SO(1, 3) covariant derivative. 

(5) The tensor responsible for the symmetry breaking becomes 

( )lll
lijsij ma ηη+θθ+ηθλρ−=µ  kkk
k2  (31) 

.5656 mdUbs λρ−=µ   (32) 
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(6) Consequently, with all ingredients at hand, the action will be 

,

21

56
56

��
��	��
�	�
SS

ij
ij

AB
AB RRRS  µ+µ=µ= ∫∫∫  (33) 

where 

( ) { } 




 ηη

λ
+θθλ+ληη+θθ+ηθρ−= ∫ jijiijlll

lijs
m

mmRaS  kkk
k21  

{ } { } { }( )ijlijlijl
lijs mRmRmRa ληη+λθθ+ληθρ−= ∫  kkk
k2  






 θθληη+θθλθθ+θθληθρ− ∫ jiljiljil

lijs mmma  kkk
k2  

,2 




 ηη

λ
ηη+ηη

λ
θθ+ηη

λ
ηθρ− ∫ jiljiljil

lijs
mmma  kkk

k  

and 

( )( ).156
562

i
is mdbmS ηθλ+Γρλ−= −∫   

(7) At this point (the mathematical justification will come later), we 
can naturally associate the tetrad field with the θ-form 

,~ a
ae ωθ kk   (34) 

consequently a metric can be induced in :4M  

.,etc,,, a
b

b
a

ba
jabjb

j
ajab eeeegeeg δ=η==η k

k
kk

k
k  (35) 

where kjη  is the Minkowski metric. That allows us to lift up and to lower 

down indices, and iη  with the following symmetry typical of a SU(2, 2) 
Clifford structure: 

,~ a
af ωη kk   (36) 

,jlljla
a
j ffgfe −==k
k   (37) 

that consequently allows us to introduce into the model an 
electromagnetic field (that will be proportional to ljf ). 



DYNAMICAL SYMMETRIES, COHERENT STATES … 13

(8) So we can re-write the action as 

( ) { } 




 ηη

λ
+θθλ+ληη+θθ+ηθρ−= ∫ jijiijlll

lijs
m

mmRaS  kkk
k21  

{ } ( ) { }( )
 







λ
+λ+++λρ−= ∫ j

jij
jiij

ij
ijs ffm

mRffgRfma k
k

k
k2  

.4xdfmgm 







λ
+λ+  (38) 

In the above expression, we have taken into account the following: 

(i) terms θηηη ~  and θθθη   vanish; 

(ii) terms θθηη ~  and θθηη   lead to ;j
j ff k
k→  

(iii) term { }
ijl

lij R ηθkk~  leads { }
ij

ijRf→  picking the anti-symmetric 

part of the generalized Ricci tensor (containing torsion); 

(iv) term ( ) { }
ijll

lij Rηη+θθ  kk
k~  leads to ( ) { }

ij
jiij Rffg k

k+→  

picking the symmetric part of the generalized Ricci tensor (containing 
Einstein-Hilbert plus quadratic torsion term); 

(v) terms ηηηη ~  and θθθθ   lead to the volume elements 

f  and ,g  respectively, where we defined as usual ( )klgDetg ≡  and 

( ) ( ) .
2k

kk
l

ll fffDetf ∗=≡  

2.3. ( )xmA =  and ( ):xB λ=  spontaneous subspace 

If the coefficients ( )xmA =  and ( )xB λ=  are not constant but 

functions of coordinates we have 

( ) ( ),222 mdmdd λ=λ→ξ   (39) 

and 

( ) .dUmdAB αβλ→κD   (40) 
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Consequently from the following explicit computations 

AB
AB RS ~~~ µ= ∫   (41) 

 AB
AB

AB
ABs dRaS κκ D µ+ξρ+= ∫∫ 2

1  

 AB
ABAB

AB
s daRS κκ D µ+ξρ−= ∫∫ 2

1  

 ( ) ( ) dUmdmdmdUaRS s  λµ+λλρ−= αβ
αβ

αβ
αβ ∫∫ 22

1  

 ( ) ( ) ,22
1 dUmddUmdmaRS s  λµ+λλρ+= αβ

αβ
αβ

αβ ∫∫  

 [ ] ( ) ,~ dUmdmaRSS s  λλρ+µ+= αβ
αβαβ∫  

we obtain the required condition: 

SS =
~       if 

,maRs λρ−=µ αβαβ   (42) 

then we see that ABµ  takes the place of an induced metric and it is 

proportional to the curvature 

αβαβ µΛ=R   (43) 

with      ( ) .1−λρ−=Λ mas   (44) 

Note that we have now a four-dimensional space-time plus the above 
“internal” space of a constant curvature. This point is very important as a 
new compactification-like mechanism. 

Remark 1. A geometrical structure defined on the ,coset HGK =  

with H stability group, is defined weakly reductive if there is a vector 
space K satisfying the following conditions: KHG� +=  and [ ] KKH ⊂,  

being G  and H  the Lie algebras of G and H, respectively. 
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3. Supergravity as a Gauge Theory and Topological QFT 

In the previous works [51, 52], we have shown, by means of a toy 
model, that there exists a supersymmetric analogue of the above 
symmetry breaking mechanism coming from the topological QFT. Here 
we recall some of the above ideas in order to see clearly the analogy 
between the group structures of the simplest supersymmetric case, 
Osp(4), and of the classical conformal group SO(2, 4). 

The starting point is the super SL(2C) superalgebra (strictly 
speaking Osp(4)) 

[ ] ( ) ( ) ,, CBADDBACCDAB MMMM  +=  

[ ] ( ) { } .2,,, ABBABACCAB MQQQQM ==    (45) 

Here the indices …CBA ,,  stay for ( )…���… γβαγβα ,,,,  spinor indices: 

( ) ( )2,12,1,, ���� =βαβα  in the Van der Werden spinor notation. We define 
the superconnection A due the following “gauging”: 

,α
α

α
α

βα
βα

αβ
αβ

βα
βα ω−ω+ω+ω+ω≡ �

�
��

��
�

� QQMMMTA p
p  (46) 

where ( )Mω  defines a ten-dimensional bosonic manifold and ≡p multi-
index, as usual. Analogically the super-curvature is defined by 

p
pTFF ≡  with the following detailed structure: 

( ) ,BACBCAABAB dMF ωω+ωω+ω=    (47) 

( ) .CCAAA dQF ωω+ω=    (48) 

From (46), it is easy to see that there are a bosonic part and a 
fermionic one associated with the even and odd generators of the 
superalgebra. Our proposal for the “toy” action was (as before for SO(2, 
4)) as follows: 

,p
pFS µ= ∫    (49) 

[3] Corresponding to the number of generators of SO(4, 1) or SO(3, 2) that define the group 
manifold. 
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where the tensor pµ  (that plays the role of a Osp (4) diagonal metric as 

in the Mansouri proposal) is defined as 

etc.ααβααββαβα ζ=µζζ=µζζ=µ ν ��   (50) 

with ( )βα ζζ �  anti-commuting spinors (suitable basis) and ν  the parameter 

of the breaking of super SL(2C) (Osp (4)) to SL(2C) symmetry of .pµ  

Note that the introduction of the parameter ν  means that we do not take 
care of the particular dynamics to break the symmetry. 

