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Abstract 

We define a compact version of the Hilbert transform, which we then use to 
write explicit expressions for the partial sums and remainders of arbitrary 
Fourier series. The expression for the partial sums reproduces the known result 
in terms of Dirichlet integrals. The expression for the remainder is written in 
terms of a similar type of integral. Since the asymptotic limit of the remainder 
being zero is a necessary and sufficient condition for the convergence of the 
series, this same condition on the asymptotic behaviour of the corresponding 
integrals constitutes such a necessary and sufficient condition. 

1. Introduction 

In a previous paper [1] we introduced a certain complex-analytic 
structure within the unit disk of the complex plane, and showed that it is 
possible to represent within that structure essentially all integrable real 
functions defined in a compact interval. In a subsequent paper [2] we 
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showed that all the elements of the Fourier theory [3] of integrable real 
functions are contained within that complex-analytic structure. However, 
in that paper we did not discuss in any depth the question of the 
convergence of Fourier series. 

The fact that it is possible to recover the real functions from their 
Fourier coefficients almost everywhere, even when the corresponding 
Fourier series are divergent, as we showed in [1], led to a powerful and 
very general summation rule for all Fourier series, which was presented 
in [2]. This summation rule allows one to add up a regularized version of 
the Fourier series, in a meaningful way, and therefore allows one to 
simply circumvent the fact that the original Fourier series may be 
divergent. However, the complex-analytic structure actually does allow 
for a direct discussion of the convergence problem. 

In this paper we will present a more complete analysis of the 
convergence of Fourier series. In order to do this we will first introduce 
what we will name the compact Hilbert transform, which is a version of 
the Hilbert transform which is appropriate for functions defined on a 
compact interval. This will lead not only to the known explicit expression 
for the partial sums of the Fourier series in terms of Dirichlet integrals, 
but also to an explicit expression for the remainder of the Fourier series, 
in terms of a similar type of integral. 

For ease of reference, we include here a one-page synopsis of the 
complex-analytic structure introduced in [1]. It consists of certain 
elements within complex analysis [4], as well as of their main properties. 

Synopsis: The Complex-Analytic Structure 

An inner analytic function ( )zw  is simply a complex function which is 

analytic within the open unit disk. An inner analytic function that has 
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the additional property that ( ) 00 =w  is a proper inner analytic function. 

The angular derivative of an inner analytic function is defined by 

( ) ( ) .dz
zdwzzw ı=•   (1) 

By construction we have that ( ) 00 =•w  for all ( ).zw  The angular 

primitive of an inner analytic function is defined by 

( ) ( ) ( ) .0
0

1
z

wzwzdzw
z

′
−′′−= ∫•− ı  (2) 

By construction we have that ( ) ,001 =•−w  for all ( ).zw  In terms of a 

system of polar coordinates ( )θρ,  on the complex plane, these two 

analytic operations are equivalent to differentiation and integration with 
respect to ,θ  taken at constant .ρ  These two operations stay within the 

space of inner analytic functions, they also stay within the space of 
proper inner analytic functions, and they are the inverses of one another. 
Using these operations, and starting from any proper inner analytic 

function ( ),0 zw •  one constructs an infinite integral-differential chain of 

proper inner analytic functions, 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.,,,,,,,, 3210123 …… zwzwzwzwzwzwzw •••••−•−•−  (3) 

Two different such integral-differential chains cannot ever intersect each 
other. There is a single integral-differential chain of proper inner analytic 
functions which is a constant chain, namely the null chain, in which all 
members are the null function ( ) .0≡zw  
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A general scheme for the classification of all possible singularities of 
inner analytic functions is established. A singularity of an inner analytic 
function ( )zw  at a point 1z  on the unit circle is a soft singularity if the 

limit of ( )zw  to that point exists and is finite. Otherwise, it is a hard 

singularity. Angular integration takes soft singularities to other soft 
singularities, and angular differentiation takes hard singularities to 
other hard singularities. 

Gradations of softness and hardness are then established. A hard 
singularity that becomes a soft one by means of a single angular 
integration is a borderline hard singularity, with degree of hardness zero. 
The degree of softness of a soft singularity is the number of angular 
differentiations that result in a borderline hard singularity, and the 
degree of hardness of a hard singularity is the number of angular 
integrations that result in a borderline hard singularity. Singularities 
which are either soft or borderline hard are integrable ones. Hard 
singularities which are not borderline hard are non-integrable ones. 

Given an integrable real function ( )θf  on the unit circle, one can 

construct from it a unique corresponding inner analytic function ( ).zw  

The real function ( )θf  is recovered by means of the ( )−→ρ 1  limit of the 

real part of this inner analytic function. Singularities of real functions 
can be classified in a way which is analogous to the corresponding 
complex classification. Integrable real functions are typically associated 
with inner analytic functions that have singularities which are either soft 
or at most borderline hard. A more detailed review of real functions will 
be given in Section 2. This ends our synopsis. 
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Some of the material contained in this paper can be seen as a 
development, reorganization and extension of some of the material found, 
sometimes still in rather rudimentary form, in the papers [5-9]. 

2. Review of Real Functions 

When we discuss real functions in this paper, some properties will be 
globally assumed for these functions, just as was done in [1, 2, 10]. These 
are rather weak conditions to be imposed on these functions, that will be 
in force throughout this paper. It is to be understood, without any need 
for further comment, that these conditions are valid whenever real 
functions appear in the arguments. These weak conditions certainly hold 
for any integrable real functions that are obtained as restrictions of 
corresponding inner analytic functions to the unit circle. 

The most basic condition is that the real functions must be 
measurable in the sense of Lebesgue, with the usual Lebesgue measure 
[11, 12]. The second global condition we will impose is that the functions 
have no removable singularities. The third and last global condition is 
that the number of hard singularities on the unit circle be finite, and 
hence that they be all isolated from one another. There will be no 
limitation on the number of soft singularities. 

In addition to this we will assume, for the purposes of this particular 
paper, that all real functions are integrable on the unit circle and, just for 
the sake of clarity and simplicity, unless explicitly stated otherwise we 
will also assume that all real functions are zero-average real functions, 
meaning that their integrals over the unit circle are zero. Since this 
simply implies that the Fourier coefficients 0α  of the real functions are 

zero, without affecting any of the other coefficients in any way, this 
clearly has no impact on any arguments about the convergence of the 
Fourier series. 
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For the purposes of this paper it is important to review here, in some 
detail, the construction that results in the correspondence between 
integrable real functions on the unit circle and inner analytic functions 
on the open unit disk. In [1] we showed that, given any integrable real 
function ( ),θf  one can construct a corresponding inner analytic function 

( ),zw  from the real part of which ( )θf  can be recovered almost 

everywhere on the unit circle, through the use of the ( )−→ρ 1  limit, 

where ( )θρ,  are polar coordinates on the complex plane. In that 

construction we started by calculating the Fourier coefficients [3] kα  and 

kβ  of the real function, which is always possible given that the function 

is integrable, using the usual integrals defining these coefficients, 

( ),1
0 θθ

π
=α ∫

π

π−
fd  

( ) ( ),cos1 θθθ
π

=α ∫
π

π−
fd kk  

( ) ( ),sin1 θθθ
π

=β ∫
π

π−
fd kk  (4) 

for { }.,,3,2,1 ∞∈ …k  We then defined a set of complex Taylor 

coefficients kc  given by 

,2
1

00 α=c  

,kkk β−α= ıc  (5) 
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for { }.,,3,2,1 ∞∈ …k  Next we defined a complex variable z associated 

to ,θ  using the positive real variable ,ρ  by ( ).exp θρ= ız  Using all these 

elements we then constructed the complex power series 

( ) ,
0

k
k

k
zczS ∑

∞

=

=   (6) 

which we showed in [1] to be convergent to an inner analytic function 
( )zw  within the open unit disk. That inner analytic function may be 

written as 

( ) ( ) ( ).,, θρ+θρ= vuzw ı   (7) 

The complex power series in Equation (6) is therefore the Taylor series of 
( ) .zw  We also proved in [1] that one recovers the real function ( )θf  

almost everywhere on the unit circle from the real part ( )θρ,u  of ( ),zw  

by means of the ( )−→ρ 1  limit. The ( )−→ρ 1  limit of the imaginary part 

( )θρ,v  also exists almost everywhere and gives rise to a real function 

( )θg  which corresponds to ( ).θf  The pair of real functions obtained from 

the real and imaginary parts of one and the same inner analytic function 
are said to be mutually Fourier-conjugate real functions. 

