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Abstract

We investigate the set of limit points of averages of rearrangements of a given
sequence. We study how the properties of the sequence determine the structure of
that set and what type of sets we can expect as the set of such accessible points.

1. Introduction

When in [6] we started building the theory of means on infinite sets, at
one point we faced the problem that how the average behaves for the
rearrangements of an arbitrary bounded sequence. More precisely, if a

bounded sequence (a,) is given, then we wanted to determine the set of

points of the limit of averages of the rearranged sequences. I.e. take all

rearrangements (a,,) of the sequence, choose those where the limit of the

’

1+ +a,

averages lim exists, and examine the set of all such limit

n—o n

points.
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Many authors studied the rearrangement of the underlying sequence
of a series and investigated what effect it has for the sum of the series, see
[1], [3], [4], [5], [8]. In their research the rearrangement was always
associated to a series. In [9], Sarigdl investigates the permutations that

preserves bounded variation of sequences.

It is well known that the accumulation points, hence limit point of a
rearranged sequence are identical to such points of the original sequence.
Hence it does not make sense to study. However if we take the average of
the rearranged sequence, that is not so trivial.

In this paper, our main aim will be to investigate which set of points
can be accessed in average by rearrangement of sequences. How the
properties of the sequence determine the structure of that set. What type
of sets we can expect as the set of such accessible points.

In the first part of the paper, we prove some generic results that will
provide theorems for bounded sequences. Unbounded sequences behaves
differently, their investigation is our goal in the remainder of the paper.
For more details see Subsection 1.2.

1.1. Basic notions and notations
Throughout this paper function A() will denote the arithmetic mean
of any number of variables. We will also use the notation A(q; : 1 <i < n)

for A(ay, -+, a,). If Hc R is a finite set, then A(H) denotes the

arithmetic mean of its distinct points.

Let us use the notation R = R U {~, +0} and consider R as a 2 point

compactification of R, 1.e., a neighbourhood base of +0o 1is
{(c, +] : ¢ € R}.
Definition 1.1. Let (a,) be a sequence. We say that a, tends to
o € R in average if
n
2

i=1
n

lim A(aq, -+, @,) = lim = o
n— n—
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We denote it by a,, —4> ao. We also use the expression that o is the limit

in average of (a,).

With this notation if a series Zan is Cesaro summable with sum c

n
then we may say that s, EaN ¢, where s, = Zai.
i=1

Definition 1.2. Let (a,) be a sequence, o € R. We say that o is

accessible in average by rearrangement of (a,) if there exists a

rearrangement of a,, i.e., a bijection p : N — N such that a,,) 4

The set of all such accessible points will be denoted by AAR, ).

Definition 1.3. If (a, ), (b,) are two sequences then let (c,) = (a,)||(b,)
be the sequence defined by cg,, = b,,, ¢9,,.1 = a,(n € N).

The following theorem is well know in the theory of Cesaro summation

or can be proved easily.

Theorem 1.4. If a, — o(a € R), then a, A O
Corollary 1.5. If a, — a (a € R), then AAR(, ) = {a}.

Proof. It is also well known that for every rearrangement (apn) of

(an), ap, — o O

Proposition 1.6. If a,, A e R, b, Abe R, c € R, then a, +c

a+b

U
2

A A A A
= a+c ca, > ca,a, +b, > a+b, a,lb, >
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1.2. Brief summary of the main results

We just enumerate some of the most interesting results to give a taste
of the topic.

Proposition. If o € R is an accumulation point of (a,), then
o € AAR ).
Proposition. If a,, A ¢, then c e [lim @, lima,, ].

Theorem. AAR(, ) is closed in R.

Theorem. Let (a,) be a bounded sequence. Then AAR(, \ = [lima,,

lima, ].

Theorem. Let (a,,) = (b,)||(c,), where b, =0, ¢, — +o. If

then 1 is accessible in average by rearrangement of (a,,).

Theorem. Let (a,) = (b,)|(c,), where b, =0, ¢, — +o and (c,) is

increasing. If 1 is accessible in average by rearrangement of (a,,), then

Cn

— 0.

Zc:

=1

Theorem. Let (a,) = (b,)|(c,), where b, — a, ¢, = +x. If there is

b e R suchthat a <b, b e AAR, ), then AAR(, \ = [a, +o].
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Corollary. Let k € N, (a,) = (b,)|/(c,), where b, =0, ¢, = n¥. Then

AAR(, = [0, +oo].

