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Abstract 

We investigate the set of limit points of averages of rearrangements of a given 
sequence. We study how the properties of the sequence determine the structure of 
that set and what type of sets we can expect as the set of such accessible points. 

1. Introduction 

When in [6] we started building the theory of means on infinite sets, at 
one point we faced the problem that how the average behaves for the 
rearrangements of an arbitrary bounded sequence. More precisely, if a 
bounded sequence ( )na  is given, then we wanted to determine the set of 
points of the limit of averages of the rearranged sequences. I.e. take all 
rearrangements ( )na′  of the sequence, choose those where the limit of the 

averages n
aa n

n

′++′
∞→

"1lim  exists, and examine the set of all such limit 

points. 
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Many authors studied the rearrangement of the underlying sequence 
of a series and investigated what effect it has for the sum of the series, see 
[1], [3], [4], [5], [8]. In their research the rearrangement was always 
associated to a series. In [9], Sarigöl investigates the permutations that 
preserves bounded variation of sequences. 

It is well known that the accumulation points, hence limit point of a 
rearranged sequence are identical to such points of the original sequence. 
Hence it does not make sense to study. However if we take the average of 
the rearranged sequence, that is not so trivial. 

In this paper, our main aim will be to investigate which set of points 
can be accessed in average by rearrangement of sequences. How the 
properties of the sequence determine the structure of that set. What type 
of sets we can expect as the set of such accessible points. 

In the first part of the paper, we prove some generic results that will 
provide theorems for bounded sequences. Unbounded sequences behaves 
differently, their investigation is our goal in the remainder of the paper. 
For more details see Subsection 1.2. 

1.1. Basic notions and notations 

Throughout this paper function ( )A  will denote the arithmetic mean 

of any number of variables. We will also use the notation ( )niai ≤≤1:A  

for ( ).,,1 naa "A  If R⊂H  is a finite set, then ( )HA  denotes the 

arithmetic mean of its distinct points. 

Let us use the notation { }∞+∞−= ,∪RR  and consider R  as a 2 point 

compactification of ,R  i.e., a neighbourhood base of +∞  is 
( ]{ }.:, R∈∞+ cc  

Definition 1.1. Let ( )na  be a sequence. We say that na  tends to 

R∈α  in average if 

( ) .lim,,lim 1
1 α==

∑
=

∞→∞→ n

a
aa

i

n

i
nnn

"A  
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We denote it by .α→−Ana  We also use the expression that α  is the limit 

in average of ( ).na  

With this notation if a series na∑  is Cesaro summable with sum c 

then we may say that ,csn
A→−  where .

1
i

n

i
n as ∑

=
=  

Definition 1.2. Let ( )na  be a sequence, .R∈α  We say that α  is 

accessible in average by rearrangement of ( )na  if there exists a 

rearrangement of ,na  i.e., a bijection NN →:p  such that ( ) .α→−Anpa  

The set of all such accessible points will be denoted by ( ).naAAR  

Definition 1.3. If ( ) ( )nn ba ,  are two sequences then let ( ) ( ) ( )nnn bac =  

be the sequence defined by ( )., 122 N∈== − nacbc nnnn  

The following theorem is well know in the theory of Cesaro summation 
or can be proved easily. 

Theorem 1.4. If ( ),R∈αα→na  then .α→−Ana    

Corollary 1.5. If ( ),R∈αα→na  then ( ) { }.α=naAAR  

Proof. It is also well known that for every rearrangement ( )npa  of 

( ) ., α→npn aa   

Proposition 1.6. If ,,, RRR ∈∈→−∈→− cbbaa nn
AA  then can +  

.2,,, babababacacaca nnnnn
+→−+→−+→−+→− AAAA   
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1.2. Brief summary of the main results 

We just enumerate some of the most interesting results to give a taste 
of the topic. 

Proposition. If R∈α  is an accumulation point of ( ),na  then 

( ).naAAR∈α  

Proposition. If ,can
A→−  then [ ].lim,lim nn aac ∈  

Theorem. ( )naAAR  is closed in .R  

Theorem. Let ( )na  be a bounded sequence. Then ( ) [ ,lim na aAAR n =  

].lim na  

Theorem. Let ( ) ( ) ( ),nnn cba =  where .,0 +∞→≡ nn cb  If 

,01

1

→

∑
−

=

n

i
i

n

c

c  

then 1 is accessible in average by rearrangement of ( ).na  

Theorem. Let ( ) ( ) ( ),nnn cba =  where +∞→≡ nn cb ,0  and ( )nc  is 

increasing. If 1 is accessible in average by rearrangement of ( ),na  then 

.01

1

→

∑
−

=
i

n

i

n

c

c  

Theorem. Let ( ) ( ) ( ),nnn cba =  where ., +∞→→ nn cab  If there is 

R∈b  such that ( ) ,, naAARbba ∈<  then ( ) [ ]., ∞+= aAAR na  

 



POINTS ACCESSIBLE IN AVERAGE BY REARRANGEMENT … 5

Corollary. Let ( ) ( ) ( ),, nnn cba =∈ Nk  where .,0 kncb nn =≡  Then 

( ) [ ].,0 ∞+=naAAR  

Corollary. Let ( ) ( ) ( ),,1 nnn cbad =>  where .,0 n
nn dcb =≡  Then 

( ) { }.,0 ∞+=naAAR  

2. General Results 

First we need some preparation. 