In a subsequent paper [2] we showed that all the elements of the 
Fourier theory [3] of integrable real functions are contained within the 
complex-analytic structure, including the Fourier basis of functions, the 
Fourier series, the scalar product for integrable real functions, the 
relations of orthogonality and norm of the basis elements, and the 
completeness of the Fourier basis, including its so-called completeness 
relation. As was also shown in [2] the real function ( ) ( )θ=θ ,1vg  which is 

the Fourier-conjugate function to ( ) ( )θ=θ ,1uf  has the same Fourier 
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coefficients, but with the meanings of kα  and kβ  interchanged in such a 

way that we have 

( ) ( ),sin1 θθθ
π

=α ∫
π

π−
gd kk  

( ) ( ),cos1 θθθ
π

−=β ∫
π

π−
gd kk  (8) 

for { }.,,3,2,1 ∞∈ …k  Note that there is no constant term in the Fourier 

series of ( ),θg  which means that we have 

( ) .0=θθ∫
π

π−
gd   (9) 

In other words, the Fourier-conjugate function ( )θg  is always a zero-

average real function. Note also that this fact, as well as the relations in 
Equation (8) imply, in particular, that ( )θg  is also an integrable real 

function. We may therefore conclude that, if ( )θf  is an integrable real 

function, then so is its Fourier-conjugate function ( ).θg  

3. The Compact Hilbert Transform 

Let ( )θf  be an integrable real function on [ ],, ππ−  with Fourier 

coefficients given in Equation (4). As was shown in [2] the real function 
( ) ( )θ=θ ,1vg  which is the Fourier-conjugate function to ( ) ( )θ=θ ,1uf  

has the same Fourier coefficients, but with the meanings of kα  and kβ  

interchanged, as shown in Equation (8). The relations in Equations (4) 
and (8) can be understood as the following collection of integral identities 
satisfied by all pairs of Fourier-conjugate integrable real functions, 
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( ) ( ) ( ) ( ),sincos θθθ=θθθ ∫∫
π

π−

π

π−
gdfd kk  

( ) ( ) ( ) ( ),cossin θθθ−=θθθ ∫∫
π

π−

π

π−
gdfd kk  (10) 

for { }.,,3,2,1 ∞∈ …k  It is well known that this replacement of ( )θkcos  

with ( )θksin  and of ( )θksin  with ( )θ− kcos  can be effected by the use of 

the Hilbert transform. However, that transform was originally 
introduced by Hilbert for real functions defined on the whole real line, 
rather that on the unit circle as is our case here. Therefore, the first thing 
that we will do here is to define a compact version of the Hilbert 
transform that applies to real functions defined on the unit circle. 

Since the Fourier coefficient 0α  of ( )θf  has no effect on the definition 

of the Fourier-conjugate function ( ),θg  and in order for this pair of real 

functions to be related in a unique way, we will assume that ( )θf  is also 

a zero-average real function, 

( ) ,0=θθ∫
π

π−
fd   (11) 

thus implying for its 0=k  Fourier coefficient that .00 =α  This does not 

affect, of course, any subsequent arguments about the convergence of the 
Fourier series. According to the construction presented in [1] and 
reviewed in Section 2, from the other Fourier coefficients kα  and ,kβ  for 

{ },,,3,2,1 ∞∈ …k  we may construct the complex coefficients 

,kkk β−α= ıc  for { },,,3,2,1 ∞∈ …k  where we now have ,00 =c  and 

from these we may construct the corresponding inner analytic function 
( )zw  shown in Equation (7), which is now, in fact, a proper inner analytic 

function, since 00 =c  implies that ( ) .00 =w  
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Since ( )θρ,u  and ( )θρ,v  are harmonic conjugate functions to each 

other, it is now clear that there is a one-to-one correspondence between 
( )θρ,u  and ( ),, θρv  and in particular between ( )θ,1u  and ( ).,1 θv  

Therefore, there is a one-to-one correspondence between ( )θf  and ( ),θg  

in this case valid almost everywhere on the unit circle, since we have 
shown in [1] that ( ) ( )θ=θ ,1uf  and that ( ) ( ),,1 θ=θ vg  both almost 

everywhere over the unit circle. Therefore, a transformation must exist 
that produces ( )θg  from ( )θf  almost everywhere over the unit circle, as 

well as an inverse transformation that recovers ( )θf  from ( )θg  almost 

everywhere over the unit circle. In this section we will show that the 
following definition accomplishes this. 

Definition 1 (Compact Hilbert transform). 

If ( )θf  is an arbitrarily given zero-average integrable real function 

defined on the unit circle, then its compact Hilbert transform ( )θg  is the 

real function defined by 

( ) ( )[ ]θ=θ fg cH  

( )[ ]
( )[ ] ( ),2sin

2cosPV2
1

1
1
1

1 θ
θ−θ
θ−θ

θ
π

−= ∫
π

π−
fd  (12) 

where PV stands for the Cauchy principal value, and where ( )[ ]θfcH  is 

the notation we will use for the compact Hilbert transform applied to the 
real function ( ).θf  

We will now prove the following theorem. 
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Theorem 1. The zero-average integrable real functions ( )θf  and 

( ),θg  which are such that ( ) ( )θ=θ ,1uf  and ( ) ( )θ=θ ,1vg  almost 

everywhere on the unit circle, are related to each other by this transform, 
that is, we have that ( ) ( )[ ]θ=θ fg cH  almost everywhere on the unit circle, 

and that ( ) ( )[ ]θ=θ − gf c
1H  almost everywhere on the unit circle, where the 

inverse transform is simply given by ( )[ ] cc g HH −=θ−1 ( )[ ].θg  

Proof 1.1. In order to derive these facts from our complex-analytic 
structure, we start from the Cauchy integral formula for the inner 
analytic function ( ).zw  

( ) ( ) ,2
1

1
1

1 zz
zwdzzw

C −π
= 

ı
 (13) 

where C can be taken as a circle centered at the origin, with radius 
,11 <ρ  and where we write z and 1z  in polar coordinates as 

( )θρ= ıexpz  and ( ).exp 111 θρ= ız  The integral formula in Equation 

(13) is valid for ,1ρ<ρ  and in fact, by the Cauchy-Goursat theorem, the 

integral is zero if ,1ρ>ρ  since both z and 1z  are within the open unit 

disk, a region where ( )zw  is analytic. We must now determine what 

happens if ,1ρ=ρ  that is, if z is on the circle C of radius .1ρ  Note that in 

this case we may slightly deform the integration contour C in order to 
have it pass on one side or the other of the simple pole of the integrand at 

.1 zz =  If we use a deformed contour C  that excludes the pole from its 

interior, then we have, instead of Equation (13), 

( ) ,2
10

1
1

1 zz
zwdz

C −π
=



ı

 (14) 
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due to the Cauchy-Goursat theorem, while if we use a deformed contour 

⊕C  that includes the pole in its interior, then we have, just as in 

Equation (13), 

( ) ( ) .2
1

1
1

1 zz
zwdzzw

C −π
=

⊕

ı

 (15) 

Since by the Sokhotskii-Plemelj theorem [13] the Cauchy principal value 
of the integral over the circle C is the arithmetic average of these two 
integrals, in the limit where the deformations vanish, a limit which does 
not really have to be considered in detail, so long as the deformations do 
not cross any other singularities, 

( ) ( ) ( ) ,2
1

2
1PV

1
1

1
1

1
1

1
1

1 zz
zwdzzz

zwdzzz
zwdz

CCC −
+

−
=

− ⊕



 (16) 

adding Equations (14) and (15) we may conclude that 

( ) ( ) ,PV1
1

1
1 zz

zwdzzw
C −π

= 
ı

 (17) 

where we now have ,1ρ=ρ  that is, both 1z  and z are on the circle C of 

radius 1ρ  within the open unit disk. This formula can be understood as a 

special version of the Cauchy integral formula, and will be used 
repeatedly in what follows. We may now write all quantities in this 
equation in terms of the polar coordinates 11, θρ  and ,θ  

( ) ( )
θθ

θπ

π− ρ−ρ

θρ
ρθ

π
=θρ ∫ ıı

ıı
ı ee

wedw
11

11
111 1

1 ,PV1,  

( ) ( ) ,
1

,,PV1 1111
1 θ∆−

π

π− −

θρ+θρ
θ

π
= ∫ ı

ı

e
vud  (18) 
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where .1 θ−θ=θ∆  Note that, since by construction the real and 

imaginary parts ( )θρ ,1u  and ( )θρ ,1v  of ( )θρ ,1w  for 11 =ρ  are 

integrable real functions on the unit circle, and since there are no other 
dependencies on 1ρ  in this expression, we may now take the ( )−→ρ 11  

limit of this equation, in which the principal value acquires its usual real 
meaning over the unit circle, that is, the meaning that the asymptotic 
limits of the integral on either side of a non-integrable singularity must 
be taken in the symmetric way. In that limit we have 

( ) ( ) ( ) ( ) .
1

,1,1PV1,1,1 11
1 θ∆−

π

π− −

θ+θ
θ

π
=θ+θ ∫ ı

ı
ı

e
vudvu  (19) 

In order to identify separately the real and imaginary parts of this 
equation, we must now rationalize the integrand of the integral shown. 
We will use the fact that 

( ) ( )θ∆θ∆−

θ∆

θ∆− −−

−=
− ıı

ı

ı ee
e

e 11
1

1
1  

( )[ ] ( )
( )θ∆−

θ∆−θ∆−= cos22
sincos1 ı  

( )
( ) .cos1

sin12
1







θ∆−
θ∆−= ı  (20) 

Using the half-angle trigonometric identities we may also write this 
result as 

( )
( )





θ∆
θ∆

−=
− θ∆− 2sin

2cos12
1

1
1 ı
ıe

 (21) 

