
Research and Communications in Mathematics and Mathematical Sciences 
Vol. 10, Issue 2, 2018, Pages 123-140 
ISSN 2319-6939 
Published Online on November 19, 2018 
 2018 Jyoti Academic Press 
http://jyotiacademicpress.org  

2010 Mathematics Subject Classification: Primary 11N35; Secondary 11A07, 11Y16, 11B37, 
11B50, 11A51, 11B39. 
Keywords and phrases: Fibonacci composites, recursive sieve method, order topology, limit 
of sequence of sets. 
Received October 9, 2018 

THERE ARE INFINITELY MANY FIBONACCI 
COMPOSITES WITH PRIME SUBSCRIPTS 

FENGSUI LIU 

Department of Mathematics 
Nan Chang University 
Nan Chang 
P. R. China 
e-mail: fensliu@126.com 

Abstract 

From the entire set of natural numbers successively deleting some residue 
classes mod a prime, we invent a recursive sieve method. This is a modulo 
algorithm on natural numbers and their sets. The recursively sifting process 
mechanically yields a sequence of sets, which converges to the set of the certain 
subscripts of Fibonacci composites. The corresponding cardinal sequence is 
strictly increasing. Then the well known theory, set valued analysis, allows us 
to prove that the set of the certain subscripts is an infinite set, namely, the set 
of Fibonacci composites with prime subscripts is infinite. 
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1. Introduction 

Fibonacci number xF  is defined by the recursive formula 

,11 =F  

,12 =F  

.11 −+ += xxx FFF  

From the aspect of primality, like the Mersenne numbers, in the 
Fibonacci sequence there is a conjecture and an open problem. 

There are infinitely many Fibonacci primes. 

There are infinitely many Fibonacci composites with prime subscripts. 

It is well known that the Fibonacci sequence is a divisibility 
sequence, so we consider Fibonacci composites with prime subscripts. 

Today in analytic number theory, by the normal sieve method, like 
the twin prime conjecture, it is still extremely difficult if not hopeless to 
solve the above open problem. 

But mathematical research often off the beaten path. 

In this paper, we solve this open problem by a recursive sieve 
method. 

In 1998, Drobot showed a theorem: if 7>p  is a prime such that 

4,2≡p  mod 5, and 12 −p  is also prime, then pFp 12 −  [6], [9]. 

For example: 

p = 19, 37, 79, 97, 139, 157, 199, 229, 307, 337, 367, 379, 439, 499, 547, 
577, …. 

When p and 12 +p  both are prime, the prime p is said to be a Sophie 

Germain prime. 
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When p and 12 −p  both are prime, the prime p is said to be another 

Sophie Germain prime. 

If we prove that there are infinitely many another Sophie Germain 
primes of the form ,45,25 ++ kk  then we prove that there are infinitely 

many Fibonacci composites with prime subscripts .pF  

In 2011, author used the recursive sieve method, which reveals some 
exotic structures for various sets of primes, to prove the Sophie Germain 
prime conjecture [3]. 

Recently, author solved a similar open problem: there are infinitely 
many Mersenne composites with prime exponents [5]. 

Here we extend the above structural result to solve the open problem 
about Fibonacci composites. 

In order to be self-contained we repeat some contents in the paper     
[3, 4, 5]. 

2. A Recursive Sieve Method for Fibonacci Composites 

For expressing a recursive sieve method by well formed formulas, we 
extend both basic operations addition and multiplication ×+,  into finite 

sets of natural numbers. 

We use small letters txa ,,  to denote natural numbers and capital 

letters TXA ,,  to denote sets of natural numbers except .xF  

For arbitrary both finite sets of natural numbers A, B, we write 

,,,,,,, 2121 nini aaaaaaaaA <<<<<= ""……  

.,,,,,, 2121 mjmj bbbbbbbbB <<<<<= ""……  

We define 

,,,,,,, 11211 mnmnji bababababaBA +++++=+ −……  

.,,,,,, 11211 mnmnji bababababaAB −= ……  
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Example. 

,29,27,19,17,9,720,10,09,7 =+  

.20,10,02,1,010 =  

For the empty set ,0/  we define 00 /=+/ B  and .00 /=/B  

We write BA \  for the set difference of A and B. 

Let 

aaaaaAX ni mod,,,,, 21 ……=≡  

be several residue classes mod a. 