Lemma 2.1. Let ( )nb  be a sequence, .R∈c  Assume .bbn
A→−  Then 

0>∀  we can merge c into ( ),nb  i.e., create a new sequence ( )nd  with 

( ) ( )kk k >==<= − ibdcdibd iiii 1,,  such that k≥n  implies that 

( ) .,,1  +<<− bddb n…A  

Proof. Choose N∈k  such that 1−≥ kn  implies that 

(1) ( ) ,3,,3 1
 +<<− bbbb n…A   

(2) ,3
<n

c   

(3) ( ) .1
33

2
n

nbb −−<−   

If ,k≥m  then 

( ) ( ) ,1,,,, 11

1

1
1 m

mbbm
c

m

bc
dd m

i

m

i
m

−+=

+

= −

−

=
∑

…… AA  

hence ( ) .3
2,,1
 +<<− bddb m…A   
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Lemma 2.2. Let ( )nb  be a sequence, .R∈c  Assume .∞+→−Anb  Then 

0>∀M  we can create a new sequence ( )nd  with ( ),k<= ibd ii  

( )kk >== − ibdcd ii 1,  such that k≥n  implies that ( ).,,1 ndd …A<M  

Similar holds for .−∞  

Proof. Choose N∈k  such that 1−≥ kn  implies that 

(1) ( ),,,2 1 nbbM …A<+  

(2) ,1<n
c  

(3) ( ) .121 n
nMM −+<+  

If ,k≥m  then 

( ) ( ) ,1,,,, 11

1

1
1 m

mbbm
c

m

bc
dd m

i

m

i
m

−+=

+

= −

−

=
∑

…… AA  

hence ( ).,,1 mdd …A<M   

Lemma 2.3. Let ( ) ( )nn cb ,  be two sequences. Assume .R∈→− bbn
A  

Then we can merge the two sequences into a new sequence ( )nd  such that 

.bdn
A→−  

Proof. We define sequences ( ( ) )l
nb  and associated constants lk  

recursively. Let ( ( ) ) ( ) .1, 0
0 == knn bb  Let first .R∈b  If 2

1=  then by 

Lemma 2.1 we can merge 1c  into ( )nb  such that ( ) ,, 11 1 cdibd ii =′<=′ kk  

( )11 k>=′ − ibd ii  and 1k>n  implies that ( ) .2
1,,2

1
1 +<′′<− bddb n…A   

Let ( ( ) ) ( ).1
nn db ′=  If we have already defined ( ( ) )i

nb  and ik  for li ≤  then 
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apply 2.1 for ( ( ) ) .
2

1,, 1+= ll
l

n cb   Then we end up with sequence ( ( ) )1+l
nb  

and 11 +>+ ll kk  such that 1+> ln k  implies that <−
+12

1
lb  

( ( ) ( ) ) .
2

1,, 1
11

1 +
++ +< l

l
n

l bbb …A  

Then let us define ( )nd  by ( ),l
jj bd =  where .1+<≤ ll j kk  Obviously 

( )nd  is a merge of the two original sequences and .bdn
A→−  

Now if ±∞=b  then replace 12
1
+

= l  by 12 += lM  in the first part of 

the proof and apply 2.2 instead of 2.1.  

Corollary 2.4. Let ( )na  be a sequence. If there is a subsequence ( )na′  

such that it can be rearranged to ( )na ′′  such that ,α→−′′ A
na  then there is a 

rearrangement of ( )na  which tends to α  in average.  

Corollary 2.5. If R∈α  is an accumulation point of ( ),na  then 

( ).naAAR∈α  

Proof. Let ( )nb  be a subsequence of ( )na  such that α→nb  and ( )nc  

be the rest. Then apply 2.3. 