Corollary. Let d > 1, (a,) = (b,)|/(c,), where b, =0, c, =d". Then
AAR(an) = {0, +o}.
2. General Results

First we need some preparation.

Lemma 2.1. Let (b,) be a sequence, ¢ € R. Assume b, A b, Then
Ve >0 we can merge ¢ into (b,), i.e., create a new sequence (d,) with
di =bji<k),d, =c,d; =b;_1(i > k) such that n >k implies that
b-—e< Aldy, ..., d,) <b+e

Proof. Choose k& € N such that n > k£ —1 implies that

1) b—§<A(b1,...,bn)<b+§,

@]l <5,
3) b—%<(b—§)”;1.
If m >k, then
m-1
c+ b;
Ady, oy dpy) = == = 2 Ay, bm_l)m,;l,

henceb—e<A(d1,...,dm)<b+%. 0
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Lemma 2.2. Let (b,) be a sequence, ¢ € R. Assume b, A, . Then
VM >0 we can create a new sequence (d,) with d; =b;(i <k),
d, =c,d; =b,_1( > k) such that n > k implies that M < A(dy, ..., d,).
Similar holds for —o.

Proof. Choose k£ € N such that n > k£ —1 implies that

1) M +2< Ay, ..., by),
@ <)<,
n

@) M+1<(M+2)"=1.

n

If m >k, then

[ — C
Aldy, ..., dy) = —EL— = — Aby, ..., byq) —,

hence M < A(dy, ..., dy,). O

Lemma 2.3. Let (b,), (c,,) be two sequences. Assume b, A beR

Then we can merge the two sequences into a new sequence (d,,) such that
d, — b.

Proof. We define sequences (b,(ll)) and associated constants k;
recursively. Let (b,(lo)) =(b,), kg =1. Let first b e R. If e = % then by
Lemma 2.1 we can merge ¢, into (b,) such that di = b;(i < k), dj,, = ¢y,
di = b;_1(i > k) and n > k, implies that b—% <A, ..., d) < b+%.

Let (bg)) = (d},). If we have already defined (b,(li)) and k; for i <[ then
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apply 2.1 for (bY), ¢;, ¢ = 21% Then we end up with sequence (b{*))

and k1 >k +1 such that n >k, implies that b&- % <
2

1
2l+1 :

A(bl(l+1), I Gao P

Then let us define (d,) by d; = b{!), where k < j < k1. Obviously
(d,,) is a merge of the two original sequences and d,, A,

Now if b = +o then replace ¢ = % by M = 21 in the first part of

2
the proof and apply 2.2 instead of 2.1. O
Corollary 2.4. Let (a,) be a sequence. If there is a subsequence (a)},)

such that it can be rearranged to (ay},) such that a), A, o, then there is a

rearrangement of (a, ) which tends to o in average. O

Corollary 2.5. If o € R is an accumulation point of (a,), then

o € AAR ).

Proof. Let (b,) be a subsequence of (a,,) such that b, — o and (c,)
be the rest. Then apply 2.3.

Proposition 2.6. Let (a,), (b,) be two sequences with a, — a,

b, >b,a<b,a,beR. Then for VYa>0,V>0,a+B =1 the two

sequences can be merged into a new sequence (d, ) such that d, —“i> oa

+Bb.
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Proof. Let o < B (the opposite case can be handled similarly). Let

y=1 +% = %. Obviously, NN [1, ©) = U NN [(n -1)y, ny). Because of
n=1

vy > 2 the length of each such interval is at least 2 hence contains at least

2 integers. Set J,, = NN [(n - 1)y, ny).

If i € N is given then i € [(n — 1)y, ny) for some n e N. For every first
index i of [(n —1)y, ny) let d; come from the sequence (a, ), for all other
indexes from (b,,) using the not-yet-used elements from the sequences and

from the original order. In this way we have defined (d,) as a merge of
(@), (bn)-
Let ¢ > 0 be given. Then there is N € N such that n > N implies

€ € €
that an a, e(a—a,aJrE), b, e(b—4—B,

that {a, :n < N}U{p, :n < N}c{d, :m < M}. If m> M, then set
L=4,.., M}

€
b+4—B). Let M € N such

Iy ={ieN:i>M,3l e N such that i € J; = (M, m]},
I3 = {1, cee m}—(11 UIQ) Ifm> M, then
Y D Y4

iely iely ielg
Aldy, ..., dy,) = e i

Clearly the first and third items can be arbitrarily small if m — «©
because the number of elements in the first sum is M, while it is at most
2y 1in the third. Let us estimate the middle term now.