In order to obtain dynamical equations of the theory, we proceed to 
perform variation of the proposed action (49) 

p
p

p
p FFS δµ+µδ=δ ∫   

,p
pp

pA FAd δµ+δµ= ∫   (51) 

where Ad  is the exterior derivative with respect to the super-SL(2C) 

connection and AdF Aδ=δ  have been used. Then, as the result, the 

dynamics is described by 

.0,0 ==µ FdA   (52) 

The first equation claims that µ  is covariantly constant with respect to 

the super SL(2C) connection. This fact will be very important when the 
super SL(2C) symmetry breaks down to SL(2C) because +µ=µ ABAA dd  

,0=µAAd  a soldering form will appear. The second equation gives the 

condition for a super Cartan connection AABA ω+ω=  to be flat, as it is 
easy to see from the reductive components of above expressions 

( ) ,0=ωω+= BAABAB RMF    (53) 

( ) ,0=ω=ωω+ω= ω
ACCAAA ddQF   

[4] In general this tensor has the same structure as the Cartan-Killing metric of the group 
under consideration. 
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where now ωd  is the exterior derivative with respect to the SL(2C) 

connection and CBCAABAB dR ωω+ω≡   is the SL(2C) curvature. 

Then 

,0and00 =ω=ωω+⇔= ω
ABAAB dRF    (54) 

the second condition says that the SL(2C) connection is super-torsion 
free. The first doesn’t say that the SL(2C) connection is flat, but it claims 
that it is homogeneous with a cosmological constant related to the 

explicit structure of the Cartan forms ,Aω  as we will see when the super 
SL(2C) action is reduced to the Volkov-Pashnev model [42]. 

4. Quadratic in ABR  

The previous action, linear in the generalized curvature, has some 
drawbacks that make necessary introduction of additional “subsidiary 

conditions” due to the fact that the curvatures 5iR  and 6iR  don’t play 
any role in the linear/first order action. Such curvatures have a very 
important information about the dynamics of θ  and η  fields. In order to 

simplify the equations of motion, we define 

,56 A≡Γ   (55) 

,~1 iim θ≡θ−   (56) 

,~1 ii η≡ηλ−   (57) 

and as always 

{ } ,22 jijiijij mRR ηηλ+θθ+= −−    (58) 

with the SO(1, 3) curvature { } .jiijij dR λ
λ ωω+ω=   Consequently from 

the quadratic Lagrangian density 

,AB
AB RRS ∫=   (59) 
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we obtain the following equations of motion: 

( ) ( ) ,0~~~~~2~ =θ+ηηθ−θ+θ→
δθ

δ AARDDRR
jji

ii
ijji

AB
AB 
 (60) 

( ) ( ) ,0~~~~~2~ =η+θηθ−η+η→
δη

δ AARDDRR
jji

i
jji

AB
AB 
 k

k  

(61) 

( ) ,~~~~
56 i

i
i

i
AB

AB RR
ηη=θθ→

Γδ

δ


  (62) 

( ) .0~~~~~~ =ηθ+ηη+θθ+−→
δω

δ ADDDRRR
lllli

j

AB
AB 


kkkk  (63) 

4.1. Maxwell equations and the electromagnetic field 

As we claimed before we can identify 

,µµ≡θ dxeii   (64) 

,µµ≡η dxf ii   (65) 

with the symmetries 

,, µµµµµ ==δ= ννν
νν ggeeee i

i
i

i   (66) 

and 

,, µµµµµ −==δ= ννν
νν fffeff i

ii
i   (67) 

such that the geometrical (Bianchi) condition 

[ ] ,0=∇=∇ ρ∗
ρρ µ

ν
ν ff   (68) 

or in the language of differential forms 

( ) 0~~ =ηθ i
iD   (69) 
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holds, thus the curvatures 6iR  and 5iR  are enforced to be null. And 

conversely if 6iR  and 5iR  are zero then ( ) 0~~ =ηθ i
iD   or equivalently 

[ ] .0=∇=∇ ρ∗
ρρ µ

ν
ν ff  

Proof. From expressions (28), (29), namely; [ ]655 ~~ Γη−θ= iii DR  

and [ ]566 ~~ Γθ+η−= iii DR  we make 

( ) ( ) ( ),~~~~~~~~ 565665 Γθθ+ηΓη+ηθ=θ+η  i
ii

i
i

ii
ii

i DRR  (70) 

( ).~~~~ 65
i

ii
ii

i DRR ηθ=θ+η   (71) 

In the last line we used the constraint given by Equation (62). 

Consequently, if 6iR  and 5iR  are zero, then ( ) 0~~ =ηθ i
iD   or 

equivalently [ ] 0=∇=∇ ρ∗
ρρ µ

ν
ν ff  and vice versa. 

Corollary 2. Note that the vanishing of the 56R  curvature (that 
transforms as a Lorentz scalar) does not modify the equation of motion for 

56Γ  and simultaneously defines the electromagnetic field as 

( ) ,015656 =ηθλ+Γ= − i
imdR    (72) 

.0=−⇒ FdA   (73) 

 

4.2. Equations of motion in components and symmetries 

Let us define 

{ } ,ijjiijijijR k
kk

k ννννν ωω−ωω+ω∂−ω∂= µµµµµ  (74) 

,kkk
k µµµµµ ω−ω+∂−∂= eeeeT iiiii

ννννν  (75) 

.kkk
k µµµµµ ω−ω+∂−∂= ffffS iiiii

ννννν  (76) 
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Note that iS νµ  is a totally anti-symmetric torsion field due the symmetry 

of .iidxf η≡ν
ν  Consequently, the equations of motion in components 

become 

[ ] ( ) ( ) [ ] ,0122 =λ−λ+−+∇ −−−µ
µ

iijijiij AfmgSTmgRg νννν  

{ }
[ ] [ ]( )[ ]ννν jijiij ffeemRg µ−µ−µ

µ λ+−∇ 22  

( ) ( ) [ ] ,0122 =λ−λ+−+ −−− iijiji AfmgSTmg ννν  

( ) { }( ) ,02 =+−+∇ −µ
µ

ννν AAemRgTg ijjvj  

( ) { }
[ ]( ) ,02 =+λ−+∇ −µ

µ
jiijijij AAfRgSg  

[ ] ( ) ,1
ννν µ

−
µµ λ==∇ FmFA  

[ ] .0=∇ µρ νF  (77) 

5. Nonlinear Realizations Viewpoint 

Note that in our case Equation (64), (65) identify ii e~θ  and ii f~η  

making the table below completely clear. Note that 65Γ  is identified with 
the g of Ivanov and Niederle [14, 15]. 