( ) .2sin2
2

θ∆
−=

θ∆ıı e  (22) 
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Using the result shown in Equation (21) back in Equation (19) we obtain 

( ) ( ) ( ) ( )[ ] ( )
( )





θ∆
θ∆

−θ+θθ
π

=θ+θ ∫
π

π− 2sin
2cos1,1,1PV2

1,1,1 111 ııı vudvu  

( ) ( )[ ] +θ+θθ
π

= ∫
π

π−
111 ,1,1PV2

1 vud ı  

( )
( ) ( ) ( )[ ].,1,12sin

2cosPV2
1

111 θ−θ
θ∆
θ∆

θ
π

+ ∫
π

π−
uvd ı  (23) 

Since both ( )1,1 θu  and ( )1,1 θv  are zero-average real functions on the 

unit circle, the first two integrals in the last form of the equation above 
are zero, so that separating the real and imaginary parts within this 
expression we are left with 

( ) ( ) ( )
( ) ( ) +θ
θ∆
θ∆

θ
π

=θ+θ ∫
π

π−
11 ,12sin

2cosPV2
1,1,1 vdvu ı  

( )
( ) ( ),,12sin

2cosPV2 11 θ
θ∆
θ∆

θ
π

− ∫
π

π−
udı  (24) 

where .1 θ−θ=θ∆  Separating the real and imaginary parts of this 

equation we may now write that 

( ) ( )
( ) ( ),,12sin

2cosPV2
1,1 11 θ

θ∆
θ∆

θ
π

=θ ∫
π

π−
vdu  

( ) ( )
( ) ( ),,12sin

2cosPV2
1,1 11 θ

θ∆
θ∆

θ
π

−=θ ∫
π

π−
udv  (25) 
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where .1 θ−θ=θ∆  Recalling that ( ) ( )θ=θ ,1uf  and ( ) ( ),,1 θ=θ vg  

almost everywhere on the unit circle, we have 

( ) ( )[ ]θ=θ − gf c
1H  

 ( )
( ) ( ),2sin

2cosPV2
1

11 θ
θ∆
θ∆

θ
π

= ∫
π

π−
gd  

( ) ( )[ ]θ=θ fg cH  

 ( )
( ) ( ),2sin

2cosPV2
1

11 θ
θ∆
θ∆

θ
π

−= ∫
π

π−
fd  (26) 

two equations which are thus valid almost everywhere as well. These are 
the transformations relating the pair of Fourier-conjugate functions ( )θf  

and ( ).θg  The second expression defines the compact Hilbert 

transformation of ( )θf  into ( ),θg  and the first one defines the inverse 

transformation, which recovers ( )θf  from ( ).θg  Note that in this notation 

the transform is defined with an explicit minus sign, and that its inverse 

is simply minus the transform itself, ( )[ ] ( )[ ].1 θ−=θ− gg cc HH  This 

completes the proof of Theorem 1. 

It is interesting to observe that this transform can be interpreted as a 
linear integral operator acting on the space of zero-average integrable 
real functions defined on the unit circle. The integration kernel of the 
integral operator depends only on the difference ,1θ−θ  and is given by 

( ) ( )[ ]
( )[ ] ,2sin

2cos
2
1

1
1

1 θ−θ
θ−θ

π
−=θ−θcKH  (27) 
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so that the action of the operator on an arbitrarily given zero-average 
real integrable function ( )θf  on the unit circle can be written as 

( ) ( )[ ]θ=θ fg cH  

( ) ( ).PV 111 θθ−θθ= ∫
π

π−
fKd cH  (28) 

The operator is linear, invertible, and the composition of the operator 
with itself results in the operation of multiplication by −1. Note that, 
since by hypothesis ( )θf  is integrable on the unit circle, the Cauchy 

principal value refers only to the explicit non-integrable singularity of the 
integration kernel at the position .1 θ=θ  

4. Action on the Fourier Basis 

We will now determine the action of the compact Hilbert transform 
on the elements of the Fourier basis of functions. The case of the constant 
function, which constitutes the 0=k  element of the basis, that is the 
single member of the basis which is not a zero-average function, must be 
examined in separate. We will now prove the following simple theorem. 

Theorem 2. Given any constant real function ( ) ,Rf =θ  for any real 

constant R, its compact Hilbert transform is zero, that is, [ ] .0=RcH  

Proof 2.1. We start from the expression in Equation (17) for the very 
simple case ( ) ,1=zw  

,1PV11
1

1 zzdz
C −π

= 
ı

 (29) 
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where both 1z  and z are on the circle C of radius .1ρ  We may now write 

all quantities in this equation in terms of 11, θρ  and ,θ  

θθ
θπ

π− ρ−ρ
ρθ

π
= ∫ ıı

ıı
ı ee

ed
11

11 1
1 1PV11  

,
1

1PV1
1 θ∆−

π

π− −
θ

π
= ∫ ıe

d  (30) 

where .1 θ−θ=θ∆  Note that, since there are no remaining dependencies 

on ,1ρ  we may now take the ( )−→ρ 11  limit of this expression, in which 

the principal value acquires its usual real meaning on the unit circle. 
Just as in the previous section, in order to identify separately the real 
and imaginary parts of this equation, we must now rationalize the 
integrand. Using the result in Equation (21) we obtain 

( )
( )





θ∆
θ∆

−θ
π

= ∫
π

π− 2sin
2cos1PV2

11 1 ıd  

( )
( )2sin

2cosPV2PV2
1

11 θ∆
θ∆

θ
π

−θ
π

= ∫∫
π

π−

π

π−
dd ı  

( )
( ) .2sin

2cosPV21 1 θ∆
θ∆

θ
π

−= ∫
π

π−
dı  (31) 

It follows therefore that we have 

( )
( ) ,02sin

2cosPV2
1

1 =
θ∆
θ∆

θ
π

− ∫
π

π−
d  (32) 

which is the statement that [ ] .01 =cH  Note that, since ,1 θ−θ=θ∆  

which in the context of this integral implies that ( ),1 θ∆=θ dd  by means 

of a trivial transformation of variables this integral can also be shown to 
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be zero by simple parity arguments. Given the linearity of the compact 
Hilbert transform, it is equally true that, for any real constant R, we 
have that [ ] ,0=RcH  so that all constant functions are mapped to the 

null function. This completes the proof of Theorem 2. 

Let us now consider all the remaining elements of the Fourier basis 
of functions. We will prove the following theorem. 

Theorem 3. Given the elements of the Fourier basis of functions, 
( )θkcos  and ( ),sin θk  for { },,,3,2,1 ∞∈ …k  the following relations 

between them hold: 

( ) ( )[ ],sincos θ−=θ kk cH  

( ) ( )[ ].cossin θ=θ kk cH  (33) 

Proof 3.1. In order to prove this theorem we start from the 

expression in Equation (17) for the case ( ) ,kzzw =  where 

{ },,,3,2,1 ∞∈ …k  that is, for a strictly positive power of z, which is 

therefore an inner analytic function. Note that these are all the elements 
of the complex Taylor basis of functions, with the exception of the 
constant function. We have therefore 

,PV1
1

1
1 zz

zdzz
C −π

=
k

k 
ı

 (34) 

where both 1z  and z are on the circle C of radius .1ρ  We may now write 

all quantities in this equation in terms of 11, θρ  and ,θ  

⇒
ρ−ρ

ρ
ρθ

π
=ρ

θθ

θ
θπ

π−

θ ∫ ıı

ı
ıı ı

ı ee
eede

11

1
111 1

1
1PV1 kk

kk  

,
1

PV1 1
1 θ∆−

θπ

π−

θ

−
θ

π
= ∫ ı

ı
ı

ı e
ede
k

k  (35) 
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where .1 θ−θ=θ∆  Note that, since there are no remaining dependencies 

on ,1ρ  we may now take the ( )−→ρ 11  limit of this expression, in which 

the principal value acquires its usual real meaning on the unit circle. In 
the limit we have 

( ) ( ) ( ) ( ) .
1

sincosPV1sincos 11
1 θ∆−

π

π− −

θ+θ
θ

π
=θ+θ ∫ ı

ı
ı

e
d kk

kk  (36) 

Just as in the previous cases, in order to identify separately the real and 
imaginary parts of this equation, we must now rationalize the integrand. 
Using the result in Equation (21) we obtain 

( ) ( )θ+θ kk sincos ı  

( ) ( )[ ] ( )
( )





θ∆
θ∆

−θ+θθ
π

= ∫
π

π− 2sin
2cos1sincosPV2

1
111 ıı kkd  

( ) ( )[ ] +θ+θθ
π

= ∫
π

π−
111 sincosPV2

1 kk ıd  

( )
( ) ( ) ( )[ ],cossin2sin

2cosPV2
1

111 θ−θ
θ∆
θ∆

θ
π

+ ∫
π

π−
kk ıd  (37) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  The first two integrals in the 

last form of the equation above are zero for all 0>k  because they are 
integrals of cosines and sines over integer multiples of their periods, so 
that we may now separate the real and imaginary parts of the remaining 
terms and thus get 

( ) ( ) ( )
( ) ( ) +θ
θ∆
θ∆

θ
π

=θ+θ ∫
π

π−
11 sin2sin

2cosPV2
1sincos kkk dı  

( )
( ) ( ),cos2sin

2cosPV2 11 θ
θ∆
θ∆

θ
π

− ∫
π

π−
kdı  (38) 
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where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  We therefore obtain the 

action of the compact Hilbert transform on the elements of the Fourier 
basis, 

( ) ( )[ ]θ−=θ kk sincos cH  

( )
( ) ( ),sin2sin

2cosPV2
1

11 θ
θ∆
θ∆

θ
π

= ∫
π

π−
kd  

( ) ( )[ ]θ=θ kk cossin cH  

( )
( ) ( ),cos2sin

2cosPV2
1

11 θ
θ∆
θ∆

θ
π

−= ∫
π

π−
kd  (39) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  The second equation above is 

the transform applied to the cosines and the first equation is the inverse 
transform applied to the sines. As one can see, the transform does indeed 
have the property of replacing cosines with sines and sines with minus 
cosines, as expected. This completes the proof of Theorem 3. 