(@ ==Y+ (b=—)(k—r) Y P Y NP
k" 4a 4B ki _ k1 4a 4B

m k m k m k ’

where k£ denotes the number of elements in the sum and r is the number

of J; intervals which are subset of (M, m].
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The obvious estimation gives that m - M -2y <k <m - M and

m—]\j—Zy <r< m—M_ Therefore,

m—M—2y<£< m-M
yim-M) ~ k= yim-M-2y)

When m —» « then%—)l and%—)%:a,%—)ﬁ Hence we get

2
aa+[3b—%<i<aa+[3b+%,

if m 1s large enough. Finally
aa +Bb-e< Aldy, ..., d,) < aa +Bb +¢,
if m is large enough. |

Proposition 2.7. Proposition 2.6 is valid too if o = 0 or B = 0.

Proof. Apply Lemma 2.3. O

Proposition 2.8. If a,, 4, ¢, then ¢ € [lima,, lima, ].

Proof. Let m = lima,, M = Ean. If any of m, M is infinite the we

do not have to check that side. Hence assume that M € R (m can be

handled similarly). First let ¢ € R. Assume indirectly that ¢ > M. Then

there is N such that » > N implies that a,, < % Then
N n N
Yo Su Su
— . A _— +c n—
Ay, ..., a,) = =2 =N+l sl : :

The latter can be smaller than + 2c

if n is large enough which is a

contradiction.
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The case ¢ = +oo can be handled similarly: just apply M + 1 instead of

M +ec

. U
2

Theorem 2.9. AAR(, ) is closed in R.

Proof. Let us note first that if sup AAR(, ) = +», then +o0 € AAR(, )
by 2.8 and 2.5. And —© can be handled similarly.

Let (b,) be a sequence such that Vn b, € AAR(, ) and b, —> b e R.
We have to show that b e AAR(an). For that it is enough to give a

subsequence of (a,,) which tends to b in average (see 2.3).

We can assume that (b,) is increasing, moreover b —b; < % The

other case when (b,,) is decreasing is similar.

We know that for each i € N there is a rearrangement p; : N »> N

such that a, () A, b;. Let N; € N such that n > N; implies that

pi(n
1
|'A(api(1)’ ceey api(n)) = bil < E
We define a new rearrangement (d,,) of (a,,) recursively. We will add

some elements of (a,) to (d,) in each step. Without mentioning we will

assume that we just add new elements, i.e., that are not among the

previously selected ones.

Step 1. Take n; > N; elements from (a ) such that

p1(n)
{@py(1)s s Apy(Ny)} S {@py(1)s o0 Opy(ng) > 1)

and

. 2
|A(ap1(i) l<ism,a,) ¢ {apz(l)’ ey apz(N2)})_ b| < 3 @)
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This can be done. (1) is obvious because p; is a bijection. To show (2) let

v = A(apl(i) :1<i<n),

wy = .A(apg(i) :1<i< Ny),
v = Alap, () 1 1 <0< ny, api) & 1@py(1)s -5 Cpy(Ny)})-
Then clearly
v, = (= No)vi + Nows
1~ )
m
which gives that
o = Tavr = Nowy
I
From that we get that
P o Moo —wof o | +[By by by —we| Ny
|Ul vll - - N = 2 _N = _N,’
ny 2 ny 2 ny 2
and
’ ’ N 1 2
i = by] < o —vy] + oy = by =ﬁ+§ <3
if ny is chosen big enough.
s Qpy(ng) t0 (dy) as (dy, ..., dy, ).

Then add those elements a, (1), ...

Step k. Now (d,) is already defined till index my_;, i.e., (d, .