Proposition 2.6. Let ( ) ( )nn ba ,  be two sequences with ,aan →  

.,,, R∈<→ bababbn  Then for 1,0,0 =β+α>β∀>α∀  the two 

sequences can be merged into a new sequence ( )nd  such that adn α→−A  

.bβ+  
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Proof. Let β≤α  (the opposite case can be handled similarly). Let 

.11
α

=
α
β+=γ  Obviously, [ ) [( ) ).,1,1

1
γγ−=∞

∞

=
nn

n
∩∩ ∪ NN  Because of  

2≥γ  the length of each such interval is at least 2 hence contains at least 

2 integers. Set [( ) ).,1 γγ−= nnJn ∩N  

If N∈i  is given then [( ) )γγ−∈ nni ,1  for some .N∈n  For every first 

index i of [( ) )γγ− nn ,1  let id  come from the sequence ( ),na  for all other 

indexes from ( )nb  using the not-yet-used elements from the sequences and 

from the original order. In this way we have defined ( )nd  as a merge of 

( ) ( )., nn ba  

Let 0>  be given. Then there is N∈N  such that Nn >  implies 

that an ( ) ( ).4,4,4,4 β
+

β
−∈

α
+

α
−∈  bbbaaa nn  Let N∈M  such 

that { } { } { }.::: MmdNnbNna mnn ≤⊆≤≤ ∪  If ,Mm >  then set 

{ },,,11 MI …=  

( ]{ },,thatsuch,:2 mMJilMiiI l ⊂∈∈∃>∈= NN  

{ } ( ).,,1 213 IImI ∪… −=  If ,Mm >  then 

( ) .,, 321
1 m

d

m

d

m

d

dd
i

Ii
i

Ii
i

Ii
m

∑∑∑
∈∈∈ ++=…A  

Clearly the first and third items can be arbitrarily small if ∞→m  
because the number of elements in the first sum is M, while it is at most 
γ2  in the third. Let us estimate the middle term now. 

( ) ( ) ( ) ( ) ( ) ( )
,4444 2

k

k
k

k
k

k

k
k

rbra

m

d

m

rbra

m

i
Ii

−
β

++
α

+
<<

−
β

−+
α

− ∑
∈



 

where k  denotes the number of elements in the sum and r is the number 
of lJ  intervals which are subset of ( ]., mM  
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The obvious estimation gives that MmMm −≤<γ−− k2  and 

.2
γ
−≤<

γ
γ−− MmrMm  Therefore, 

( ) ( ) .2
2

γ−−γ
−≤≤

−γ
γ−−

Mm
Mmr

Mm
Mm

k
 

When ∞→m  then 1→m
k  and .,1 β→−α=

γ
→

k
k

k
rr  Hence we get 

,3
2

3
2 2  +β+α<<−β+α

∑
∈ bam

d

ba
i

Ii  

if m is large enough. Finally 

( ) ,,,1  +β+α<<−β+α baddba m…A  

if m is large enough.  

Proposition 2.7. Proposition 2.6 is valid too if 0=α  or .0=β  

Proof. Apply Lemma 2.3.  

Proposition 2.8. If ,can
A→−  then [ ].lim,lim nn aac ∈  

Proof. Let .lim,lim nn aMam ==  If any of Mm,  is infinite the we 

do not have to check that side. Hence assume that R∈M  (m can be 
handled similarly). First let .R∈c  Assume indirectly that .Mc >  Then 

there is N such that Nn >  implies that .2
cMan

+<  Then 

( ) .2,, 111
1 n

NncM
n

a

n

aa
aa

i

N

i
i

n

Ni
i

N

i
n

−⋅++<

+

=
∑∑∑
=+==…A  

The latter can be smaller than 3
2cM +  if n is large enough which is a 

contradiction. 
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The case +∞=c  can be handled similarly: just apply 1+M  instead of 

.2
cM +   

Theorem 2.9. ( )naAAR  is closed in .R  

Proof. Let us note first that if sup ( ) ,+∞=naAAR  then ( )naAAR∈+∞   

by 2.8 and 2.5. And −∞  can be handled similarly. 

Let ( )nb  be a sequence such that ( )nan AARbn ∈∀  and .R∈→ bbn  

We have to show that ( ).naAARb ∈  For that it is enough to give a 

subsequence of ( )na  which tends to b in average (see 2.3). 

We can assume that ( )nb  is increasing, moreover .3
1
ibb i <−  The 

other case when ( )nb  is decreasing is similar. 

We know that for each N∈i  there is a rearrangement NN →:ip  

such that ( ) .inp ba i
A→−  Let N∈iN  such that iNn >  implies that 

( ( ) ( ) ) .3
1,,1 ibaa inpp ii <−…A  

We define a new rearrangement ( )nd  of ( )na  recursively. We will add 

some elements of ( )na  to ( )nd  in each step. Without mentioning we will 

assume that we just add new elements, i.e., that are not among the 
previously selected ones. 