 This work [14, 15] 

ijR  { }
jijiij mR ηηλ+θθ+ −−  22  { }

jiij fgeR 4+  

5iR  [ ]651 Γη
λ

−θ− ii mDm  ggeDe ii 2+  

6iR  











Γθ







λ

−ηλ−
−

− 6511 ii mD  ggfDf ii 2−  

56R  ( ) i
imd ηθλ+Γ − 156  i

i fgedg 4+  

DS/ADS reduction Yes No 
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Algebra and transformations in the case of the work of Ivanov and 
Niederle are different due different definitions of the generators of the 
SO(2, 4) algebra, however the meaning of g which is associated to the 

connection 65Γ  remains obscure for us because of the second Cartan 

structure equations 5iR  and .6iR  Note that, although the group 
theoretical viewpoint in the case of the simultaneous nonlinear 
realization of the affine and conformal group [50] to obtain Einstein 
gravity are more or less clear, the pure geometrical picture is still hard to 
recognize due the factorization problem and the orthogonality between 
coset elements and the corresponding elements of the stability subgroup. 

6. Symplectic Structures, Poisson manifolds  
and Noncommu-Tativity 

6.1. Generalization of Rothstein’s theorems even supersymplectic 
supermanifols 

The existence of a (super) symplectic structure on a manifold is a very 
significant constraint and many simple and natural constructions in 
symplectic geometry lead to manifolds which cannot possess a symplectic 
structure (or to spaces which cannot possess a manifold structure). 
However, these spaces often inherit a bracket of functions from the 
Poisson bracket on the original symplectic manifold. It is a (semi-) 
classical limit of quantum theory and also is the theory dual to Lie 
algebra theory and, more generally, to Lie algebroid theory. Poisson 
structures are the first stage in quantization, in the specific sense that a 
Poisson bracket is the first term in the power series of a deformation 
quantization. Poisson groups are also important in studies of complete 
integrability. 

From the point of view of the Poisson structure associated to the 
differential forms induced by the unitary transformation from the           
G-valuated tangent space implies automatically, the existence of an even 
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non-degenerate (super)metric. The remaining question of the previous 
section was if the induced structure from the tangent space (via Ambrose-
Singer theorem) was intrinsically related to a supermanifold structure 
(e.g., noncommutativity, hidden super-symmetry, etc.). Some of these 
results were pointed out in the context of supergeometrical analysis by 
Rothstein and by others authors [55, 56], corroborating this fact in some 
sense. Consequently we have actually several models coming mainly from 
string theoretical frame-works that are potentially ruled out. Let us 
review and develop our earlier work [53] to work out this issue with more 
detail: from the structure of the tangent space ( )MTp  we have seen 

( ) ν
ν dxdxPU B

A
B
A

B
A µ

µ+δ= R  

( ) ,B
A

B
A k

k Tω+δ=  (78) 

where the Poisson structure is evident (as the dual of the Lie algebra of 
the group manifold) in our case leading to the identification 

( ) .B
A

B
A dxdx k

k TR ω≡µ
µ

ν
ν    (79) 

We have in the general case, a (matrix) automorphic structure. The 
general translation to the spacetime from the above structure in the 
tangent space takes the form 

( )( ) jibad
ijabdailbjbjlailij dxdxvdvdRg 



 //+ΓΓ−ΓΓω+ω=ω kk

k2
1

2
1~  

bimbmj
ij vddxdxA /ω+  

( )( ) bajil
abiljibdjacjadibc

cdab vdvddxdxRgg //



 ω+ΓΓ−ΓΓ++ 2

1
2
1  

.iadidb
ab dxvdvdAg //+  (80) 
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Because covariant derivatives are defined in the usual (group theoretical) 
way 

,ibibiaa dxvdvdvD /Γ−/=/  (81) 

,ajajiii vddxdxDx /Γ−=   (82) 

we can rewrite ω~  in a compact form as 


 





 //+ω=ω jibad

ijabd
ji

ij dxdxvdvdRgDxDx  2
1

2
1~  

.2
1







 θθω+θθ+ bajil

abilj
ba

ab dddxdxRDDg   (83) 

At the tangent space, where that unitary transformation makes the link, 
the first derivatives of the metric are zero, remaining only the 
curvatures, we arrive to 

.2
1

2
1

2
1~





 //





 η++





 //+η=ω bajil

abiljab
jibad

ijabdij vdvddxdxRdxdxvdvdR   

(84) 

Here the Poisson structure can be checked 

,2
1

2
1

i
bad

lja
l

bdj
bad

ijabdij vdvdRvdvdR k
kk η





 //η+δ=//+η   (85) 

.2
1

2
1

ac
jil

dbi
cd

lj
c
b

jil
abiljab dxdxRdxdxR  





 η+δ=η+  (86) 

In expressions (80)-(86) the curvatures, the differential forms and the 
other geometrical operators depend also on the field where they are 
defined: CR,  or .H  In the quaternionic case-H  the metric is quaternion 

valuated with the propierty [ ] [ ]jiij ω−=ω?  and the covariant derivative 

can be straightforwardly defined as expressions (81), (82) but with the 
connection and coordinates also quaternion valuated. The fundamental 
point in a such a case going towards a fully reliable gravitational theory 
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is to fix the connection in order to have a true link with the physical 
situation. The matrix representation of structures (85), (86) are 
automorphic ones: e.g., they belong to the identity and to the symplectic 
block generating the corresponding trascendent (parameter depending) 
functions. Now, we will analize the above fundamental structure under 
the light of the supersymplectic structure given by Rothstein (notation as 
in [56]) 

ba
ab

jibad
ijabdij DDgdxdxRg θθ+





 θθ+ω=ω 2

1
2
1~  (87) 

where the usual set of Grassmann supercoordinates were introduced: 