If ( ) ,1,gcd =ba  we define the solution of the system of congruences 

,mod,,,,, 21 aaaaaAX ni ……=≡  

,mod,,,,, 21 bbbbbBX mj ……=≡  

to be 

,mod,,,,,, 12111 abdddddDX nmmnij −=≡ ……  

where ijdx ≡  mod ab is the solution of the system of congruences 

,mod aax i≡  

.mod bbx j≡  

The solution DX ≡  mod ab is computable and unique by the Chinese 
remainder theorem. 

For example, 30mod29,27,17,9=≡ DX  is the solution of the 

system of congruences 

,10mod9,7≡X  

.3mod2,0≡X  
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The reader, who is familiar with model theory, know that we found a 
model and formal system of the second order arithmetic [4]. Here we do 
not discuss the model and formal system. 

From the entire set of natural numbers successively deleting some 
residue classes modulo a prime, and leave residue classes, we invented a 
recursive sieve method or modulo algorithm on natural numbers and 
their sets. 

Now we introduce the recursive sieve method for another Sophie 
Germain primes of the form .45,25 ++ kk  

Let ip  be i-th prime, .20 =p  For every prime ,ip  let iB  mod ip  be 

the solution of the congruence 

( ) .mod012 ipxx ≡−  

Example. 

,2mod00 ≡B  

,3mod2,01 ≡B  

,5mod3,02 ≡B  

,7mod4,03 ≡B  

,11mod6,04 ≡B  

( ) .mod21,0 iii ppB +≡  

Let 

,50 =m  

,101 =m  

,302 =m  
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for all ,2>i  let 

.
0

1 j

i

i pm ∏=+  

From the residue class 5mod4,2≡x  we successively delete the 

residue classes ,mod,,mod 11 ii pBpB …  leave the residue class 1+iT  

mod .1+im  Then the left residue class 1+iT  mod 1+im  is the set of all 

numbers x of the form ,45,25 ++ kk  such that ( )12 −xx  does not 

contain any prime ij pp ≤  as a factor ( )( ) .1,12 1 =− +imxx  

Let iDX ≡  mod 1+im  be the solution of the system of congruences 

,mod ii mTX ≡  

.mod ii pBX ≡  

Let 1+iT  be the set of least nonnegative representatives of the left 

residue class .mod 11 ++ ii mT  

We obtain a recursive formula for the set ,1+iT  which describe the 

recursive sieve method or modulo algorithm for another Sophie Germain 
primes of the form .45,25 ++ kk  

,4,20 =T  

( ) .\1,,2,1,01 iiiii DpmTT −+=+ …   (2.1) 

The number of elements of the set 1+iT  is 

( ).22
3

1 −= ∏+ j

i

i pT   (2.2) 

We exhibit the first few terms of formula (2.1) and briefly prove that 
the algorithm is valid by mathematical induction. 
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The residue class 5mod4,20 =T  is the set of all numbers x of the 

form .45,25 ++ kk  Now the set 5mod4,2≡X  is equivalent to the 

set 

( ,10mod9,7,4,21,054,2 =+≡X  

from them we delete the solution of the system of congruences 
,10mod4,21 =D  and leave 

( ) .9,74,2\1,054,21 =+=T  

The residue class 1T  mod 10 is the set of all numbers x of the form 

45,25 ++ kk  such that ( )( ) .110,12 =−xx  Now the set 10mod9,7≡X   

is equivalent to the set 

( ) ,30mod29,27,19,17,9,72,1,0109,7 =+≡X  

from them we delete the solution of the system of congruences 

,30mod29,27,17,92 =D  

and leave 

( ) .19,729,27,17,9\2,1,0109,72 =+=T  

The residue class 30mod2T  is the set of all numbers x of the form 

45,25 ++ kk  such that ( )( ) .130,12 =−xx  

We delete nothing by the prime 5 from 2T  mod 30. So that let  

.23 TT =  The set 3T  mod 30 is equivalent to the set 

.210mod199,187,169,157,139,127,109,97,79,67,49,37,19,7≡X  

From them we delete 

,210mod109,67,49,73 ≡D  
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and leave 

.210mod199,187,169,157,127,139,97,79,37,194 ≡T  

The residue class 210mod4T  is the set of all numbers x of the form 

45,25 ++ kk  such that ( )( ) .1210,12 =−xx  And so on. 