One can now see that the application of the compact Hilbert 
transform to the Fourier series of an arbitrarily given zero-average 
integrable real function ( )θf  on the unit circle will produce the Fourier 

series of its Fourier-conjugate real function ( ).θg  Given the linearity of 

the transform, if we apply it to the Fourier series of ( )θf  we get 

( ) ( )[ ] ( )[ ] ( )[ ]{ }θβ+θα=












θβ+θα ∑∑
∞

=

∞

=

kkkk kk
k

kk
k

sincossincos
11

ccc HHH  

( ) ( )[ ],cossin
1

θβ−θα= ∑
∞

=

kk kk
k

 (40) 
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where this last one is the Fourier series of the real function ( ),θg  which 

is the Fourier conjugate of ( ).θf  Hence, if ( )θρ,S  is the complex power 

series given in Equation (6), if ( ) ( )[ ]θ=θ ,1, SS fF ℜ  is the Fourier series 

of ( )θf  and ( ) ( )[ ]θ=θ ,1, SS gF ℑ  is the Fourier series of ( ),θg  then we 

have that 

( ) ( )[ ].,, θ=θ fF
c

gF SS H   (41) 

Note that the same is true for the corresponding partial sums, as well as 
for the corresponding remainders, so long as the latter exist at all. If 

( )θρ,NS  is the N-th partial sum and ( )θρ,NR  is the N-th remainder of the 

complex power series given in Equation (6), and if ( ) ( )[ ]θ=θ ,1,
N

fF
N SS ℜ  is 

the N-th partial sum of the real Fourier series of ( ),θf  if 

( ) ( )[ ]θ=θ ,1,
N

gF
N SS ℑ  is the N-th partial sum of the Fourier series of 

( ),θg  if ( ) ( )[ ]θ=θ ,1,
N

fF
N RR ℜ  is the N-th remainder of the Fourier 

series of ( )θf  and if ( ) ( )[ ]θ=θ ,1,
N

gF
N RR ℑ  is the N-th remainder of the 

Fourier series of ( ),θg  then we have 

( ) ( )[ ],,, θ=θ fF
Nc

gF
N SS H  

( ) ( )[ ].,, θ=θ fF
Nc

gF
N RR H  (42) 

Of course, in each one of these cases the inverse mapping holds as well, 
using the inverse transform to take us from the quantities related to ( )θg  

back to the corresponding quantities related to ( ).θf  
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5. An Infinite Collection of Identities 

In order to obtain a certain infinite collection of identities satisfied by 
all zero-average integrable real functions and their Fourier-conjugate 
real functions, which will be very important later, we start by examining 
the action of the compact Hilbert transform on the products of arbitrarily 
given integrable real functions and the elements of the Fourier basis. We 
will prove the following theorem. 

Theorem 4. Given an arbitrary zero-average integrable real function 
( )θf  on the unit circle, and the corresponding Fourier-conjugate real 

function ( ),θg  these two real functions satisfy almost everywhere the 

following infinite collection of identities: 

( ) ( )[ ] ( ) ( )[ ] ( )
( ) ,2sin

21cos21sinPV2
1 11

1 θ∆
θθ∆++θθ∆+

θ
π

=θ ∫
π

π−

gfdf kk  

( ) ( )[ ] ( ) ( )[ ] ( )
( ) ,2sin

21cos21sinPV2
1 11

1 θ∆
θθ∆+−θθ∆+

θ
π

=θ ∫
π

π−

fgdg kk  (43) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  

Proof 4.1. In order to prove this theorem we start from the 

expression in Equation (17), exchanging ( )zw  for the product ( ),zwzk  

which is also an inner analytic function so long as kz  is an arbitrary 
positive integer power, which it is since we assume that 

{ }.,,3,2,1 ∞∈ …k  We therefore have 

( ) ( ) ,PV1
1

11
1 zz

zwzdzzwz
C −π

=
k

k 
ı

 (44) 
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where both 1z  and z are on the circle C of radius 1ρ  within the open unit 

disk. We may now write all quantities in this equation in terms of 11, θρ  

and ,θ  

( ) ( )
⇒

ρ−ρ

θρρ
ρθ

π
=θρρ

θθ

θ
θπ

π−

θ ∫ ıı

ı
ıı ı

ı ee
weedwe

11

111
1111 1

1
1 ,PV1,

kk
kk  

( ) ( ) ,
1

,PV1, 11
11 θ∆

θ∆π

π− −

θρ
θ

π
=θρ ∫ ı

ı

e
wedw

k
 (45) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  Note that, since by 

construction the real and imaginary parts ( )θρ ,1u  and ( )θρ ,1v  of 

( )θρ ,1w  for 11 =ρ  are integrable real functions on the unit circle, and 

since there are no other dependencies on 1ρ  in this equation, we may 

now take the ( )−→ρ 11  limit of this expression, in which the principal 

value acquires its usual real meaning on the unit circle, thus obtaining 

( ) ( ) ( ) ( )[ ] ,
1

,1,1PV1,1,1 11
1 θ∆−

θ∆π

π− −

θ+θ
θ

π
=θ+θ ∫ ı

ı ı
ı

e
vuedvu

k
 (46) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  Once more, in order to 

identify separately the real and imaginary parts of this equation, we 
must now rationalize the integrand. Using this time the form shown in 
Equation (22) for the factor to be rationalized, we get 
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( ) ( )θ+θ ,1,1 vu ı  

( ) ( )[ ] ( ) ( )2sin,1,1PV2
1 2

111 θ∆
−θ+θθ

π
=

θ∆
θ∆

π

π−∫
ı

ı ıı evued k  

( ) ( )[ ]
( )

( )2sin,1,1PV2
1 21

111 θ∆
θ−θθ

π
=

θ∆+π

π−∫
kı

ı euvd  

( ) ( )[ ] ( ) ( )[ ]
( ) ,2sin

sincos,1,1PV2
1 1111

1 θ∆
θ∆+θ∆θ−θ

θ
π

= ∫
π

π−

kk ııuvd  (47) 

where θ−θ=θ∆ 1  and ,211 += kk  with { }.,,3,2,1 ∞∈ …k  

Expanding the numerator in the integrand of this integral we have 

( ) ( )[ ] ( ) ( )[ ]θ∆+θ∆θ−θ 1111 sincos,1,1 kk ııuv  

( ) ( ) ( ) ( )[ ] +θθ∆+θθ∆= 1111 ,1cos,1sin vu kk  

( ) ( ) ( ) ( )[ ],,1cos,1sin 1111 θθ∆−θθ∆+ uv kkı  (48) 

and therefore we are left with 

( ) ( )θ+θ ,1,1 vu ı  

( ) ( ) ( ) ( )
( ) +
θ∆

θθ∆+θθ∆
θ

π
= ∫

π

π− 2sin
,1cos,1sinPV2

1 1111
1

vud kk  

( ) ( ) ( ) ( )
( ) ,2sin

,1cos,1sinPV2
1 1111

1 θ∆
θθ∆−θθ∆

θ
π

+ ∫
π

π−

uvd kk
ı  (49) 

where θ−θ=θ∆ 1  and ,211 += kk  with { }.,,3,2,1 ∞∈ …k  

Separating the real and imaginary parts we therefore obtain an infinite 
collection of identities in the form 
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( )θ,1u  

( )[ ] ( ) ( )[ ] ( )
( ) ,2sin

,121cos,121sinPV2
1 11

1 θ∆
θθ∆++θθ∆+

θ
π

= ∫
π

π−

vud kk  

( )θ,1v  

( )[ ] ( ) ( )[ ] ( )
( ) ,2sin

,121cos,121sinPV2
1 11

1 θ∆
θθ∆+−θθ∆+

θ
π

= ∫
π

π−

uvd kk  (50) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …k  Recalling now that ( ) ( ),,1 θ=θ uf  

and also that ( ) ( ),,1 θ=θ vg  almost everywhere over the unit circle, one 

obtains the results in Equation (43), and therefore this completes the 
proof of Theorem 4. 