Ay, )-
Take nj > N}, elements from (ap, (,)) such that

{apk+1(1)’ e apk+1(Nk+l)} < idp, o Ay 15 Apy(1)s - apk(nk)}’

ey

3
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and
Jog = by | < = (4)
3k’
and
2
' - = 5
vy, = by, | < 30 (5)
where
v, = A(dy, ..., dmkvfl; Ap(1)s > () * Cppi) # dil<i<ng,1<l<m,),
vp = Aldy, ..., Aprge15 Apr(1)s s App(my) 2 A # Api) # Appy(j) * D

(1<i<n,1<j< Ny, 1<1<mq)).

This can be done. (3) is obvious because pj;, is a bijection and (4) is evident

too. To show (5) let

Wi = Alap, () 11 <0< Npyp).

Let nj, be the number of distinct elements in (dj, ..., dm/nq; Ap, (1) -

@p,(n,))- Then clearly

(n;e - Nip )U;c + Np Wi
nj, ’

U =

which gives that

’
o = TV = NipaWin
ng = N

From that we get that

, _ Npalvp —wp| v, = bg| + by, = bpaa | + [bpe1 — wyia|
ok = vl = n = Nip < N n, = Nipy
Nin

S - Ny
np = Ngy
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and

if n; is chosen big enough.

Then add those elements a,, (1), ..., @, () t0 (dy)-

In that way we have constructed (d,). We show that d, A b Let
¢ = % First we show that b — A(dy, ..., d,, ) < % It is clear that b — A
1 .
(@py(1)s o> Apy(ng)) < % and (dy, ..., dp, ) contains (ap, 1), > @p,(n;))-
But in Step k we had |v, —b;] < 31_k We remark that v, = A
(dhs -oos dy, ). Hence [b— vy < [b— by + [by — vy < 7

Let mj, < p < my,1. By construction d,, is elements from (a,,  (n))-
Let v=A(d;,...,d,) and let v' = A(elements of (a, () among
diy ..ns dp ). Obviously,

_ (Np1 +p—my "+ (my, — Nyyy oy,
p

v

b

i.e., vis a weighted average of v’ and v}, therefore v € (v/, vj},).

But

1,1 2 1
3k+1) 3k+1) 3Fk+1) k&’

' = b < |v" = by |+ by — ] <

and

o - e 211
|U]€ b|<|vk bk|+|bk b|<3k+3k _k’
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which gives that |[v — 8] < % We got that if m;, < p < my,; then

1
b_A(d]_, ceey dp) < E7
which proves the claim. O
3. On Bounded Sequences

Theorem 3.1. Let (a,) be a bounded sequence. Then AAR(, )= [lima,,

lima, ].

Proof. Let m =lima,, M =lima,. Clearly if (a,) is a

rearrangement of (a,) then m =lima,, M =lima,. Hence by 2.8

AAR(, y < [m, M].

Now let [ be choosen such that m <1 < M. We can devide (a,) into
three distinct sequences: b, — m, ¢, - M and (d,) is the rest i.e.,
{b,,¢,,d, :neNy={a, :neN} and b, =c¢, =d; #b,(Vn, k,1). It
can happen that either (d,,) or (c,), (d,) are empty. By Proposition 2.6

we can merge (b,), (c,,) into a new sequence (e,,) such that e, A1 By
Lemma 2.3 we can add (d,) as well in a way that the limit does not

change. O

Theorem 3.2. Let m = lima,, M =lima,. If m < M, m, M € R,

n
E e
then we can create a rearrangement (e,) such that lim ‘Tll does not

n—ow

exist.

Proof. Let us devide H into three distinct sequences as in the proof of

M-m

Theorem 3.1 (let us use the same notations). Let p =m + 5

M-m
3

q=M-
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Now we define (e,). Let the first element be d;. Then take elements

from (b,) such that A(dy, by, ..., by, ) < p. Next element will be dy. Then

take elements from (c,) such that A(dy, by, ..., by, do, €1, ..., Cpy) > @

Next element is ds. Then take elements from (b,,) such that

s bnl’ d2, Cls vevs Cn2, d3, bn1+1, ceey bn?)) < p,

Zn e;
=l Wil
n

A(dy, by, ...

and so on. Obviously we exhaust all elements from (a,) and

not converge.