Step 1. Take 11 Nn ≥  elements from ( ( ) )npa 1  such that 

{ ( ) ( )} { ( ) ( )},,,,, 111222 11 nppNpp aaaa …… ⊂   (1) 

and 

( ( ) ( ) { ( ) ( )}) .3
2,,,1: 111 22211 <−∈/≤≤ baaania Nppipip …A  (2) 
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This can be done. (1) is obvious because 1p  is a bijection. To show (2) let 

( ( ) ),1: 11 1 niav ip ≤≤= A  

( ( ) ),1: 22 2 Niaw ip ≤≤= A  

( ( ) ( ) { ( ) ( )}).,,,1: 22211 111 Nppipip aaaniav …∈/≤≤=′ A  

Then clearly 

( ) ,
1

22121
1 n

wNvNnv +′−
=  

which gives that 

.
21

2211
1 Nn

wNvnv
−
−

=′  

From that we get that 

,
21

2
21

222111
2

21
212

11 Nn
N

Nn
wbbbbvNNn

wvNvv
−

≤
−

−+−+−
≤

−
−

=−′  

and 

,3
2

3
1

21
2

111111 <+
−

=−+−′≤−′ Nn
Nbvvvbv  

if 1n  is chosen big enough. 

Then add those elements ( ) ( )111 ,,1 npp aa …  to ( )nd  as ( ).,, 11 ndd …  

Step k. Now ( )nd  is already defined till index ,1−km  i.e., ( ,,1 …d  

).1−kmd  

Take kk Nn ≥  elements from ( ( ) )npa
k

 such that 

{ ( ) ( )} { ( ) ( )},,,;,,,, 111 1111 kkkkkkk nppmNpp aaddaa ………
−+++

⊂  (3) 
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and 

,3
1
kkk <− bv  (4) 

and 

,3
2
kkk <−′ bv  (5) 

where 

( ( ) ( ) ( ) ( ),1,1:,,;,, 111 1 −≤≤≤≤≠=
− kkk kkkkk

mlnidaaaddv lipnppm ……A  

( ( ) ( ) ( ) ( ) ljpiplnppm daadaaddv ≠≠≠=′
+− 11 :,,;,, 11 kkkkkkk ……A  

( )).1,1,1 11 −+ ≤≤≤≤≤≤ kkk mlNjni  

This can be done. (3) is obvious because kp  is a bijection and (4) is evident 

too. To show (5) let 

( ( ) ).1: 11 1 ++ ≤≤=
+ kk k Niaw ipA  

Let kn′  be the number of distinct elements in ( ( ) ,,;,, 11 1 ……
kk pm add

−
 

( ) ).kk npa  Then clearly 

( ) ,111
k

kkkkk
k n

wNvNnv
′
+′−′

= +++  

which gives that 

.
1

11
+

++
−′

−′
=′

kk

kkkk
k Nn

wNvnv  

From that we get that 

1
111

1
1

11
+

+++
+

+

++
−′

−+−+−
≤

−′
−

=−′
kk

kkkkkk
k

kk

kkk
kk Nn

wbbbbvNNn
wvNvv  

,
1

1
+

+
−′

≤
kk

k
Nn

N  
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and 

kkkk

k
kkkkkk 3

2
3
1

1
1 <+

−′
=−+−′≤−′

+

+
Nn

Nbvvvbv  

if kn  is chosen big enough. 

Then add those elements ( ) ( )kkk npp aa ,,1 …  to ( ).nd  

In that way we have constructed ( ).nd  We show that .bdn
A→−  Let 

.1
k

=  First we show that ( ) .1,,1 kk
<− mddb …A  It is clear that A−b  

( ( ) ( ) ) kkkk 3
1,,1 <npp aa …  and ( )

kmdd ,,1 …  contains ( ( ) ( ) ).,,1 kkk npp aa …  

But in Step k we had .3
1
kkk <− bv  We remark that A=kv  

( ).,,1 kmdd …  Hence .1
kkkkk <−+−≤− vbbbvb  

Let .1+≤< kk mpm  By construction pd  is elements from ( ( ) ).1 npa
+k

 

Let ( )pddv ,,1 …A=  and let A=′v (elements of ( ( ) )npa 1+k  among 

pdd ,,1 … ). Obviously, 

( ) ( ) ,11
p

vNmvmpNv kkkkk ′−+′−+
= ++  

i.e., v is a weighted average of v′  and kv′  therefore ( )., kvvv ′′∈  

But 

( ) ( ) ( ) ,1
13

2
13

1
13

1
11 kkkkkk <

+
=

+
+

+
<−+−′<−′ ++ bbbvbv  

and 

,1
3
1

3
2

kkkkkkk =+<−+−′<−′ bbbvbv  
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which gives that .1
k

<− bv  We got that if 1+≤≤ kk mpm  then 

( ) ,1,,1 k
<− pddb …A  

which proves the claim.  