Suppose that the residue class iT  mod ,im  for 2>i  is the set of all 

numbers x of the form 45,25 ++ kk  such that ( )( ) .1,12 =− imxx  We 

delete the residue class iB  mod ip  from them. In other words, we delete 

the solution 1mod +≡ ii mDX  of the system of congruences 

,mod ii mTX ≡  

.mod ii pBX ≡  

Now the residue class iT  mod im  is equivalent to the residue class 

( ) .mod1,,2,1,0 1+−+ iiii mpmT …  

From them we delete the solution ,mod 1+ii mD  which is the set of all 

numbers x of the form 45,25 ++ kk  such that ( ) .mod012 ipxx ≡−  It 

follows that the left residue class 11 mod ++ ii mT  is the set of all numbers 

x of the form ,45,25 ++ kk  and ( )( ) .1,12 1 =− +imxx  Our algorithm is 

valid. It is easy to compute ( )221 −=+ iii pTT  for 2>i  by the above 

algorithm. 

We may rigorously prove formulas (2.1) and (2.2) by mathematical 
induction, the proof is left to the reader. 

In the next section we refine formula (2.1) and solve the open 
problem. 
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3. A Theorem About Fibonacci Composites 

We call another Sophie Germain primes 7>p  of the form 

45,25 ++ kk  S-primes. 

Let eT  be the set of all S-primes 

{ }.prime-ais: SxxTe =  

We shall determine an exotic structure for the set eT  based on the 

limit of a sequence of sets ( ),iT ′  

.lim,lim 0ℵ=′=′ iei TTT  

Then we prove that the cardinality of the set eT  is infinite by well known 

theory of those structures, 

.0ℵ=eT  

Based on the recursive algorithm, formula (2.1), we successively 
delete all numbers x of the form 45,25 ++ kk  such that ( )12 −xx  

contains the least prime factor .ip  We delete non S-primes or non           

S-primes together with a S-prime. The sifting condition or ‘sieve’ is 

( ) .mod012 xppxx ii ≤≡−   

For 7>ip  we modify the sifting condition to be 

( ) .mod012 xppxx ii <≡−    (3.1) 

According to this new sifting condition or ‘sieve’, we successively 
delete the set iC  of all numbers x, such that either x or 12 −x  is 

composite with the least prime factor .ip  

For ,7≤ip  

( ){ }.mod012mod: xppxxmTXxxC iiiii ≤≡−≡∈=   
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For ,7>ip  

( ){ },mod012mod: xppxxmTXxxC iiiii <≡−≡∈=   

but remain the S-prime x if there is a 7>x  such that xpi =  in 

.mod ii mT  

Note: If ,7,3=p  then 13,512 =−p  are Fibonacci primes ,, 75 FF  

both are deleted. 

We delete all sets jC  with ij <≤0  from the set 0N  of all natural 

numbers x of the form ,45,25 ++ kk  and leave the set 

.\
1

0
0 j

i

i CNL ∪
−

=  

The set of all S-primes is 

.\
0

0 ie CNT ∪
∞

=  

The recursive sieve (3.1) is a perfect tool, with this tool we delete all 
non S-primes and leave all S-primes. So that we only need to determine 
the number of all S-primes .eT  If we do so successfully, then the parity 

obstruction, a ghost in house of primes, has been automatically 
evaporated [8]. 

With the recursive sieve (3.1), each non S-prime is deleted exactly 
once, there is need neither the inclusion-exclusion principle nor the 
estimation of error terms, which cause all the difficulty in normal sieve 
theory. 

Let iA  be the set of all S-primes x less than .ip  

{ }.prime-is: SxpxxA ii <=  
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From the recursive formula (2.1), we know that the left set iL  is the 

union of the set iA  of S-primes and the residue class iT  mod ,im  

.mod iiii mTAL ∪=   (3.2) 

Now we intercept the initial segment iT ′  from the left set ,iL  which 

is the union of the set iA  of S-primes and the set iT  of least nonnegative 

representatives. Then we obtain a new recursive formula 

.iii TAT ∪=′   (3.3) 

Except remaining all S-primes x less than ip  in the initial segment 

,iT ′  both sets iT ′  and iT  are the same. 

Formula (3.3) expresses the recursively sifting process according to 
the sifting condition (3.1), and provides a recursive definition of the 
initial segment .iT ′  The initial segment iT ′  is a well chosen notation. We 

shall consider some properties of the initial segment ,iT ′  and reveal some 

structures of the sequence of the initial segments ( )iT ′  to determine the 

set of all S-primes and its cardinality. 