4. On Unbounded Sequences

Lemma 4.1. Let (c,,) be an increasing sequence such that c, — +»,

¢, > 0. Let (c),) be any of its rearrangements. Then

- Cy . C;L
lim < lim . 6)
n—ow n-1 n—oo n-1

2 2

i=1 i=1

Proof. Take a subsequence (c,, ) of (c,) such that

. Cn, -— c
lim k= lim —2
k—o0 Mg —1 n—oo n—1

C; C;
=1 =1

We can assume that V& if m <ny, then ¢, <c, because if there is

m < ny such that c,, = ¢, then

Cry, < Cm

ny -1 m-1
E C; E C;
=1 i=1

hence put ¢,, into the subsequence instead of ¢, .



16 ATTILA LOSONCZI

. . ,
Now find ¢, in (c,), say ¢, = cp, . Let
ly = min{n e N:n <my, ¢, >cp, |

Clearly if n < [} then ¢, < ¢y, = ¢, . This gives that

!

Coy . _CLy
ng -1 T -1 ’
E ¢ ¢

=1 i=1

because ¢, =c, <c; and {¢j:1<i<l -1}c{g:1<i<n -1}
since {¢; : 1 <i < n; —1} contains all elements that are strictly smaller

than Cny, - That yields (6). O

Corollary 4.2. Let (c,,) be a sequence such that c,, — +», ¢, > 0 and

~
Il
—

{..
Il
—_

then 1 is accessible in average by rearrangement of (a,,).
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Proof. We can assume that ¢, is increasing (by 4.2) and ¢, > 1.

Then let d, =c,, where (m,) is a strictly increasing sequence
determined by the followings: dj, =0 if Vn k # m, and |{d; :d; =0,
i <my}|=leg +-+¢,]—n Weshow that d; A1 Obviously

n

S

A(dy, ooy dy ) = 5 1,

5|

n-1
¢
_ 1=1
.A(dl,...,dmn_l)— "
Ci -1
=1
With evident estimation
n—1 n—1 n—1
=1 i=1 i=1
n-1 n | n-1
¢ |+cy Zci -1 c;|+ec, —2
i=1 i=1 i=1

If we take the reciprocal and apply the condition then we get that
lim A(dy, ..., dp, 1) =1. To finish to proof we have to remark that if
n—w

m,_1 <l <m, -1, then

A(dl, ey dmn—l) > A(dl, ceey dl) > .A(dl, ceey dmn—l)' |
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Theorem 4.4. Let (a,) = (b,)||(c,), where b, =0, ¢, - +x and (c,)

is increasing. If 1 is accessible in average by rearrangement of (a,,), then

Proof. Let (d,) be a rearrangement such that d, A, 1. This
rearrangement defines a rearrangement of (c,), namely take the
elements from (c,) exactly in the same order as they come in (d,,). Let us

denote that rearranged sequence with (c},) and ¢}, = dm,, -

Let € > 0. Then thereis N € N such that m > N implies that

d:

12

NgE

l

Il
—_

1-e< <1l+e

m

Let n be chosen such that m,_; > N. Let m =m,_;. We know that

~.

n-1
Z d; = Zc{ which gives that 1-¢ <% <1+¢, where Sp = ch.
m 4
1=1

—

~.
Il

—

Suppose that in (d,,) there are k, zeros between c,,_; and c),. It gives

that

s
l1-e< n__ <14e 7
‘ m+k, ‘ ™
s, +c
l-e<—L " _<1+e 8
‘ m+k, +1 ‘ ®
From (8) we get that
1+i
Sn
l-€e< <l+e
m+k, 1
s s
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By multiplying with the denominator and using (7) we get that

1_€+1_€<(1_€)(w+sij<1+cn <(1+€)(%k”+s$j

1+e Sn n n Sn n n

1+e 1+e€
< + ,
1-—¢ S

and clearly both sides tend to 1 when ¢ — 0. Which finally gives that

n 0. Now 4.2 yields the statement. O

sn
Theorem 4.5. Let (a,) = (b,)|(c,), where b, =0,c, — +o. If
1le AAR(an), then AAR(an) = [0, +o].

Proof. We have to verify that if / € R, then [/ € AAR, ).

Let (d,,) be a rearrangement such that d,, A1

First we show thatif I € N, then [ € AAR, ).
Let k, denotes the number of zeros in the first n terms of (d,,). We

state that there is N € N such that n > N implies that k, > (1 - % n.