3. On Bounded Sequences 

Theorem 3.1. Let ( )na  be a bounded sequence. Then ( ) [ ,lim na aAAR n =  

].lim na  

Proof. Let .lim,lim nn aMam ==  Clearly if ( )na′  is a 

rearrangement of ( )na  then .lim,lim nn aMam ′=′=  Hence by 2.8 

( ) [ ]., MmAAR na ⊂  

Now let l be choosen such that .Mlm ≤≤  We can devide ( )na  into 

three distinct sequences: Mcmb nn →→ ,  and ( )nd  is the rest i.e., 

{ } { }NN ∈=∈ nandcb nnnn ::,,  and ( ).,, lnbdcb nln kk ∀≠≠≠  It 

can happen that either ( )nd  or ( ) ( )nn dc ,  are empty. By Proposition 2.6 

we can merge ( ) ( )nn cb ,  into a new sequence ( )ne  such that ne A→−− .l  By 

Lemma 2.3 we can add ( )nd  as well in a way that the limit does not 

change.  

Theorem 3.2. Let .lim,lim nn aMam ==  If ,,, R∈< MmMm  

then we can create a rearrangement ( )ne  such that n
ei

n
i

n
∑ =

∞→
1lim  does not 

exist. 

Proof. Let us devide H into three distinct sequences as in the proof of 

Theorem 3.1 (let us use the same notations). Let ,3
mMmp −+=  

.3
mMMq −−=  
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Now we define ( ).ne  Let the first element be .1d  Then take elements 

from ( )nb  such that ( ) .,,, 111 pbbd n <…A  Next element will be .2d  Then 

take elements from ( )nc  such that ( ,,,,,,, 1211 1 …… cdbbd nA  ) .2 qcn >  

Next element is .3d  Then take elements from ( )nb  such that 

( ) ,,,,,,,,,,,, 3121 131211 pbbdccdbbd nnnn <+ ………A  

and so on. Obviously we exhaust all elements from ( )na  and n
ei

n
i∑ =1  will 

not converge. 

4. On Unbounded Sequences 

Lemma 4.1. Let ( )nc  be an increasing sequence such that ,+∞→nc  

.0>nc  Let ( )nc′  be any of its rearrangements. Then 

.limlim 1

1

1

1
i

n

i

n
n

i

n

i

n
n

c

c

c

c

′

′
≤

∑∑
−

=

∞→−

=

∞→
 (6) 

Proof. Take a subsequence ( )
knc  of ( )nc  such that 

.limlim 1

1

1

1
i

n

i

n
n

i

n

i

n

c

c

c

c

∑∑
−

=

∞→−

=

∞→
=

k

k
k

 

We can assume that k∀  if ,knm <  then 
knm cc <  because if there is 

knm <  such that 
knm cc =  then 

,1

1

1

1
i

m

i

m

i

n

i

n

c

c

c

c

∑∑
−

=

−

=

<
k

k  

hence put mc  into the subsequence instead of .knc  
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Now find 
knc  in ( ),nc′  say .kk mn cc ′=  Let 

{ }.,:min kkk mn ccmnnl ′≥′≤∈= N  

Clearly if kln <  then .
kk nmn ccc =′<′  This gives that 

,1

1

1

1
i

l

i

l

i

n

i

n

c

c

c

c

′

′
≤

∑∑
−

=

−

=

k

k

k

k  

because 
kkk lmn ccc ′≤′=  and { } { }11:11: −≤≤⊂−≤≤′ kk niclic ii  

since { }11: −≤≤ knici  contains all elements that are strictly smaller 

than .knc  That yields (6).  

Corollary 4.2. Let ( )nc  be a sequence such that 0, >+∞→ nn cc  and 

.01

1

→

∑
−

=
i

n

i

n

c

c  

If we rearrange it to an increasing sequence ( ),nc′  then 

.01

1

→

′

′

∑
−

=
i

n

i

n

c

c   

Theorem 4.3. Let ( ) ( ) ( ),nnn cba =  where .,0 +∞→≡ nn cb  If 

,01

1

→

∑
−

=
i

n

i

n

c

c  

then 1 is accessible in average by rearrangement of ( ).na  
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Proof. We can assume that nc  is increasing (by 4.2) and .1>nc    

Then let ,nm cd n =  where ( )nm  is a strictly increasing sequence 

determined by the followings: 0=kd  if nmn ≠∀ k  and { ,0: =ii dd  

}   .1 nccmi nn −++=< "  We show that .1A→−ld  Obviously 

( ) ,1,,

1

1
1 →












=

∑

∑

=

=

i

n

i

i

n

i
m

c

c
dd n…A  

( ) .

1

,,

1

1

1
11

−











=

∑

∑

=

−

=
−

i

n

i

i

n

i
m

c

c
dd n…A  

With evident estimation 

.