;;, 11 djxx θθ ……  the superspace metrics were defined as: =ωij  









θ∂

∂

θ∂

∂=







∂

∂

∂

∂
baabji g

xx
,,,  and 

( ) bibia

x

A
i

θ=θ∇

∂

∂   (88) 

Due to the last expression, we can put ω~  in a compact form with the 

introduction of a suitable covariant derivative: .ibibiaa dxAdD θ−θ=θ  

With all the definitions at hands, the Poisson structure of ω~  in the case 
of Rothstein’s is easily verified 

j

B

bad
ila

l
bdi

bad
ijabdij RgRg k

kk ω















θθω+δ=θθ+ω

≡
��� 
��� 	�2

1
2
1  (89) 

The important remark of Rothstein [17] is that the matrix representation 
of the structure B has nilpotent entries, schematically 

( )[ ] ,~ 3211
ba

ab
ji

ij
gBBBI

θ∂

∂

θ∂

∂+∇∇−+−ω=ω −− …  (90) 

where, as is obvious 0=nB  for 1>n  and .N∈n  
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Remarks. From the above analysis, we can compare the Rothstein 
case with the general one arriving to the following points: 

(i) In the Rothstein case only a part of the full induced metric from 
the tangent space is preserved (“one way” extension [56, 57, 59, 60, 61]). 

(ii) The geometrical structures (particularly, the fermionic ones) are 
extended “by hand” motivated, in general, to give by differentiation of the 
corresponding closed forms, the standard supersymmetric spaces (e.g., 

Kahler, ,nCP  etc.) [56]. In fact it is easily seen from the structure of the 
covariant derivatives: in the Rothstein case there are Grassmann 
coordinates instead of the coordinate differential 1-forms contracted with 
the connection. 

(iii) In the Rothstein case, the matrix representation (89) coming 
from the Poisson structure is nilpotent (characteristic of Grassmann 
manifolds) in sharp contrast with the general representation (68)-(70) 
coming from the tangent space of the UFT that is automorphic. 

Remark 3. It was noted in [57] that the following facts arise: (i) A 
Grassmann algebra, as used in supersymmetry, is equivalent, in some 
sense, to the spin representation of a Clifford algebra. (ii) The questions 
about the nature and origin of the vector space on which this orthogonal 
group acts are completely open. (iii) If it is a tangent space or the space of 
a local internal symmetry, the vectors will be functions of spacetime, and 
the Clifford algebra will be local. (iv) In other cases we will have a global 
Clifford algebra. Consequently, the geometric structure of the UFT 
presented here falls precisely in such a case. 

6.2. Tangent space and even supermanifold structure 

The very general QFT structure induced from the tangent space by 
means of the Ambrose-Singer [54] theorem (78), (79) verifies straight 
forwardly the Darboux-Kostant theorem: e.g., it has a supermanifold 
structure (even in the noncommutative case). Darboux-Kostant’s theorem 
[55] is the supersymmetric generalization of Darboux’s theorem and 
statement that: 



DIEGO JULIO CIRILO-LOMBARDO 26

Given a (2n│q)-dimensional supersymplectic supermanifold ( ),,, ωMM A  

it states that for any open neighbourhood U of some point m in M there 
exists a set ( )qn pnpqq ξξ ,,;,,1,,, 11 ………  of local coordinates on 

( )UVE  so that ω  on U can be written in the following form: 

( ) ( ).1,2
~ 2

11
±=ξ+=ω≡ω ∑∑

==

 a
q

a

i
n

i
U dqdpi  (91) 

Proof. By simple inspection we can easily see that the expression (84) 
has the structure (91). That means that we have locally a supersymplectic 
vector superspace induced (globally) by a supersymplectic supermanifold. 

 

6.3. The geometrical reduction and even symplectic super-metrics 

Example 1: Volkov-Pashnev metric 

The super-metric under consideration, proposed by Volkov and 
Pashnev in [42], is the simplest example of symplectic (super) metrics 
induced by the symmetry breaking from a pure topological first order 
action. It can be obtained from the Osp(4) (super SL(2C)) action via the 
following procedure. 

(i) The Inönu-Wigner contraction [43] in order to pass from SL(2C) to 
the super-Poincare algebra (corresponding to the original symmetry of 
the model of refs. [42, 44]) then, the even part of the curvature is split 

into a 1,3R  part βα �R  and a SO(3, 1) part ( )βααβ ��RR  associated with the 
remaining six generators of the original five dimensional SL(2C) group. 
This fact is easily realized by knowing that the underlying geometry is 

reductive: SL(2C) ~ SO(4, 1) → SO(3, 1) .1,3R+  Than we rewrite the 
superalgebra (45) as 

[ ] [ ] [ ] MMMMM ~,~,~, ∏∏∏∏  

[ ] [ ] { } ,~,~,~, ∏+∏ MSSSSSSM  (92) 
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with ( ),~,~ βααββα∏ ��� MMMM  and re-scale Pm =∏2  and .QmS =  

In the limit ,0→m  one recovers the super Poincare algebra. Note that 

one does not re-scale M since one wants to keep [ ] MMM ~,  Lorentz 

algebra, that also is a symmetry that we want to preserve. 

(ii) The spontaneous breaking of the super SL(2C) down to the          
SL(2C) symmetry of ( )pp µ→µ in0.,e.g ν  of such a manner that the 

even part of the super SL(2C) action ( )ABMF  remains. 

After these evaluations, it has been explicitly realized that the even 
part of the original super SL(2C) action (now a super-Poincare invariant) 
can be related with the original metric as follows: 

( ) ( ) .VPPRMR α
α∗

α
α

µ
µ

α
α

α
α ωω−ωω+ωω→ωω−ωω++ �

�
�

� aa  (93) 

Note that there is mapping ( ) ( ) VPPRMR µ
µωω→+  that is well defined 

and can be realized in different forms, and the map of interest here 

VPα
α∗

α
α

α
α

α
α ωω−ωω→ωω−ωω �

�
�

� aa  that associate the Cartan forms of 

the original super SL(2C) action (49) with the Cartan forms of the 

Volkov-Pashnev supermodel: ( ) ( ) ., 2121
VPVP

α∗ααα ω=ωω=ω �� aa  

Then, the origin of the coefficients a and ∗a  becomes clear from the 
geometrical point of view. 