Note that since this is an infinite collection of integral identities, 
satisfied by ( )θf  and ( )θg  for all strictly positive ,k  it follows that the 

right-hand sides of the equations above do not, in fact, depend on .k  If 
one recognizes in the first term of each one of these two equations the 

well-known result for the k-th partial sums of the corresponding Fourier 

series in terms of Dirichlet integrals [3], then it follows that the other 
terms must be the corresponding remainders. This provides us with some 
level of understanding of the nature of this infinite set of identities. In 
the next section we will prove that one does obtain in fact the partial 
sums and remainders of the corresponding Fourier series directly from 
our complex-analytic structure. 
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6. Remainders of Fourier Series 

We will now derive certain expressions for the partial sums and for 
the corresponding remainders of the Fourier series. In order to do this, 
let ( )θf  be a zero-average integrable real function defined on [ ]ππ− ,  and 

let the real numbers kα=α ,00  and ,kβ  for { },,,3,2,1 ∞∈ …k  be its 

Fourier coefficients. We then define the complex coefficients 00 =c  and 

kc  shown in Equation (5), and thus construct the corresponding proper 

inner analytic function ( )zw  within the open unit disk, using the power 

series ( )zS  given in Equation (6), which, as was shown in [1], always 

converges for .1<z  Considering that ,00 ≡c  the partial sums of the 

first N terms of this series are given by 

( ) ,
0

k
k

k
zczS

N

N ∑
=

=   (51) 

where { },,,3,2,1 ∞∈ …N  a complex sequence for each value of z which, 

for ,1<z  we already know to converge to ( )zw  in the ∞→N  limit. 

Note however that, since ( )zSN  is a polynomial of order N and therefore 

an analytic function over the whole complex plane, this expression itself 
can be consistently considered for all finite N and all z, and in particular 
for z on the unit circle, where .1=z  One can also define the 

corresponding remainders of the complex power series, in the usual way, 
as 

( ) ( ) ( ).zSzwzR NN −=   (52) 

We will now prove the following theorem. 
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Theorem 5. Given an arbitrary zero-average integrable real function 
( )θf  on the unit circle and the corresponding Fourier-conjugate real 

function ( ),θg  if ( ) [ ( )]θ=θ ,1N
F
N SS ℜ  is the N-th partial sum of the 

Fourier series of ( ),θf  and if ( ) [ ( )]θ=θ ,1N
F
N RR ℜ  is the corresponding 

remainder of that Fourier series, then we have that this partial sum and 
this remainder are given by the following integrals: 

( ) ( )[ ]
( ) ( ),2sin

21sin
2
1

11 θ
θ∆

θ∆+
θ

π
=θ ∫

π

π−
fNdS F

N  

( ) ( )[ ]
( ) ( ),2sin

21cosPV2
1

11 θ
θ∆

θ∆+
θ

π
=θ ∫

π

π−
gNdRF

N  (53) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  

Note that the integral in the expression of the partial sum is the 
known Dirichlet integral, while the one in the expression of the reminder 
is similar but not identical to it. 

Proof 5.1. In order to prove this theorem, let us consider the complex 
partial sums ( )zSN  as given in Equation (51). In addition to this, the 

complex coefficients kc  may be written as integrals involving ( ),zw  with 

the use of the Cauchy integral formulas, 

( ) ,2
1

1+π
=

kk
z

zwdzc
C

ı

 (54) 

for { },,,3,2,1,0 ∞∈ …k  where C can be taken as a circle centered at 

the origin, with radius .1≤ρ  The reason why we may include the case 

1=ρ  here is that, as was shown in [1], as a function of ρ  the expression 

above for kc  is not only constant within the open unit disk, but also 
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continuous from within at the unit circle. In this way the coefficients kc  

may be written back in terms of the inner analytic function ( ).zw  If we 

substitute this expression for kc  back in the partial sums of the complex 

power series shown in Equation (51) we get 

( ) ( )
1

1

1
1

0
2
1

+
=

π
= ∑ k

k

k z
zwdzzzS

C

N

N 
ı

 

( ) ,2
1

101
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1
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k








π
= ∑

=
z
z

z
zwdz

N

C

ı

 (55) 

where z can have any value, but where we must have .11 ≤z  The sum is 

now a finite geometric progression, so that we have its value in closed 
form, 

( ) ( ) ( )
( )1

1
1

1
1

1 1
1

2
1

zz
zz

z
zwdzzS

N

CN −
−

π
=

+

ı

 

( ) ( )
( )

.22
1

1
1

1

1
1

1

1
1

1
zzz

zwdzz
zz

zwdz NC

N

C −π
−

−π
=

+

+ 
ıı

 (56) 

There are now two relevant cases to be considered here, the case in which 

1zz <  and the case in which .1zz >  In the first case, since the 

explicit simple pole of the integrand at the position zz =1  lies within the 

integration contour, we have in the first term the Cauchy integral 
formula for ( ),zw  and therefore we get 

( ) ( ) ( )
( )

.2 1
1

1

1
1

1

zzz
zwdzzzwzS NC

N
N

−π
−=

+

+ 
ı

 (57) 
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This is the equation that allows us to write an explicit expression for the 
remainder of the complex power series within the open unit disk, thus 
making it easier to discuss its convergence there. In the other case, in 
which ,1zz >  the explicit simple pole of the integrand at the position z 

lies outside of the integration contour, and therefore by the Cauchy-
Goursat theorem we just have zero in the first term, so that we get 

( ) ( )
( )

.2 1
1

1

1
1

1

zzz
zwdzzzS NC

N
N

−π
−=

+

+ 
ı

 (58) 

This provides us, therefore, with an explicit expression for the partial 
sums, but not for the remainder. The only other possible case is that in 
which ,1zz =  in which both 1z  and z are over the circle C of radius ,1ρ  

and therefore so is the explicit simple pole of the integrand at the 
position .1 zz =  In this case, just as we did before in Section 3, we may 

slightly deform the integration contour C in order to have it pass on one 
side or the other of the simple pole of the integrand at .1 zz =  If we use a 

deformed contour C  that excludes the pole from its interior, then we 

have, instead of Equation (57), 

( ) ( )
( )

,20
1

1
1

1
1

1

zzz
zwdzzzS NC

N
N

−π
−=

+

+




ı
 (59) 

while if we use a deformed contour ⊕C  that includes the pole in its 

interior, then we have, just as in Equation (57), 

( ) ( ) ( )
( )

.2 1
1

1

1
1

1

zzz
zwdzzzwzS NC

N
N

−π
−=

+

+

⊕


ı
 (60) 

Once more, since by the Sokhotskii-Plemelj theorem [13] the Cauchy 
principal value of the integral over C is the arithmetic average of these 
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two integrals, taking the average of Equations (59) and (60) we obtain 
the expression 

( ) ( ) ( )
( )

,PV22 1
1

1

1
1

1

zzz
zwdzzzwzS NC

N
N

−π
−=

+

+ 
ı

 (61) 

where both 1z  and z are now on the circle C of radius .1ρ  Since we have 

that the corresponding remainder of the series is defined as given in 
Equation (52), we get a corresponding expression for the remainder, in 
terms of the same integral, 

( ) ( ) ( )
( )

,PV22 1
1

1

1
1

1

zzz
zwdzzzwzR NC

N
N

−π
+=

+

+ 
ı

 (62) 

where both 1z  and z are on the circle C of radius .1ρ  We have therefore 

the pair of equations 

( ) ( ) ( ),2 zIzwzS NN −=  

( ) ( ) ( ),2 zIzwzR NN +=  (63) 

and we must now write the integral ( )zIN  explicitly in terms of 11, θρ  

and ,θ  

( ) ( )
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zwdzzzI NC

N
N

−π
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+

+
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1
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1
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e
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where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  Once again we must 

rationalize the integrand, and using once more the result shown in 
Equation (22) we get 

( )θρ ,1NI  

( ) ( ) ( )[ ] ( ) ( )2sin,,PV4
1 2

1111
1

1 θ∆
−θρ+θρθ

π
=

θ∆
θ∆+−

π

π−∫
ı

ı ıı evued N  

( ) ( )[ ]
( )

( )2sin,,PV4
1 21

11111 θ∆
θρ−θρθ

π
=

θ∆+−π

π−∫
Neuvd
ı

ı  

( ) ( )[ ] ( ) ( )[ ]
( ) ,2sin

sincos,,PV4
1 111111

1 θ∆
θ∆−θ∆θρ−θρ

θ
π

= ∫
π

π−

NNuvd ıı  (65) 

where θ−θ=θ∆ 1  and 211 += NN  with { }.,,3,2,1 ∞∈ …N  

Expanding the numerator in the integrand of this integral we have 

( ) ( )[ ] ( ) ( )[ ]θ∆−θ∆θρ−θρ 111111 sincos,, NNuv ıı  

( ) ( ) ( ) ( )[ ] +θρθ∆−θρθ∆−= 111111 ,cos,sin vNuN  

( ) ( ) ( ) ( )[ ],,cos,sin 111111 θρθ∆+θρθ∆− uNvNı  (66) 

and therefore we are left with the following expression for our integral, 

( )θρ ,1NI  

( ) ( ) ( ) ( )
( ) +
θ∆

θρθ∆−θρθ∆
θ

π
−= ∫

π

π− 2sin
,cos,sinPV4

1 111111
1

vNuNd  

( ) ( ) ( ) ( )
( ) ,2sin

,cos,sinPV4
111111

1 θ∆
θρθ∆+θρθ∆

θ
π

− ∫
π

π−

uNvNdı  (67) 
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where θ−θ=θ∆ 1  and ,211 += NN  with { }.,,3,2,1 ∞∈ …N  Once 

again we note that, since by construction the real and imaginary parts 
( )θρ ,1u  and ( )θρ ,1v  of ( )θρ ,1w  for 11 =ρ  are integrable real functions 

on the unit circle, and since there are no other dependencies on 1ρ  in this 

equation, we may now take the ( )−→ρ 11  limit of this expression, in 

which the principal value acquires its usual real meaning on the unit 
circle, thus obtaining 