21
1

1

1

1

1

1

1
1

1

1

1

−+











≤

−











≤

+











∑

∑

∑

∑

∑

∑
−

=

−

=

=

−

=
−

=

−

=

ni

n

i

i

n

i

i

n

i

i

n

i

ni

n

i

i

n

i

cc

c

c

c

cc

c
 

If we take the reciprocal and apply the condition then we get that  
( ) .1,,lim 11 =−∞→ nmn

dd …A  To finish to proof we have to remark that if  

,11 −<<− nn mlm  then 

( ) ( ) ( ).,,,,,, 11111 −− >> nn mlm dddddd ……… AAA   
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Theorem 4.4. Let ( ) ( ) ( ),nnn cba =  where +∞→≡ nn cb ,0  and ( )nc  

is increasing. If 1 is accessible in average by rearrangement of ( ),na  then 

.01

1

→

∑
−

=
i

n

i

n

c

c  

Proof. Let ( )nd  be a rearrangement such that .1A→−nd  This 

rearrangement defines a rearrangement of ( ),nc  namely take the 

elements from ( )nc  exactly in the same order as they come in ( ).nd  Let us 

denote that rearranged sequence with ( )nc′  and .nmn dc =′  

Let .0>  Then there is N∈N  such that Nm ≥  implies that 

.11 1  +<<−
∑
=
m

di

m

i  

Let n be chosen such that .1 Nmn >−  Let .1−= nmm  We know that 

i
n

i
i

m

i
cd

n
′= ∑∑

−

==

− 1

11

1
 which gives that ,11  +<<− m

sn  where .
1

1
i

n

i
n cs ′= ∑

−

=
 

Suppose that in ( )nd  there are nk  zeros between 1−′nc  and .nc′  It gives 

that 

,11  +<
+

<−
n

n
m

s
k

 (7) 

.111  +<
++
′+

<−
n

nn
m

cs
k

 (8) 

From (8) we get that 

.1
1

1
1  +<

+
+

′
+

<−

nn
n

n
n

ss
m

s
c

k
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By multiplying with the denominator and using (7) we get that 

( ) ( ) 





 +

+
+<

′
+<






 +

+
−<−+

+
−

nn
n

n
n

nn
n

n ss
m

s
c

ss
m

s
111111

1
1 kk



  

 ,1
1
1

ns



 ++

−
+<  

and clearly both sides tend to 1 when .0→  Which finally gives that 

.0→
′

n
n

s
c  Now 4.2 yields the statement.  

Theorem 4.5. Let ( ) ( ) ( ),nnn cba =  where .,0 +∞→≡ nn cb  If 

( ),1 naAAR∈  then ( ) [ ].,0 ∞+=naAAR  

Proof. We have to verify that if ,+∈ Rl  then ( ).naAARl ∈  

Let ( )nd  be a rearrangement such that .1A→−nd  

First we show that if ,N∈l  then ( ).naAARl ∈  

Let nk  denotes the number of zeros in the first n terms of ( ).nd  We 

state that there is N∈N  such that Nn >  implies that ( ) .11 nln −>k  

Assume the contrary: NnN >∃∀  such that ( )nln
11 −≤k  which gives 

that there are at least  nln 1=′  elements ( )nzz ′,,say 1 …  that are non 

zero. Then 

.1 1111
n

z

ln

z

n
n

n

z

n

d i

n

i
i

n

i
i

n

i
i

n

i
′

≥
′

′
==

∑∑∑∑
′

=

′

=

′

==  

But the average of the non zero elements tends to infinite that gives a 
contradiction. 
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Now we construct a new rearrangement ( )nd′  of ( ).nd  Till index N 

leave out the first ( )  Nl
11 −  many zeros. It can be done by the previous 

statement. Then we go on by recursion. Suppose we are done for Nn >  

and already left out ( )  nl
11 −  many zeros. Now we are dealing with 

.1+n  If ( ) ( ) ( ) 11111 +−=− nlnl  then we do nothing. Otherwise 

leave out 1 more zeros. Again the previous statement guarantees that it is 
possible. 

Let show that .ldn
A→−′  Let ( ) .11  NlNn −−>  Set ( −−= 1nnk  

) nl
1  that is the number of remainder elements after managing .nd  

Observe that .
11

i
n

i
i

i
dd

n

∑∑
==

=′
k

 By ( ) ( ) ,11111 +−−≤≤−− nlnnln nk  we 

get that 

( ) ( ) ( )
,11111111

1
111

1

l

n

d

nln

dd

nln

d

nl

n

d i

n

ii

n

i
n

i
i

i

n

i

i

n

i
n ∑∑∑∑∑

=
===

=

=
−−

≤

′

≤
+−−

=
+ k

k

 

and both sides tend to l which proves the claim. 