From the first condition in (54) and the association (93) it is not 
difficult to see that, as in the case of the spacetime cosmological constant 

eeR 3: Λ=Λ  (e ≡ spacetime tetrad), there is a cosmological term from 

the superspace related to the complex parameters a and =∗ R:a  

( )αα∗
α

α ωω−ωω− �
�aa  and it is easy to see from the minus sign in above 

expression, why for supersymmetric (supergravity) models it is more 
natural to use SO(3, 2) instead of SO(4, 1). 
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Note that the role of the associated spinorial action in (49) is 
constrained by the nature of αζν  in pµ  as follows. 

(i) If they are of the same nature of the ,αω  this term is a total 
derivative and has not influence onto the equations of motion, then the 
action proposed by Volkov and Pashnev in [42] has the correct fermionic 
form. 

(ii) If they are not of the same SL(2C) invariance that the ,αω  the 
symmetry of the original model is modified. In this direction, a 
relativistic supersymmetric model for particles was proposed in [45] 
considering an N-extended Minkowski superspace and introducing 
central charges to the superalgebra. Hence the underlying rigid 
symmetry gets enlarged to N-extended super-Poincare algebra. 
Considering for our case similar superextension that in [45] we can 
introduce the following new action: 

( )α
α

α
α

α
α∗

α
αµ

µ θθ−θθ+θθ−θθ+ωω−= ∫ �
�

�
�DD ������ j

ij
ij

ij
i AAiaadmS τ

τ

τ

2

1
 

 ( ),,,
2

1
θθ= ∫ xLdτ

τ

τ
 (94) 

that is the super-extended version of the superparticle model proposed in 
[42] with the addition of a first-order fermionic part. The matrix tensor 

ijA  introduce the symplectic structure of such manner that now 

j
iji A αα θζ ~  is not covariantly constant under .ωd  Note that the “Dirac-

like” fermionic part is obviously under the square root because it is a part 
of the full curvature, fact that was not advertised by the authors in [45] 
(see also [29]) that doesn’t take into account the geometrical origin of the 
action. An interesting point is to perform the same quantization as in the 
first part of the research given in [44] in order to obtain and compare the 
spectrum of physical states with the one obtained in [45]. This issue will 
be presented elsewhere [46]. 
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The spontaneous symmetry breaking happens here because the 
parameter doesn’t have any dynamics. But this doesn’t happen in the 
nonlinear realization approach where the parameters have a particular 
dynamics associated with the spacetime coordinates. 

7. Discussion 

Here we discuss some of the results obtained within the light of the 
reference [53] and describe their possible generalizations from the point 
of view of the boson-fermion symmetries as from the categories viewpoint 

● (i) The Darboux-Kostant theorem is fulfilled in our case showing 
that M fits the characteristic of a general even supermanifold in addition 
to all those the considerations given in [13, 15, 17, 55-57]. However the 
extension to odd supersymplectic supermanifold is still open question; 

● (ii) The general Rothstein theorem that we review here (also see 
[53] for details) is complete to describe the spacetime manifold being it 
with the more general symplectic even superstructure from the algebraic 
and geometrical viewpoint. In next work the odd part of the history must 
be explored; 

● (iii) The possibility, following an old Dirac’s conjecture, to find a 
discrete quaternionic structure inside the Poincare group: this fact will be 
give us the possibility of spacetime discretization without break Lorentz 
symmetries; 

● (iv) The introduction of groupoid theoretical methods of compactification 
taking as group theoretical example in [62]; 

● (v) The relation with nonlinearly realized symmetries and geometric 
quantization. 

With respect to [64], we introduced two geometrical models: one 
linear and another one quadratic in curvature. Both models are based on 
the SO(2, 4) group consequently there exists a possibility to extend the 
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contruction to the grupoid domain. Dynamical breaking of this symmetry 
was considered only from the group manifold viewpoint. Because in [64] 
in both cases we introduced coherent states of the Klauder-Perelomov 
type, which as defined by the action of a group (generally a Lie group) are 
invariant with respect to the stability subgroup of the corresponding 
coset being related to the possible extension of the connection which 
maintains the proposed action invariant the question is if some kind of 
categorization of such mechanism certainly exists considering that 
grupiod coherent states were recently constructed [65]. 

From the group theoretical viewpoint [64], the linear action, unlike 
the cases of West or even McDowell and Mansouri [41], uses a symmetry 
breaking tensor that is dynamic and unrelated to a particular metric. 
Such a tensor depends on the introduced vectors, (i.e., the coherent 
states) that intervene in the extension of the permissible symmetries of 
the original connection. Only some components of the curvature, defined 
by the second structure equation of Cartan, are involved in the action, 
leaving the remaining ones as a system of independent or ignorable 
equations in the final dynamics. The quadratic action, however, is 
independent of any additional structure or geometric artifacts and all the 
curvatures (e.g., all the geometrical equations for the fields) play a role in 
the final action (Lagrangian of the theory). 

With regard to the parameters that come into play λ  and m (they 
play the role of a cosmological constant and a mass, respectively) we saw 
that in the case of linear action if they are taken dependent on the 
coordinates and under the conditions of the action invariance, a new 
spontaneous compactification mechanism is defined in the subspace 
invariant under the stability subgroup. 

Following this line of research with respect to possible physical 
applications, we are going to consider scenarios of the Grand Unified 
Theory, derivation of the symmetries of the Standard Model together 
with the gravitational ones. The general aim is to obtain in a precisely 
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established way the underlying fundamental theory. This will be 
important, in particular, to solve the problem of hierarchies and 
fundamental constants, the masses of physical states, and their 
interaction that in such a case a richer mathematical structures (e.g., 
functors, categories, etc.) can help certainly. 

Acknowledgement 

D. J. Cirilo-Lombardo is grateful to the Bogoliubov Laboratory of 
Theoretical Physics- JINR for hospitality and CONICET-ARGENTINA 
for financial support. 

References 

 [1] A. P. Isaev, Quantum group covariant noncommutative geometry, J. Math. Phys. 
35(12) (1994), 6784.  

DOI: https://doi.org/10.1063/1.530643 

 [2] P. Aschieri, L. Castellani and A. P. Isaev, Discretized Yang-Mills and born-infeld 
actions on finite group geometries, Int. J. Mod. Phys. A 18(20) (2003), 3555.  

DOI: https://doi.org/10.1142/S0217751X03015209 

 [3] M. Blagojevic, Gravitation and Gauge Symmetries, Bristol, UK: IOP (2002), 522. 

 [4] K. Hayashi and T. Shirafuji, Gravity from Poincaré gauge theory of the fundamental 
particles, VII: - The axial-vector model, Prog. Theor. Phys. 66(6) (1981), 2258-2273. 