( )θ,1NI  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+−θθ∆+
θ

π
−= ∫

π

π− 2sin
,121cos,121sinPV4

1 11
1

vNuNd  

( )[ ] ( ) ( )[ ] ( )
( ) ,2sin

,121cos,121sinPV4
11

1 θ∆
θθ∆++θθ∆+

θ
π

− ∫
π

π−

uNvNdı  

(68) 

where θ−θ=θ∆ 1  and { },,,3,2,1 ∞∈ …N  in terms of which we now 

have the pair of equations at the unit circle 

( ) ( ) ( ),,12
,1,1 θ−
θ

=θ NN IwS  

( ) ( ) ( ).,12
,1,1 θ+
θ

=θ NN IwR  (69) 

Using now the infinite collection of identities in Equation (50) for the 
case ,N=k  which allow us to write ( ) 2,1 θw  in terms of integrals 

similar to those in ( ),,1 θNI  
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( )
2
,1 θw  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆++θθ∆+
θ

π
= ∫

π

π− 2sin
,121cos,121sinPV4

1 11
1

vNuNd  

( )[ ] ( ) ( )[ ] ( )
( ) ,2sin

,121cos,121sinPV4
11

1 θ∆
θθ∆+−θθ∆+

θ
π

+ ∫
π

π−

uNvNdı  

(70) 

where θ−θ=θ∆ 1  and { },,,3,2,1 ∞∈ …N  we may write for the 

complex partial sums 

( )θ,1NS  

( ) ( )θ−
θ

= ,12
,1

NIw  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆++θθ∆+
θ

π
= ∫

π

π− 2sin
,121cos,121sinPV4

1 11
1

vNuNd  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+−θθ∆+
θ

π
+ ∫

π

π− 2sin
,121cos,121sinPV4

11
1

uNvNdı  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+−θθ∆+
θ

π
+ ∫

π

π− 2sin
,121cos,121sinPV4

1 11
1

vNuNd  

( )[ ] ( ) ( )[ ] ( )
( ) .2sin

,121cos,121sinPV4
11

1 θ∆
θθ∆++θθ∆+

θ
π

+ ∫
π

π−

uNvNdı  

(71) 
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As one can see in this equation, all the terms involving ( )[ ]θ∆+ 21cos N  

cancel off, and therefore we are left with 

( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+
θ

π
=θ ∫

π

π− 2sin
,121sinPV2

1,1 1
1

uNdSN  

( )[ ] ( )
( ) ,2sin

,121sinPV2
1

1 θ∆
θθ∆+

θ
π

+ ∫
π

π−

vNdı  (72) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  We now observe that, since 

by hypothesis ( )θf  is integrable on the unit circle, the Cauchy principal 

value refers only to the possible explicit non-integrable singularity of the 
integrands, due to the zero of the denominators at .1 θ=θ  However, 

since the numerators of the integrands are also zero at that point, the 
integrands are not really divergent at all at that point, so that from this 
point on we may drop the principal value. We have therefore our final 
results for the real partial sums, for both ( )θ,1u  and ( ),,1 θv  

( ) ( )[ ]θ=θ ,1,
N

uF
N SS ℜ  

( )[ ]
( )

( ),,1
2sin
21sin

2
1

11 θ
θ∆

θ∆+
θ

π
= ∫

π

π−
uNd  

( ) ( )[ ]θ=θ ,1,
N

vF
N SS   

( )[ ]
( )

( ),,1
2sin
21sin

2
1

11 θ
θ∆

θ∆+
θ

π
= ∫

π

π−
vNd  (73) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  These are the well-known 

results for the partial sums, in terms of Dirichlet integrals [3]. Note that 
the two equations above have exactly the same form, which is to be 
expected, since the result holds for all zero-average integrable real 



COMPLEX ANALYSIS OF REAL FUNCTIONS … 265

functions, including of course both ( )1,1 θu  and ( ).,1 1θv  Therefore, given 

an arbitrary zero-average integrable real function ( )θf  on the unit circle, 

we have that the partial sums of its Fourier series are given by 

( ) ( ) ( )[ ]
( )[ ] ( ),2sin

21sin
2
1

1
1

1
1 θ

θ−θ
θ−θ+

θ
π

=θ ∫
π

π−
fNdS F

N  (74) 

where { }.,,3,2,1 ∞∈ …N  Note that, although this result is already 

very well known, we have showed here that it does follow from our 
complex-analytic structure. This completes the proof of the first part of 
Theorem 5. 

Once more, it is interesting to observe that this relation can be 
interpreted as a linear integral operator acting on the space of zero-
average integrable real functions defined on the unit circle, this time 
resulting in the N-th partial sum of the Fourier series of a zero-average 
integrable real function, a partial sum which is itself a zero-average 
integrable real function. The integration kernel of the integral operator 

( )[ ]θfNs ,D  depends only on N and on the difference ,1θ−θ  and is given 

by 

( ) ( ) ( )[ ]
( )[ ] ,2sin

21sin
2
1,

1
1

1 θ−θ
θ−θ+

π
=θ−θ

NNK sD  (75) 

where { },,,3,2,1 ∞∈ …N  so that the action of the operator on ( )θf  can 

be written as 

( )[ ] ( ) ( ).,, 111 θθ−θθ=θ ∫
π

π−
fNKdfN ss DD   (76) 

Considering that its kernel is given by a Dirichlet integral, one might call 
this the Dirichlet operator, so that the N-th partial sum of the Fourier 
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series of ( )θf  is given by the action of this operator on the zero-average 

integrable real function ( ),θf  

( ) ( )[ ],, θ=θ fNS s
F
N D   (77) 

where { }.,,3,2,1 ∞∈ …N  Note that ( )[ ]θfNs ,D  constitutes in fact a 

whole collection of linear integral operators acting on the space of zero-
average integrable real functions. 

Proof 5.2. Using once more the very same elements that were used 
above for the complex partial sums, we may also write corresponding 
results for the complex remainders, 

( )θ,1NR  

( ) ( )θ+
θ

= ,12
,1

NIw  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆++θθ∆+
θ

π
= ∫

π

π− 2sin
,121cos,121sinPV4

1 11
1

vNuNd  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+−θθ∆+
θ

π
+ ∫

π

π− 2sin
,121cos,121sinPV4

11
1

uNvNdı  

( )[ ] ( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+−θθ∆+
θ

π
− ∫

π

π− 2sin
,121cos,121sinPV4

1 11
1

vNuNd  

( )[ ] ( ) ( )[ ] ( )
( ) .2sin

,121cos,121sinPV4
11

1 θ∆
θθ∆++θθ∆+

θ
π

− ∫
π

π−

uNvNdı  

(78) 
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As one can see in this equation, this time all the terms involving            
( )[ ]θ∆+ 21sin N  cancel off, and therefore we are left with 

( ) ( )[ ] ( )
( ) +
θ∆

θθ∆+
θ

π
=θ ∫

π

π− 2sin
,121cosPV2

1,1 1
1

vNdRN  

( )[ ] ( )
( ) ,2sin

,121cosPV2
1

1 θ∆
θθ∆+

θ
π

− ∫
π

π−

uNdı  (79) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  We have therefore our 

results for the real remainders, for both ( )θ,1u  and ( ),,1 θv  

( ) ( )[ ]θ=θ ,1,
N

uF
N RR ℜ  

( )[ ]
( ) ( ),,12sin

21cosPV2
1

11 θ
θ∆

θ∆+
θ

π
= ∫

π

π−
vNd  

( ) ( )[ ]θ=θ ,1,
N

vF
N RR   

( )[ ]
( ) ( ),,12sin

21cosPV2
1

11 θ
θ∆

θ∆+
θ

π
−= ∫

π

π−
uNd  (80) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  Recalling that ( ) ( )θ=θ ,1uf  

and that ( ) ( )θ=θ ,1vg  almost everywhere over the unit circle, this 

completes the proof of Theorem 5. 