Now we show that if lll <′<∈ 0,N  and ( ) ,naAARl ∈  then Al ∈′  

( ).naAR  Let ( )nd  be a rearrangement such that .ldn
A→−  Let .1−

′
= l

lL  

Now let us put  L2  many zeros between 1d  and ( )N∈k2d  and put 

(  L⋅k -previously added number of zeros) many zeros between 1−kd  and 

( ).N∈kkd  Let us denote this new sequence by ( ).kd′  Let us denote 
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.kk ddn =′  Observe that ( ) ( ) ( )1111 1,,,,,, −+
′′≥′′≥′′
kk nnn dddddd ……… AAA  

if .1+<< kk nnn  Clearly ( )
 

.,, 1
1 L

d
dd

i
i

n ⋅+
=′′

∑
=
kk

k

k
…A  By obvious 

estimation 

 
.1

1
1

11111
k

k
LkkLkkkkk

kkkkk

i
i

i
i

i
i

i
i

i
i

d

l
l

dd

L

dd

l
l ∑∑∑∑∑

=====

−
′

=
−⋅+

≤
⋅+

≤
⋅+

=
′  

Let us estimate ( ) ( ) 
.1,, 1

11 L

d
dd

i
i

n ⋅++
=′′

∑
=

− kk

k

k
…A  

( )  11
1 1111

−+⋅+
≤

⋅++
≤

+⋅+
=

−
′

∑∑∑∑
====

LL

d

L

d

LL

dd

L
l
l

i
i

i
i

i
i

i
i

kkkkkkk
k

kkkk

 

.1
1 1

k
k

k

i
i

d

L
l
l

∑
=

−−
′

=  

Hence both ( ) ldd n ′→′′
k

,,1 …A  and ( ) ldd n ′→′′ −11 ,,
k

…A  which give 

that ( ) .,,1 ldd n ′→′′ …A   

Theorem 4.6. Let ( ) ( ) ( ),nnn cba =  where .,0 +∞→→ nn cb  If 

( ),1 naAAR∈  then ( ) [ ].,0 ∞+=naAAR  

Proof. We have to verify that if ,+∈ Rl  then ( ).naAARl ∈  
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Let ( )nd  be the rearranged sequence whose average tends to 1. Let nk  

denote the number of elements from ( )nb  among the first n terms of ( ).nd  

Then 

.111
n

cb

nn

d j

n

j

n

l

n

j

n

i
jn

j

n

j
∑∑∑
−

=== +=

kk

k
k  

Clearly n
nk  is bounded, 01 →

∑
=

n

i
j

j

n
b

k

k

 therefore .11 →
∑
−

=

n

c j

n
l

n

j

k

 Let us 

replace all nb  with 0 in ( )nd  and denote the new sequence by ( ).nd′  Then 

n

c

n

d j

n

l

n

j
j

n

j
∑∑
−

== =

′
k

11  

hence ( ) ,1,,1 →′′ ndd …A  i.e., ( ).1 ndAAR ′∈  

By 4.5 ( )nd′  can be rearranged to ( )nd ′′  such that ( ) .,,1 ldd n →′′′′ …A  

Let nk ′  denote the number of zeros among the first n terms of ( ).nd ′′  Let us 

replace all zeros with distinct elements from ( )nb  in ( )nd ′′  and denote the 

new sequence by ( ).nd ′′′  Then 

,11 ln

c

n

d j

n

m

n

j
j

n

j →=

′′ ∑∑
′−

==

k

 

.111
n

cb

nn

d j

n

j

n

m

n

j

n

n
jn

j

n

j
∑∑∑

′−

=

′

== +
′

′
=

′′′
kk

k
k  

But the first term 01 →
′

′
∑
′

=

n

n
jn

j

n
b

n k
k

k

 hence ( ) .,,1 ldd n →′′′′′′ …A   
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Theorem 4.7. Let ( ) ( ) ( ),nnn cba =  where ., +∞→→ nn cab  If there 

is R∈b  such that ( ),, naAARbba ∈<  then ( ) [ ]., ∞+= aAAR na  

Proof. Let .al ≥  Let ( ) ( ) ( ).,, nnn
n

n
n

n cbaab
accab

abb ′′=′
−
−

=′
−
−

=′  

Clearly +∞→′→′ nn cb ,0  hence by 4.6 ( )na′  can be rearranged to ( )nd  

such that ( ) .,,1 ab
aldd n −

−→…A  Let ( ) .adabd nn +−=′  Then clearly 

( ) ldd n →′′ ,,1 …A  and ( )nd′  is a rearrangement of ( ).na   

Proposition 4.8. Let ( ) ( ) ( ),, nnn cba =∈ Nk  where =≡ nn cb ,0  .kn  

Then ( ) [ ].,0 ∞+=naAAR  

Proof. By 4.6 and 4.3 it is enough to show that 

.01

1

→

∑
−

=
i

n

i

n

c

c  

It is known that ( ),1
1

1
−=∑

−

=
npi

n

i

k  where ( )xp  is a polynomial of degree 

,1+k  i.e., ( ) ( ) ( ),111 1
1 −+−=− +
+ nqndnp k
k  where ( )xq  is a polynomial 

of degree k  and .01 >+kd  Hence 

( ) ( ) ( ) ( ) ( ) .0111

1
1 1

1
1

1

1

→
+−⋅−

=
+−

=

+
+

+
−

=
∑ k

k
k

k
k

k

n
xq

nndxqnd
n

c

c

i

n

i

n  

 