DOI:  https://doi.org/10.1143/PTP.66.2258 

 [5] A. B. Borisov, The unitary representations of the general covariant group algebra, J. 
Phys. A: Math. Gen. 11(6) (1978), 1057. 

DOI: https://doi.org/10.1088/0305-4470/11/6/009 

 [6] R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101(5) 
(1956), 1597. 

DOI: https://doi.org/10.1103/PhysRev.101.1597 

 [7] S. Capozziello and M. De Laurentis, Extended theories of gravity, Phys. Rept.      
509(4-5) (2011), 167-321.  

DOI: https://doi.org/10.1016/j.physrep.2011.09.003 

 

 



DIEGO JULIO CIRILO-LOMBARDO 32

 [8] F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Ne’eman, Metric-affine gauge theory 
of gravity: Field equations, Noether identities, world spinors, and breaking of 
dilation invariance, Phys. Rept. 258(1-2) (1995), 1-171.  

DOI: https://doi.org/10.1016/0370-1573(94)00111-F 

 [9] D. Ivanenko and G. Sardanashvily, The gauge treatment of gravity, Phys. Rept. 
94(1) (1983), 1-45. 

DOI: https://doi.org/10.1016/0370-1573(83)90046-7 

 [10] Y. N. Obukhov, Poincaré gauge gravity: selected topics, Int. J. Geom. Methods Mod. 
Phys. 3(1) (2006), 95-138.  

DOI: https://doi.org/10.1142/S021988780600103X 

 [11] Y. Ne’eman and T. Regge, Gauge theory of gravity and supergravity on a group 
manifold, Rivista del Nuovo Cimento 1(5) (1978), 1-43.  

DOI: https://doi.org/10.1007/BF02724472   

 [12] S. Gotzes and A. C. Hirshfeld, A geometric formulation of the SO(3, 2) theory of 
gravity, Annals Phys. 203(2) (1990), 410-418. 

DOI: https://doi.org/10.1016/0003-4916(90)90176-O 

 [13] T. Shirafuji and M. Suzuki, Gauge theory of gravitation: A unified formulation of 
poincaré and (anti-)de sitter gauge theories, Prog. Theor. Phys. 80(4) (1988), 711-730. 

DOI: https://doi.org/10.1143/PTP.80.711 

 [14] E. A. Ivanov and J. Niederle, Gauge formulation of gravitation theories, I: The 
Poincaré, de Sitter, and conformal cases, Phys. Rev. D 25(4) (1982), 976. 

DOI: https://doi.org/10.1103/PhysRevD.25.976  

 [15] E. A. Ivanov and J. Niederle, Gauge formulation of gravitation theories, II: The 
special conformal case, Phys. Rev. D 25(4) (1982), 988. 

DOI: https://doi.org/10.1103/PhysRevD.25.988  

 [16] M. Leclerc, The Higgs sector of gravitational gauge theories, Annals Phys. 321(3) 
(2006), 708-743.  

DOI: https://doi.org/10.1016/j.aop.2005.08.009 

 [17] K. S. Stelle and P. C. West, Spontaneously broken de sitter symmetry and the 
gravitational holonomy group, Phys. Rev. D 21(6) (1980), 1466. 

DOI: https://doi.org/10.1103/PhysRevD.21.1466 

 [18] A. A. Tseytlin, Poincaré and de Sitter gauge theories of gravity with propagating 
torsion, Phys. Rev. D 26(12) (1982), 3327. 

DOI: https://doi.org/10.1103/PhysRevD.26.3327 

 

 



DYNAMICAL SYMMETRIES, COHERENT STATES … 33

 [19] E. A. Lord and P. Goswami, Gauge theory of a group of diffeomorphisms, I: General 
principles, J. Math. Phys. 27(9) (1986), 2415. 

DOI: https://doi.org/10.1063/1.526980 

 [20] E. A. Lord, Gauge theory of a group of diffeomorphisms, II: The conformal and de 
Sitter groups, J. Math. Phys. 27(12) (1986), 3051. 

DOI: https://doi.org/10.1063/1.527234 

 [21] M. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, Inc., Menlo Park, 1971. 

 [22] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & 
Sons, New York, London, 1963. 

 [23] G. Sardanashvily, Classical gauge gravitation theory, Int. J. Geom. Methods Mod. 
Phys. 8(8) (2011), 1869.  

DOI: https://doi.org/10.1142/S0219887811005993 

 [24] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Advanced Classical Field 
Theory, World Scientific, 2009. 

 [25] I. Kirsch, Higgs mechanism for gravity, Phys. Rev. D 72(2) (2005), 024001.  

DOI: https://doi.org/10.1103/PhysRevD.72.024001 

 [26] M. Keyl, About the geometric structure of symmetry-breaking, J. Math. Phys. 32(4) 
(1991), 1065. 

DOI: https://doi.org/10.1063/1.529385 

 [27] L. Nikolova and V. A. Rizov, Geometrical approach to the reduction of gauge theories 
with spontaneously broken symmetry, Rept. Math. Phys. 20(3) (1984), 287-301. 

DOI: https://doi.org/10.1016/0034-4877(84)90039-9  

 [28] G. Sardanashvily, On the geometry of spontaneous symmetry breaking, J. Math. 
Phys. 33(4) (1992), 1546. 

DOI: https://doi.org/10.1063/1.529679 

 [29] G. Sardanashvily, Geometry of classical Higgs fields, Int. J. Geom. Methods Mod. 
Phys. 3(1) (2006), 139-148.  

DOI: https://doi.org/10.1142/S0219887806001065 

 [30] G. Sardanashvily, Preface: Mathematical models of spontaneous symmetry breaking, 
Int. J. Geom. Methods Mod. Phys. 5(2) (2008), 5-16.  

DOI: https://doi.org/10.1142/S0219887808002746 

 [31] G. Sardanashvily, Classical Higgs fields, Theor. Math. Phys. 181(3) (2014),        
1599-1611.  

DOI: https://doi.org/10.1007/s11232-014-0238-y 

 [32] A. Trautman, Differential geometry for physicists, Naples Italy, Bibliopolis (1984),    
p. 145.  



DIEGO JULIO CIRILO-LOMBARDO 34

 [33] H. B. Lawson and M. L. Michelsohn, Spin Geometry, Princeton University Press, 
Princeton, 1989. 

 [34] G. Sardanashvily, Gravity as a goldstone field in the Lorentz gauge theory, Phys. 
Lett. A 75(4) (1980), 257-258. 