We believe that these are new results, written in terms of integrals 
which are similar to the Dirichlet integrals, but not identical to them. 
Note that the remainder of the series of ( )θf  is given as an integral 

involving its Fourier-conjugate function ( ),θg  and vice versa. Therefore, 

we conclude that the convergence condition of the Fourier series of a 
given real function does not depend directly on that function, but only 
indirectly, through the properties of its Fourier-conjugate real function. 
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Since we know that these two real functions are related by the 
compact Hilbert transform, we may write these equations as 

( ) ( )[ ]
( ) ( )[ ],,12sin

21cosPV2
1

11
, θ

θ∆
θ∆+

θ
π

=θ ∫
π

π−
uNdR c

uF
N H  

( ) ( )[ ]
( ) ( )[ ],,12sin

21cosPV2
1

11
, θ

θ∆
θ∆+

θ
π

=θ ∫
π

π−
vNdR c

vF
N H  (81) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  Note that the two results 

are now identical in form. Therefore, given an arbitrary zero-average 
integrable real function ( )θf  on the unit circle, we have our final result 

for the remainder of its Fourier series, 

( ) ( )[ ]
( ) ( )[ ],2sin

21cosPV2
1

11 θ
θ∆

θ∆+
θ

π
=θ ∫

π

π−
fNdR c

F
N H  (82) 

where θ−θ=θ∆ 1  and { }.,,3,2,1 ∞∈ …N  

Once again, it is interesting to observe that this relation can be 
interpreted as a linear integral operator acting on the space of integrable 
zero-average real functions defined on the unit circle. The operator 

( )[ ],, θgNcD  acting on the compact Hilbert transform ( )θg  of such a 

function, results in the N-th remainder of the Fourier series of the 
original function ( ),θf  a remainder which, if it exists at all, is itself a 

zero-average integrable real function. The integration kernel of the 
integral operator depends only on N and on the difference ,1θ−θ  and is 

given by 

( ) ( ) ( )[ ]
( )[ ] ,2sin

21cos
2
1,

1
1

1 θ−θ
θ−θ+

π
=θ−θ

NNK cD  (83) 
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where { },,,3,2,1 ∞∈ …N  so that the action of the operator on an 

arbitrarily given zero-average integrable real function ( )θg  can be 

written as 

( )[ ] ( ) ( ).,PV, 111 θθ−θθ=θ ∫
π

π−
gNKdgN cc DD   (84) 

This new operator, which we might refer to as the conjugate Dirichlet 
operator, is similar to the Dirichlet operator, and is such that the N-th 
remainder of the Fourier series of the real function ( )θf  is given by the 

action of this operator on the Fourier-conjugate function ( )θg  of the real 

function ( ),θf  

( ) ( )[ ],, θ=θ gNR c
F
N D   (85) 

where { }.,,3,2,1 ∞∈ …N  Note once more that ( )[ ]θgNc ,D  constitutes 

in fact a whole collection of linear integral operators acting on the space 
of zero-average integrable real functions. Note also that, since by 
hypothesis ( )θf  and ( )θg  are integrable on the unit circle, the Cauchy 

principal value refers only to the explicit non-integrable singularity of the 
integration kernel at .1 θ=θ  In this operator notation we have therefore 

that the remainder of the Fourier series of an arbitrarily given zero-
average integrable real function ( )θf  is given by the composition of 

( )[ ]θgNc ,D  with ( )[ ],θfcH  

( ) ( )[ ][ ]., θ=θ fNR cc
F
N HD   (86) 
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Note that, according to the inverse of the relation shown in Equation (42) 
we may write as well that 

( ) ( )[ ][ ],,1 θ=θ − fNR cc
F
N DH   (87) 

which constitutes an equivalent way to express the remainder of the 
Fourier series of ( )θf  in terms of the function itself. 

Finally note that, given the results obtained here for the partial sums 
and remainders of the Fourier series, the expressions in the infinite 
collection of identities shown in Equation (50) have now, in fact, the very 
simple interpretation that was alluded to there, since we now see that 
they can in fact be written as 

( ) ( ) ( ),,, θ+θ=θ fF
N

fF
N RSf  

( ) ( ) ( ),,, θ+θ=θ gF
N

gF
N RSg  (88) 

where { },,,3,2,1 ∞∈ …N  a fact which greatly clarifies the nature of 

that infinite collections of identities. 

7. The Convergence Condition 

Given an arbitrary zero-average integrable real function ( )θf  defined 

on the unit circle, the necessary and sufficient condition for the 
convergence of its Fourier series at the point θ  is stated very simply as 
the condition that 

( ) ,0lim =θ
∞→

F
NN

R   (89) 
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where ( )θF
NR  is the remainder of that Fourier series, as given in Section 6. 

According to what was shown in that section, in terms of the integral 
operator ( )[ ]θgNc ,D  this translates therefore as the condition that 

( )[ ] ,0,lim =θ
∞→

gNcN
D   (90) 

where ( )θg  is the Fourier-conjugate function of ( ),θf  which is given by 

the compact Hilbert transform ( )[ ],θfcH  leading therefore to the 

composition of the two operators, 

( )[ ][ ] .0,lim =θ
∞→

fN ccN
HD   (91) 

Equivalently, we may define the linear integral operator ( )[ ]θfNr ,D  to 

be this composition of ( )[ ]θfNc ,D  with ( )[ ],θfcH  

( )[ ] ( )[ ][ ],,, θ=θ fNfN ccr HDD   (92) 

that therefore maps ( )θf  directly onto the N-th remainder of its Fourier 

series, 

( ) ( )[ ],, θ=θ fNR r
F
N D   (93) 

so that the convergence condition of the Fourier series of ( )θf  can now be 

written as 

( )[ ] .0,lim =θ
∞→

fNrN
D   (94) 

Combining the integration kernels of the operators ( )[ ],, θfNcD  given in 

Equation (83), and ( )[ ],θfcH  given in Equation (27), we may write an 

integration kernel for the operator ( )[ ],, θfNrD  which is not given 
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explicitly, but rather remains expressed as an integral over the unit 
circle, 

( ) ( ) ( )[ ] ( )[ ]
( )[ ] ( )[ ] ,2sin2sin

2cos21cosPV
4
1,,

1
1

21 θ−θ′θ−θ′
θ−θ′θ−θ′+

θ′
π

=θθ ∫
π

π−

NdNK rD  

(95) 

in terms of which the action of the operator ( )[ ]θfNr ,D  on ( )θf  is given 

by 

( )[ ] ( ) ( ).,,PV, 111 θθθθ=θ ∫
π

π−
fNKdfN rr DD   (96) 

Note that at this point it is not clear whether or not the integration 
kernel depends only on the difference .1θ−θ  We will prove that it does, 

and we will also write it in a somewhat more convenient form. In this 
section we will prove the following theorem. 

Theorem 6. Given an arbitrary zero-average integrable real function 
( )θf  defined on the unit circle, the necessary and sufficient condition for 

the convergence of its Fourier series at the point θ  is as follows: 

( ) ( ) ,0,PVlim 111 =θθ−θθ∫
π

π−∞→
fNKd rN D   (97) 

where the integration kernel is given by 

( )1, θ−θNK rD  

( ) ( )[ ] ( )
( )[ ] ( ) +θ′−θ−θ

θ′θ′
π

θ−θ+
= ∫

π

π− cos2cos
cosPV

4
21cos

12
1 NdN  

( )[ ] ( )[ ]
( )[ ] ( ) .cos2cos

1cosPV
4

2cos
12

1
θ′−θ−θ

θ′+θ′
π

θ−θ
+ ∫

π

π−

NdN  (98) 



COMPLEX ANALYSIS OF REAL FUNCTIONS … 273

Note that the two integrals in this form of the condition are almost 
identical, differing only by the exchange of N for .1+N  Note also that 
the integrands of these integrals are singular at the points  

( ) .21θ−θ±=θ′  Note, finally, that the condition in Equation (97) means 

that the remainder ( )θF
NR  must exist, being a finite number for each N, 

as well as that its ∞→N  limit must be zero. The existence of the 
remainder is, of course, equivalent to the existence of the integrals 
involved. 

Proof 6.1. We start by making in the integral in Equation (95) the 
transformation of variables 

⇒
θ+θ

−θ′=θ ′′ 2
1  

,2
1θ+θ

+θ ′′=θ′  (99) 

which implies that 

,2
1θ−θ

−θ ′′=θ−θ′  

,2
1

1
θ−θ

+θ ′′=θ−θ′  (100) 

and which also implies that ,θ ′′=θ′ dd  so that we have 

( )1,, θθNK rD  

( )[ ] ( )[ ]
( )[ ] ( )[ ] ,42sin42sin

42cos2cosPV
4
1

11
1111

2 θ−θ+θ ′′θ−θ−θ ′′
θ−θ+θ ′′θ−θ−θ ′′

θ ′′
π

= ∫
π

π−

NNd  (101) 

where 211 += NN  with { },,,3,2,1 ∞∈ …N  and where we do not 

have to change the integration limits since the integration runs over a 
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circle. Note that at this point it is already clearly apparent that rKD  

( )1,, θθN  depends only on N and on the difference ,1θ−θ  and therefore 

from now on we will write it as ( )., 1θ−θNK rD  Changing θ ′′  back to θ′  

and using the notation ( ) 21θ−θ=γ  we have 

( ) ( )[ ] ( )[ ]
( )[ ] ( )[ ]2sin2sin

2coscosPV
4
1, 1

21 γ+θ′γ−θ′
γ+θ′γ−θ′

θ′
π

=θ−θ ∫
π

π−

NdNK rD  

( )
( ) ,,

,,PV
4
1

2 γθ′
γθ′

θ′
π

= ∫
π

π− Q
NPd  (102) 

where ( ) 21θ−θ=γ  and 211 += NN  with { }.,,3,2,1 ∞∈ …N  We 

will now manipulate the denominator ( )γθ′,Q  and the numerator 

( )γθ′,,NP  in this integrand using trigonometric identities. We start 

with the denominator, and using the trigonometric identities for the sum 
of two angles we get 