Assume the contrary: VN 3n > N such that &, < (1- % Jn which gives

that there are at least n' = r%rﬂ elements (say zj, ..., z,7) that are non
zero. Then
n n' n' n'
DD DT DX
i1 _3=1 _ni=m 15T
n n n n 1 n

But the average of the non zero elements tends to infinite that gives a

contradiction.
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20
Now we construct a new rearrangement (d,,) of (d,). Till index N

leave out the first | (1 - % )N | many zeros. It can be done by the previous

statement. Then we go on by recursion. Suppose we are done for n > N

and already left out |(1 —%)nj many zeros. Now we are dealing with
n+1. If [(1- % n]=1(1- % )(n +1)] then we do nothing. Otherwise
leave out 1 more zeros. Again the previous statement guarantees that it is

possible.

Let show that d), Ayl Let n > N—L(l—%)Nj. Set k, =n—[(1-

%)nj that is the number of remainder elements after managing d,,.

n
:Zdi By n—(l—%)nskn £n—(1—%)n+1, we
1=1

kn
Observe that Zdl’
i=1

get that
> >
d; n in n d;
i-1 d; de d; i1
_ =1 = PR = __n_
P n-(1- % n %

n
1 1 1
7+; n—(1—7)(n+1)
and both sides tend to ! which proves the claim.

Now we show that if /e N,0 <" </ and [ € AAR(, ), then I'e A
AR, ). Let (d,) be a rearrangement such that d, Al Let L = %— 1.

Now let us put [2L] many zeros between d; and dy(k € N) and put

(L% - L] -previously added number of zeros) many zeros between d;_; and

d; (k € N). Let us denote this new sequence by (dj). Let us denote
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dy, = di. Observe that A(dj, ..., dp, )2 A(d], ..., dy) > A(df, ..., dp, 1)
>a
if np <n<ng,. Clearly A(df,..,d, )= W By obvious
estimation

k k k k
d; Zdl D4, Zdl 1 D di
=1 =1 =1

< ! < i =
k+k L_k+Lk-LJ k+k-L-1 L

NlN\
o L

Zd

Let us estimate A(dj, ..., dy, 1) = m

Zk:di Zk:di Zd Zk:di

1 = i=1 i1
1 L k “k+k-L+L k+|_(k+1) LJ k+k-L+L-1
Ik
k
Zdz
- 1 i=1
L 1-L '
U k
Hence both A(dj, ..., d}, )= I' and A(dj, ..., d, 1) — I' which give
that A(d], ..., d},) — I 0

Theorem 4.6. Let (a,) = (b,)|(c,), where b, —0,¢c, - +o. If
1 € AAR(y ), then AAR, ) = [0, +o].

Proof. We have to verify that if / € R™, then [ € AAR(, ).
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Let (d,,) be the rearranged sequence whose average tends to 1. Let %,
denote the number of elements from (b,,) among the first n terms of (d,,).

Then

n kn n_kn
2 2k 2
j=1 k, =1 j=1
= +
n n k, n
kn n—kn

n Jj=1

Clearly . is bounded,

— 0 therefore — 1. Let us

n

replace all b, with 0in (d,,) and denote the new sequence by (d},). Then

n nfk'n
'
24 2
j=1_ _ j=1
n n

hence A(dj, ..., d},) > 1, 1e., 1€ AAR(d}L)‘

By 4.5 (d},) can be rearranged to (d,,) such that A(df, ..., d}) — L
Let %, denote the number of zeros among the first n terms of (d},). Let us
replace all zeros with distinct elements from (b,,) in (d;,) and denote the

new sequence by (d);). Then

n n—ky
24 D em,
= A - 1,
n n
n ky n—ky,
24 Dby Dem
=k G =
n n ok n
k,
2 bn
, =
But the first term _nk—’ — 0 hence A(df, ..., dy) > L o
n n



POINTS ACCESSIBLE IN AVERAGE BY REARRANGEMENT ... 23
Theorem 4.7. Let (a,) = (b,)|(c,), where b, — a, ¢, —> +w. If there

is b e R suchthat a <b, b e AAR(, ), then AAR(, ) = [a, +o].

Proof. Let !> a. Let b, = bg_‘a“ ,ch = Cg_‘:‘ () = (B))||(ch)-
Clearly b, — 0, ¢;, > +» hence by 4.6 (a,,) can be rearranged to (d,,)

such that A(d,, ..., d,) - 1=
b-a
A(d], ..