Proposition 4.9. Let ( ) ( ) ( ),,1 nnn cbad =>  where .,0 n
nn dcb =≡  

Then ( ) { }.,0 ∞+=naAAR  

 

 



ATTILA LOSONCZI 24

Proof. By 4.7 and 4.4 it is enough to show that ( ),1 naAAR∈/  i.e., 

.01

1

→/

∑
−

=
i

n

i

n

c

c  

But 

( ) .0111

1
1
1

1

1

≠−→
−

−=
−

−=

∑
−

=

d

d

d
d

dd

d

d

n
n

n

i
n

i

n
  

Example 4.10. Let ( ) ( ) ( ),nnn cba =  where +∞→≡ nn cb ,0  and 

( ).1 naAAR∈  Let ( )nc′  be given such that ( ) ( ) ( ).,, nnnnnn cbaccc ′=′+∞→′<′  

These conditions do not imply that ( ).1 naAAR ′∈  

Proof. Let .2ncn =  By 4.8, ( ).1 naAAR∈  

We define ( )nc′  by recursion. Let .11 =′c  If ( )nc′  is defined till n then 

let 

( )













′

+≥′′

=′

∑

∑

=

=
+

otherwise.,

,1if,

1

2

1
1

i

n

i

i

n

i
n

n

c

ncc
c  

Properties of ( ):nc′  

(1) ( )nc′  is increasing. 

(2) ( ).1><′ ncc nn  It can be seen by induction starting from ,2=n  

.12 =′c  
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(3) .+∞→′nc  Assume the contrary. Then there is N∈N  such that 

Nn ≥  implies that .nN cc ′=′  Then for such n we get that Ni
n

i
cnc ′⋅≤′∑

=1
 

using the monotonicity of ( )nc′  too. But there is an n such that <′⋅ Ncn  

( )21+n  which is a contradiction. 

(4) ( ).1 naAAR ′∈/  To show that it is enough to prove that 

01

1

→/

′

′

∑
−

=
i

n

i

n

c

c  

by 4.4. There are infinitely many n where .1−′≠′ nn cc  For such n 

,11

1

1

1
1

1

=

′

′

=

′

′

∑

∑

∑
−

=

−

=
−

=
i

n

i

i

n

i

i

n

i

n

c

c

c

c  

therefore 

.1lim 1

1

≥

′

′

∑
−

=
i

n

i

n

c

c   

Proposition 4.11. Let ( ) ( ) ( ),nnn cba =  where .,0 ncb nn =≡  Let ( )nc′  

be given such that ( ) ( ) ( ).,, nnnnnn cbaccc ′=′+∞→′<′  Then ( ).1 naAAR ′∈   

Proof. We can assume that .0>′nc  
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Let .0>  Choose N∈k  such that .2
1 <
k

 Then there is N∈N  such 

that Nn >  implies that .k≥′nc  Then 

( ) ( )
<

−−
=

−−
=≤

′

′

∑∑
−

+=

−

=

kk
k n

NNn
nn

c

c
n

Ni
i

n

i

n
11

1
11

1

1

1

 

if n is big enough which gives the statement by 4.3.  

Now we give some equivalent forms of the condition in 4.3. 

Proposition 4.12. Let ( )nc  be a sequence such that .0>∀ ncn  Then 

the followings hold: 

.00 1

1

1

1

1

1

+∞→⇔+∞→⇔→⇔→
∑∑

∑∑
=

−

=

=

−

=

n

i

n

i
n

i

n

i

i

n

i

n

i

n

i

n
c

c

c

c

c

c

c

c   

Proposition 4.13. Let ++ → RR:f  be an increasing function that is 

integrable over each finite interval and .lim +∞=
∞+

f  Let ( )nc  be defined by 

( ).nfcn =  Then 

( ) .00

1

1

1

→⇔→

∫∑
−

=
f

nf

c

c
n

i

n

i

n  

Proof. By obvious estimation we get that 

( )

( )

( )

( )

( ) ( )

( )

,1

1121
if

nf

f

nf

if

nf

if

nf
n

i

nn

i

n

i
∑∫∑∑
−

===

≤≤≤  

which gives the statement.  
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Proposition 4.14. Let ++ → RR:f  be an increasing function that 

has a primitive function F and .lim +∞=
∞+

f  Let ( )nc  be defined by ( ).nfcn =  

Then 

( )
( ) .001

1

→⇔→

∑
−

=

nF
nf

c

c

i

n

i

n   
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