( ) ( )[ ] ( )[ ]2sin2sin, γ+θ′γ−θ′=γθ′Q  

( ) ( ) ( ) ( )[ ] ×γθ′−γθ′= 2sin2cos2cos2sin  

( ) ( ) ( ) ( )[ ]2sin2cos2cos2sin γθ′+γθ′×  

( ) ( ) ( ) ( ).2sin2cos2cos2sin 2222 γθ′−γθ′=  (103) 

If we now write the cosines in terms of the corresponding sines we have 

( ) ( ) ( ) ( ) +γθ′−θ′=γθ′ 2sin2sin2sin, 222Q  

( ) ( ) ( )2sin2sin2sin 222 γθ′+γ−  

( ) ( ).2sin2sin 22 γ−θ′=   (104) 
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Using now the half-angle trigonometric identities we finally have 

( ) ( ) ( )
2
cos1

2
cos1, γ−−θ′−=γθ′Q  

( ) ( ) .2
coscos θ′−γ

=  (105) 

It is important to note that this is an even function of .θ′  Turning now to 
the numerator ( ),,, γθ′NP  and using the trigonometric identities for the 

sum of two angles we get 

 ( ) ( )[ ] ( )[ ]2coscos,, 1 γ+θ′γ−θ′=γθ′ NNP  

( ) ( ) ( ) ( )[ ] ×γθ′+γθ′= 1111 sinsincoscos NNNN  

( ) ( ) ( ) ( )[ ]2sin2sin2cos2cos γθ′−γθ′×  

( ) ( ) ( ) ( ) +γθ′γθ′= 2cos2coscoscos 11 NN  

( ) ( ) ( ) ( ) +γθ′γθ′− 2sin2sincoscos 11 NN  

( ) ( ) ( ) ( ) +γθ′γθ′+ 2cos2cossinsin 11 NN  

( ) ( ) ( ) ( ).2sin2sinsinsin 11 γθ′γθ′− NN  (106) 

Of these four terms, the first and last ones are even on ,θ′  and the two 

middle ones are odd. Since the denominator is even and the integral on 
θ′  shown in Equation (102) is over a symmetric interval, the integrals of 
the two middle terms will be zero, and therefore we can ignore these two 
terms of the numerator. We thus obtain for our kernel 

( ) ( )
( ) ,,

,,
4
1, 21 γθ′

γθ′
θ′

π
=θ−θ ∫

π

π− Q
NTdPVNK rD   (107) 
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where the new numerator is given by 

( ) ( )[ ] ( ){ } ( ) ( ) +γγθ′θ′+=γθ′ 2coscos2cos21cos,, 1NNNT  

( )[ ] ( ){ } ( ) ( ),2sinsin2sin21sin 1 γγθ′θ′+− NN  (108) 

where ( ) 21θ−θ=γ  and 211 += NN  with { }.,,3,2,1 ∞∈ …N  

Using once again the trigonometric identities for the sum of two angles in 
order to work on the two expressions within pairs of curly brackets, we 
get 

( )[ ] ( ){ }2cos21cos θ′θ′+= NBc  

( ) ( ) ( ) ( )[ ] ( )2cos2sinsin2coscos θ′θ′θ′−θ′θ′= NN  

( ) ( ) ( ) ( ) ( ),2cos2sinsin2coscos 2 θ′θ′θ′−θ′θ′= NN  

( )[ ] ( ){ }2sin21sin θ′θ′+= NBs  

( ) ( ) ( ) ( )[ ] ( )2sin2sincos2cossin θ′θ′θ′+θ′θ′= NN  

( ) ( ) ( ) ( ) ( ).2sincos2sin2cossin 2 θ′θ′+θ′θ′θ′= NN  (109) 

Using now the half-angle trigonometric identities in order to eliminate 
the functions ( )2cos θ′  and ( )2sin θ′  in favor of ( )θ′cos  and ( ),sin θ′  we 

get 

( ) ( ) ( ) ( )
2

sinsin2
cos1cos θ′θ′−θ′+θ′= NNBc  

( ) ( ) ( ) ( ) ( ) ,2
sinsincoscos

2
cos θ′θ′−θ′θ′+θ′= NNN  

( ) ( ) ( ) ( )
2

cos1cos2
sinsin θ′−θ′+θ′θ′= NNBs  

( ) ( ) ( ) ( ) ( ) .2
sinsincoscos

2
cos θ′θ′−θ′θ′−θ′= NNN  (110) 
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Using once more the trigonometric identities for the sum of two angles 
we get 

( ) ( )[ ] ,2
1cos

2
cos θ′++θ′= NNBc  

( ) ( )[ ] .2
1cos

2
cos θ′+−θ′= NNBs  (111) 

We get therefore for our new numerator, using yet gain the trigonometric 
identities for the sum of two angles, 

( ) ( ) ( ) ( ) ( ) ( )[ ] +γγ−γγθ′=γθ′ 2sinsin2coscos2
cos,, 11 NNNNT  

( )[ ] ( ) ( ) ( ) ( )[ ]2sinsin2coscos2
1cos

11 γγ+γγθ′++ NNN  

( ) ( )[ ] ( )[ ] ( ) .2
cos1cos

2
1coscos γθ′++γ+θ′= NNNN  (112) 

We therefore have for the kernel 

( )1, θ−θNK rD  

( ) ( )[ ] ( )[ ] ( )
( ) ( ) ,

coscos
cos1cos1coscosPV

4
1

2 θ′−γ
γθ′++γ+θ′

θ′
π

= ∫
π

π−

NNNNd  

(113) 

where ( ) 21θ−θ=γ  and { }.,,3,2,1 ∞∈ …N  This is exactly the form 

of the integration kernel of the operator ( )[ ]θfNr ,D  given in Equation 

(98), so that this completes the proof of Theorem 6. 

Since the condition stated in Theorem 6 is a necessary and sufficient 
condition on the real function ( )θf  for the convergence of its Fourier 

series, any other such condition must be equivalent to it. Note that this 
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type of condition is not really what is usually meant by a Fourier 
theorem. Those are just sufficient conditions for the convergence, usually 
related to some fairly simple and easily identifiable characteristics of the 
real functions, such as continuity, differentiability, existence of lateral 
limits, or limited variation. However, all such Fourier theorems must be 
related to this condition in the sense that they must imply its validity. 

8. Conclusions and Outlook 

We have shown that the complex-analytic structure that we 
introduced in [1] can be used to discuss the issue of the convergence of 
Fourier series. Using that structure we derived the known formulas for 
the partial sums of a Fourier series, in terms of Dirichlet integrals. From 
that same structure, and in fact as part of the same argument, we also 
obtained a new result, namely, formulas giving the remainders of a 
Fourier series in terms of a similar but considerably more complex type of 
integral, in fact a double integral. 

The introduction of a modified version of the Hilbert transform, 
which we named the compact Hilbert transform, had a central role to 
play in this development. The main result that follows from it is the 
necessary and sufficient condition for the convergence of a Fourier series, 
which is expressed in Equations (97) and (98). One might consider 
whether or not the integration kernel involved in this new type of 
Dirichlet integral, versions of which are shown in Equations (95) and 
(98), can be cast in some more convenient form, and possibly even 
calculated in close form in some useful way. So far no meaningful results 
of this type have been found. 
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A direct calculation of this integration kernel in closed form seems to 
be difficult, and possibly not overly useful, since it seems that such 
calculations tend to just take us back to the rather trivial identity 

( )[ ] ( )[ ] ( )[ ],,, θ−θ=θ fNffN sr DID   (114) 

where ( )[ ]θfI  is the identity operator, whose integration kernel is a 

Dirac delta “function”, an identity which is simply equivalent to 

( ) ( ) ( ).θ−θ=θ F
N

F
N SfR   (115) 

In so far as can be currently ascertained, this identity does not provide 
any constructively useful information about the convergence problem. 

We already knew that he convergence problem of Fourier series 
relates to the existence and nature of singularities of the corresponding 
inner analytic functions on the unit circle. The convergence condition 
expressed in Equations (97) and (98) reflect this relation, since the 
existence of non-integrable singularities at the unit circle may very well 
disturb the validity of the condition by making the integrals diverge or at 
least not go to zero in the ∞→N  limit. Note that this relation is non-
local because, due to the fact that the integrals are over the whole unit 
circle, the existence of a non-integrable singularity at a single point may 
prevent the convergence of the series at almost all points. 

It seems to us, at this time, that the most promising possible 
development of the convergence analysis presented here is probably one 
targeted at detailing the relation between the convergence of the series 
and the specific classification of the singularities on the unit circle, 
involving the concepts of hard and soft singularities, as well as the 
corresponding degrees of hardness or softness that can be attributed to 
them. 
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