Let d;, = (b - a)d, + a. Then clearly
., dy) — [ and (d},) is a rearrangement of (a,, ). O

Proposition 4.8. Let k € N, (a,,) = (b,)||(cn), where b, =0, ¢, = n”
Then AAR, ) = [0, +oo].

Proof. By 4.6 and 4.3 it is enough to show that

Cn
n-1

— 0.

¢
i=

n-1
It is known that Z i* = p(n —1), where p(x) is a polynomial of degree
1=1

k+1, ie, p(n—1) = dp,(n -1 + g(n —1), where g(x) is a polynomial
of degree k& and dj,,; > 0. Hence

c T’Lk

n _ 1
-1 k+1 -
S . dpa(n =1 + g(x)

Ly a@)
dpq(n=1)- (1= —-)" + "
=1

0.

]

Proposition 4.9. Let d > 1, (a,) = (b,)||(c,), where b, =0, ¢, =d"
Then AAR(, y = {0, +}.
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Proof. By 4.7 and 4.4 it is enough to show that 1 ¢ AAR(an), le.,

n
n-1 + 0
¢
=1
But
n n
d =d(d—1)=d1_>d_1¢0 O
n-1 d® -1 1
. 1__
Zdl dn
=1

Example 4.10. Let (a,) = (b,)||(c,), where b, =0, ¢, - +o and
1€ AAR(, ). Let (c;,) be given such that cj, < c,, ¢, =+, (ay,) = (b,)||(cp)-

These conditions do not imply that 1 € AAR(qy ).

Proof. Let ¢,, = n?. By4.8,1¢ AAR ).

We define (c),) by recursion. Let ¢; = 1. If (c,,) is defined till n then

let
n
Chs if ch > (n +1)%,
2 =1
Cht1 = 4, '
Z ¢, otherwise.
i=1

Properties of (c},):
(1) (c;,) is increasing.

(2) ¢, <c,(n>1). It can be seen by induction starting from n = 2,

cy = 1.
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(3) ¢, > +w. Assume the contrary. Then there is N € N such that

n

n > N implies that ¢y = ¢;,. Then for such n we get that ZC; <n-cy
1=1

using the monotonicity of (c),) too. But there is an n such that n-cjy <

(n +1)? which is a contradiction.

4)1¢ AAR(%). To show that it is enough to prove that

=~

-+ 0

S
Il |
= —_
(o)
s

i

by 4.4. There are infinitely many n where c,, # c,,_;. For such n

therefore

P— C
lim

> 1. U

n-1

D¢

=1

'

n
’
12

Proposition 4.11. Let (a,) = (b,)||(c,), where b, =0, ¢, = n. Let (cy,)

be given such that ¢, < ¢y, ¢, = +0, (ay,) = (b,)l|(c,). Then 1 € AAR(y ).

Proof. We can assume that c;, > 0.
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Let ¢ > 0. Choose k € N such that % < % Then thereis N € N such

that » > N implies that ¢, > k. Then

ch, < n _ n _ 1 <
n-l1 = n-l (n—N -1k (l—N_l n
2 Dk n
=1 1=N+1
if n 1s big enough which gives the statement by 4.3. O

Now we give some equivalent forms of the condition in 4.3.

Proposition 4.12. Let (c,,) be a sequence such that Vn ¢, > 0. Then

the followings hold.:
n-1 n
C; C;

c c = =

500 —L— 50 5t B 5 4o, O
n—-1 n cp Ch

c 26

=1 =1

Proposition 4.13. Let f : R™ — R* be an increasing function that is

integrable over each finite interval and lim f = +oo. Let (c,) be defined by
+00

¢, = f(n). Then

—>0<:>M—>O.
n-1 n

¢ J.f
1
Proof. By obvious estimation we get that

flo) _ ) _f)_ )

n n n n-1 ’
210 210 [r o D f0
=1 1=2 1 =1

which gives the statement. O
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Proposition 4.14. Let f : R — R* be an increasing function that

has a primitive function F and lim f = +oo. Let (c,) be defined by ¢, = f(n).
+00

Then

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

Cn f(n)
" —>0©F(n)—>0. O
¢
i=1
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