Let iA  be the number of S-primes less than .ip  Then the number of 

elements of the initial segment iT ′  is 

.iii TAT +=′   (3.4) 

From formula (2.2), we deduce that the cardinal sequence ( )iT ′  is 

strictly increasing for all 2>i  

.1+′<′ ii TT   (3.5) 

Based on order topology obviously we have 

.lim 0ℵ=′iT   (3.6) 



FENGSUI LIU 134

Intuitively we see that the initial segment iT ′  approaches the set of 

all S-primes ,eT  and the corresponding cardinality iT ′  approaches 

infinity as .∞→i  Thus the set of all S-primes is limit computable and is 
an infinite set. 

Next we give a formal proof based on set valued analysis. 

3.1. A formal proof. Let iA′  be the subset of all S-primes in the initial 

segment ,iT ′  

{ }.prime-is: SxTxA ii ′∈=′   (3.7) 

We consider the structures of both sequences of sets ( )iT ′  and ( )iA′  to 

solve the open problem. 

Lemma 3.1. The sequence of the initial segments ( )iT ′  and the 

sequence of its subsets ( )iA′  of S-primes both converge to the set of all       

S-primes .eT  

First from set theory, next from order topology we prove this lemma. 

Proof. For the convenience of the reader, we quote a definition of the 
set theoretic limit of a sequence of sets [2]. 

Let ( )nF  be a sequence of sets, we define nn F∞=suplim  and 

nn F∞=inflim  as follows: 

,suplim
00

in
in

n
n

FF +

∞

=

∞

=∞=
= ∪∩  

.inflim
00

in
in

nn
FF +

∞

=

∞

=
∞=

= ∩∪  

It is easy to check that nn F∞=suplim  is the set of those elements x, 

which belongs to nF  for infinitely many n. Analogously, x belongs to 
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nn F∞=inflim  if and only if it belongs to nF  for almost all n, that is it 

belongs to all but a finite number of the .nF  

If 

,inflimsuplim nnn
n

FF
∞=∞=

=  

we say that the sequence of sets ( )nF  converges to the limit 

.inflimsuplimlim nnn
n

n FFF
∞=∞=

==  

We know that the sequence of left sets ( )iL  is descending 

.21 """ ⊃⊃⊃⊃ iLLL  

According to the definition of the set theoretic limit of a sequence of 
sets, we obtain that the sequence of left sets ( )iL  converges to the set eT  

.lim eii TLL ==∩   (3.8) 

The sequence of subsets ( )iA′  of S-primes is ascending 

,21 """ ⊂′⊂⊂′⊂′ iAAA  

we obtain that the sequence of subsets ( )iA′  converges to the set ,eT  

.lim eii TAA =′=′ ∪   (3.9) 

The initial segment iT ′  is located between two sets iA′  and iL  

.iii LTA ⊂′⊂′  

Thus the sequence of the initial segments ( )iT ′  converges to the set eT  

.lim ei TT =′   (3.10) 
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According to set theory, we have proved that both sequences of sets 
( )iT ′  and ( )iA′  converge to the set of all S-primes eT  

.limlim eii TAT =′=′   (3.11) 

Next we prove that according to order topology both sequences of sets 
( )iT ′  and ( )iA′  converge to the set of all S-primes .eT  

We quote a definition of the order topology [1]. 

Let X be a set with a linear order relation; assume X has more one 
element. Let B  be the collection of all sets of the following types: 

(1) All open intervals ( )ba,  in X. 

(2) All intervals of the form [ ),,0 ba  where 0a  is the smallest element 

(if any) in X. 

(3) All intervals of the form [ ),, 0ba  where 0b  is the largest element 

(if any) in X. 

The collection B  is a bases of a topology on X, which is called the 
order topology. 

According to the definition there is no order topology on the empty set 
or sets with a single element. 

The recursively sifting process, formula (3.3), produces both 
sequences of sets together with the set theoretic limit point .eT  

,;,,,,: 21 ei TTTT ……… ′′′1X  

.;,,,,: 21 ei TAAA ……… ′′′2X  

We further consider the structures of sets 1X  and 2X  using the 

recursively sifting process (3.3) as an order relation 

( ),, eiji TTiTTji <′∀′<′→<  

( )., eiji TAiAAji <′∀′<′→<  
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The set 1X  has no repeated term. It is a well ordered set with the 

order type 1+ω  using the recursively sifting process (3.3) as an order 
relation. Thus the set 1X  may be endowed an order topology. 

The set 2X  may have some repeated terms. We have computed out 

the first few S-primes x. The set 2X  contains more than one element, 

may be endowed an order topology using the recursively sifting process 
(3.3) as an order relation. 