DOI: https://doi.org/10.1016/0375-9601(80)90555-1 

 [35] G. A. Sardanashvily and O. Zakharov, Gauge Gravitation Theory, World Scientific, 
Singapore (1992), 122. 

 [36] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambr. 
Univ. Press, Cambridge (1973), 404. 

 [37] G. Sardanashvily, What are the Poincaré gauge fields?, Czech. J. Phys. B 33(6) 
(1983), 610-615. 

DOI: https://doi.org/10.1007/BF01832147  

 [38] D. V. Volkov and V. A. Soroka, Higgs effect for goldstone particles with spin 1/2, 
JETP Lett. 18(8) (1973), 312. [Pisma Zh. Eksp. Teor. Fiz. 18 (1973), 529]. 

 [39] V. P. Akulov, D. V. Volkov and V. A. Soroka, Gauge fields on superspaces with 
different holonomy groups, JETP Lett. 22(7) (1975), 187. [Pisma Zh. Eksp. Teor. Fiz. 
22 (1975), 396]. 

 [40] P. Nath and R. Arnowitt, Generalized super-gauge symmetry as a new framework 
for unified gauge theories, Phys. Lett. B 56(2) (1975), 177-180. 

DOI: https://doi.org/10.1016/0370-2693(75)90297-X 

 [41] S. W. MacDowell and F. Mansouri, Unified geometric theory of gravity and 
supergravity, Phys. Rev. Lett. 38(23) (1977), 739 Erratum: [Phys. Rev. Lett. 38 
(1977), 1376]. 

 [42] D. V. Volkov and A. I. Pashnev, Supersymmetric lagrangian for particles in proper 
time, Theor. Math. Phys. 44(3) (1980), 770-773. [Teor. Mat. Fiz. 44 (1980), 321]. 

DOI: https://doi.org/10.1007/BF01029041  

 [43] E. Inonu and E. P. Wigner, On the contraction of groups and their representations, 
Proc. Nat. Acad. Sci. USA 39(6) (1953), 510-524. 

 [44] D. J. Cirilo-Lombardo, Non-compact groups, coherent states, relativistic wave 
equations and the harmonic oscillator, Found. Phys. 37(6) (2007), 919-950. [Found. 
Phys. 37(8) (2007), 1149-1180] [Found. Phys. 38 (2008), 99]. 

 [45] J. A. de Azcarraga and J. Lukierski, Supersymmetric particle model with 
additional bosonic coordinates, Z. Phys. C - Particles and Fields 30(2) (1986),       
221-227. 

DOI: https://doi.org/10.1007/BF01575429  

 [46] D. J. Cirilo-Lombardo and A. Arbuzov, Work in Progress. 

 



DYNAMICAL SYMMETRIES, COHERENT STATES … 35

 [47] V. I. Ogievetsky, Infinite-dimensional algebra of general covariance group as the 
closure of finite-dimensional algebras of conformal and linear groups, Lettere al 
Nuovo Cimento 8(17) (1973), 988-990. 

DOI: https://doi.org/10.1007/BF02891914  

 [48] D. V. Volkov and V. P. Akulov, Is the neutrino a goldstone particle?, Phys. Lett. B 
46(1) (1973), 109-110. 

DOI: https://doi.org/10.1016/0370-2693(73)90490-5 

 [49] S. Capozziello, D. J. Cirilo-Lombardo and M. De Laurentis, The affine structure of 
gravitational theories: Symplectic groups and geometry, Int. J. Geom. Methods Mod. 
Phys. 11(10) (2014), 1450081. 

DOI: https://doi.org/10.1142/S0219887814500819 

 [50] A. B. Borisov and V. I. Ogievetsky, Theory of dynamical affine and conformal 
symmetries as gravity theory of the gravitational field, Theor. Math. Phys. 21(3) 
(1974), 1179-1188. [Teor. Mat. Fiz.21 (1974), 329]. 

DOI: https://doi.org/10.1007/BF01038096  

 [51] D. J. Cirilo-Lombardo, Non-compact groups, coherent states, relativistic wave 
equations and the harmonic oscillator II: Physical and geometrical considerations, 
Found. Phys. 39(4) (2009), 373-396. 

DOI: https://doi.org/10.1007/s10701-009-9289-6  

 [52] D. J. Cirilo-Lombardo, The geometrical properties of Riemannian superspaces, exact 
solutions and the mechanism of localization, Phys. Lett. B 661(2-3) (2008), 186-191. 

DOI: https://doi.org/10.1016/j.physletb.2008.02.003  

 [53] D. J. Cirilo-Lombardo, Algebraic structures, physics and geometry from a unified 
field theoretical framework, Int. J. Theor. Phys. 54(10) (2015), 3713-3727. 

DOI: https://doi.org/10.1007/s10773-015-2609-z  

 [54] W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 
75(3) (1953), 428-443. 

DOI: https://doi.org/10.1090/S0002-9947-1953-0063739-1  

 [55] B. Kostant, in: Lecture Notes in Mathematics vol. 570, 177; (K. Bleuler and A. Reetz, 
Editors), Proc. Conf. on Diff. Geom. Meth. in Math. Phys. Bonn 1975. Springer-
Verlag, Berlin, 1977. 

 [56] M. Rothstein, in: Lecture notes in Physics 375, 331 (C. Bartocci, U. Bruzzo and R. 
Cianci, Editors), Proc. Conf. on Diff. Geom. Meth. in Math. Phys., Rapallo 1990. 
Springer-Verlag, Berlin, 1991; C. Bartocci, U. Bruzzo and D. Hernandez Ruiperez, 
The Geometry of Supermanifolds, Kluwer Dordrecht, The Netherlands, 1991. 

 

 



DIEGO JULIO CIRILO-LOMBARDO 36

 [57] J. O. Winnberg, Superfields as an extension of the spin representation of the 
orthogonal group, J. Math. Phys. 18(4) (1977), 625; M. Pavsic J. Phys. Conf. Ser.      
33 (2006), 422-427. 

DOI: https://doi.org/10.1063/1.523344   

 [58] M. Pavsic, A theory of quantized fields based on orthogonal and symplectic Clifford 
algebras, Adv. Appl. Clifford Algebras 22(2) (2012), 449-481. 

DOI: https://doi.org/10.1007/s00006-011-0314-4  

 [59] A. A. Albert, Structure of algebras, Amer. Math. Soc., Providence, R. I., 1961. 

 [60] N. A. Salingaros and G. P. Wene, The Clifford algebra of differential forms, Acta 
Applicandae Mathematicae 4(2-3) (1985), 271-292. 

DOI: https://doi.org/10.1007/BF00052466  

 [61] M. Pavsic, On the unification of interactions by Clifford algebra, Adv. Appl. Clifford 
Algebras 20(3-4) (2010), 781-801; Phys. Lett. B 692 (2010), 212-217. 

 [62] D. J. Cirilo-Lombardo, Geometrical properties of Riemannian superspaces, 
observables and physical states, Eur. Phys. J. C 72(7) (2012), 2079. 

DOI: https://doi.org/10.1140/epjc/s10052-012-2079-x  

 [63] J. Mickelsson, Boundary currents and Hamiltonian quantization of fermions in 
background fields, Physics Letters B 456(2-4) (1999), 124-128. 

DOI: https://doi.org/10.1016/S0370-2693(99)00505-5 

 [64] A. B. Arbuzov and D. J. Cirilo-Lombardo, Dynamical symmetries, coherent states 
and nonlinear realizations: The SO(2, 4) case, Int. J. Geom. Methods Mod. Phys. 
15(1) (2018), 1850005. 

DOI: https://doi.org/10.1142/S0219887818500056 

 [65] S. Agyo, C. Lei and A. Vourdas, The groupoid of bifractional transformations, 
Journal of Mathematical Physics 58(5) (2017), 052103.  

DOI: https://doi.org/10.1063/1.4983917 

g 

 

 

 

 

 

 

 



DYNAMICAL SYMMETRIES, COHERENT STATES … 37

Appendix I: Symmetry Breaking  
Mechanism: The SO(4, 2) Case 

A. General features 

(i) Let a, b, c = 1, 2, 3, 4, 5 and 4,3,2,1,, =kji  (in the six-matrix 

representation) then the Lie algebra of SO(2, 4) is 

[ ] ,, iljjilijljlilij JJJJJJi kkkkk η−η−η+η=   (95) 

[ ] ,, 555 kkk JJJJi ijjiji η−η=   (96) 

[ ] ,, 55 ijji JJJi −=   (97) 

[ ] ,, 666 cabbacbca JJJJi η−η=   (98) 

[ ] ., 66 abba JJJi −=   (99) 

(ii) Identifying the first set of commutation relations (95) as the lie 
algebra of the SO(1, 3) with generators .ii JJ kk −=  

(iii) The commutation relations (95) plus (96) and (97) are identified 
as the Lie algebra SO(2, 3) with the additional generators iJ5  and  

( ).1,1,1,1 −−−=ηij  

(iv) The commutation relations (95)-(99) is the Lie algebra SO(2, 4) 
written in terms of the Lorentz group SO(1, 3) with the additional 
generators ,, 65 bi JJ  and ,baab JJ −=  where ( ).1,1,1,1,1 −−−=ηab  It 

follows that the embedding is given by the chain SO(1, 3)  SO(2, 3)  

SO(2, 4). 

From the six dimensional matrix representation, we know from that 

parameterizing the ( )
( )3,2

4,2coset SO
SO

=C  and ( )
( ) ,3,1

3,2
SO
SO

=P  then any 

element G of SO(2, 4) is written as 

( ) ( )
( )

( )
( ) ( ),3,13,1

3,2
3,2
4,24,2 SOSO

SO
SO
SOSO ××≈  (100) 



DIEGO JULIO CIRILO-LOMBARDO 38

explicitly 

( ) ( )HGeG a
a Jxiz−=  

( ) ( ) ( ).Λ= ε−− Hee PxiJxiz a
a

k
k

  (101) 

Consequently, we have ( ) GHHG →:  is an embedding of an 

element of SO(2, 3) into SO(2, 4) where aa JJ 6
1
λ

≡  and ( ) HH →ΛΛ :  is an 

embedding of an element of SO(1, 3) into SO(2, 3) where kk 5
1 JmP ≡  as 

follows: 

( ) ( )

( )

( )

( )

2 2

3, 1

,
a

aiz x J i x P

x

H

G H

SO

G e e

I

− − ε

Λ

 
 
 
 
 =  
 
 
 
 
 ������	�����


��������	�������


k
k

0

0

 (102) 

then any element G of SO(2, 4) is written as the product of an SO(2, 4) 
boost, an ADS boost, and a Lorentz rotation. 

Goldstone Fields and Symmetries 

(i) Our starting point is to introduce two 6-dimensional vectors 1V  

and 2V  being invariant under SO(3, 1) in a canonical form. Explicitly 
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 invariant under SO(3, 1). (103) 

Now we take an element of Sp(2)  Mp(2) embedded in the 6-dimensional 

matrix representation operating over V as follows: 

( ) ( )

,
0

0

0

0

0

0

0

0

0000

0000

000000

000000

000000

000000

022

V

B

A

B

A

dc

ba

V

VMpSp

′=
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→

⊂

	�������� 
������� 	�

M  (104) 

where 

,bBaAA −=′  

,dBcAB −=′−   (105) 

consequently we obtain a Klauder-Perelomov generalized coherent state 
with the fiducial vector .0V  
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(ii) The specific task to be made by the vectors is to perform the 
symmetry breakdown to SO(3, 1). Using the transformed vectors above 
(Sp(2) ~ Mp(2) CS) the symmetry of G can be extended to an internal 

symmetry as SU(1, 1) given by G~  below (note that 122 =µ−λ ): 

( ) ( )

( )

( )

( )

3, 1

,
a

aiz x J i x P

H

G H

SO

GV e e V− − ε

∗ ∗

Λ

 
 
 
 
 
 ′ ′=
 
 λ µ
 

µ λ 
   

�

�

�

������	�����

���������	��������


k
k

0

0

 (106) 

( ) ( )

( )

( )

( )

0 0

3, 1 0

,

0
0

0

a
aiz x J i x P

H

G H

SO

e e V GV− − ε

Λ

 
 
 
 
 

= = 
 
 α
 

β  
 ������	�����
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k
k  (107) 

,

0000
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λβαµ−

µβ−αλ

=

∗

∗

M  (108) 
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and if we also ask for Det 1=M  then ,1=αβ  e.g., the additional phase: 

it will bring us the 10th Goldstone field. The other nine are given by 

( )xza  and ( ) ( )4,3,2,1,,and5,4,3,2,1,, ==ε kk jicbax  coming 

from the parameterization of the cosets ( )
( )3,2

4,2
SO
SO

=C  and ( )
( ) ,3,1

3,2
SO
SO

=P  

(e.g., geometrically ).34 SAdS ×  

 