Obviously, for every neighbourhood ( ]eTc,  of eT  there is a natural 

number ,0i  for all ,0ii >  we have ( ]ei TcT ,∈′  and ( ],, ei TcA ∈′  thus 

both sequences of sets ( )iT ′  and ( )iA′  converge to the set of all S-primes .eT  

,lim ei TA =′  

.lim ei TT =′  

According to the order topology, we have again proved that both 
sequences of sets ( )iT ′  and ( )iA′  converge to the set of all S-primes .eT  

We also have 

.limlim ii AT ′=′   (3.12) 

The formula iT ′  is a recursive asymptotic formula for the set of all           

S-primes .eT   

In general, if ,0/=eT  the set { }0/=2X  only has a single element, 

which has no order topology. In this case formula (3.12) is not valid and 
our method of proof may be useless [3]. 

Lemma 3.1 reveals an order topological structure and a set theoretic 
structure for the set of all S-primes on the recursive sequences of sets. By 
the well known theory of those structures, we easily prove that the 
cardinality of the set of all S-primes is infinite. 
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Theorem 3.2. The set of all S-primes is an infinite set. 

We give two proofs. 

Proof. We consider the cardinalities iT ′  and iA′  of sets on two sides 

of the equality (3.12), and the order topological limits of cardinal 
sequences ( )iT ′  and ( )iA′  as the sets iT ′  and iA′  both tend to .eT  

From general topology we know, if the limits of both cardinal 
sequences ( )iT ′  and ( )iA′  on two sides of the equality (3.12) exist, then 

both limits are equal; if lim iA′  does not exist, then the condition for the 

existence of the limit lim iT ′  is not sufficient [7]. 

For S-primes, the set eT  is nonempty ,0/≠eT  the formula (3,12) is 

valid, obviously the order topological limits lim iA′  and lim iT ′  on two 

sides of the equality (3.12) exist, thus both limits are equal 

.limlim ii TA ′=′  

From formula (3.6) lim ,0ℵ=′iT  we have 

.lim 0ℵ=′iA   (3.13) 

Usually, let ( )n2π  be the counting function, the number of S-primes 

less than or equal to n. Normal sieve theory is unable to provide non-
trivial lower bounds of ( )n2π  by the parity obstruction [8]. Let n be a 

natural number. Then the number sequence ( )im  is a subsequence of the 

number sequence (n), we have 

( ) ( ).limlim 22 imn π=π  

By formula (3.7), the iA′  is the set of all S-primes less than ,im  and 

the iA′  is the number of all S-primes less than ,im  thus ( ) .2 ii Am ′=π  

We have 

( ) .limlim 2 ii Am ′=π  
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From formula (3.13), we prove 

( ) .lim 02 ℵ=π n   (3.14) 

 

We directly prove that the number of all S-primes is infinite with the 
counting function. Next we give another proof by the continuity of the 
cardinal function. 

Proof. Let YX →:f  be the cardinal function ( ) TTf =  from the 

order topological space X to the order topological space Y 

,;,,,,: 21 ei TTTT ……… ′′′X  

.;,,,,: 021 ℵ′′′ ……… iTTTY  

It is easy to check that for every open set ) ( ) ([ ]01 ,,,,, ℵ′ cdcdT  

in Y the preimage [ ) ( ) ( ]eTcdcdT ,,,,,1′  is also an open set in X. So that 

the cardinal function T  is continuous at eT  with respect to the above 

order topology. 

Both order topological spaces are first countable, hence the cardinal 
function T  is sequentially continuous. By a usual topological theorem 

[1] (Theorem 21.3, p. 130), the cardinal function T  preserves limits 

.limlim ii TT ′=′   (3.15) 

Order topological spaces are Hausdorff spaces. In Hausdorff spaces, 
the limit point of the sequence of sets ( )iT ′  and the limit point of cardinal 

sequence ( )iT ′  are unique. 

We have proved Lemma 3.1, ,lim ei TT =′  and formula (3.6), 

.lim 0ℵ=′iT  Substitute, we obtain that the set of all S-primes is an 

infinite set, 

.0ℵ=eT   (3.16) 
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Without any estimation or statistical data, without the Riemann 
hypothesis, by the recursive algorithm, we well understand the recursive 
structure, set theoretic structure and order topological structure for the 
set of all S-primes on sequences of sets. We obtain a formal proof of the 
open problem in pure mathematics.   

By Drobot’s theorem we have solved the open problem about 
Fibonacci composites. 

Theorem 3.3. There are infinitely many Fibonacci composite 
numbers with prime subscripts. 
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