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Abstract 

The volume inequalities for general pL  zonoids of even isotropic measures and 

for their duals are strengthened by Ball et al.. Motivated by their way, a 
stronger version of the Brascamp-Lieb inequality for a family of functions is 
proved, which can approximate arbitrary well some Gaussians when equality 
holds. Its application gives the pL  Loomis-Whitney inequality for even isotropic 

measures associated with the support function of pL  projection bodies with 

complete equality conditions. Moreover, we establish a dual version of the 
Loomis-Whitney inequality for isotropic measures with complete equality 
conditions, in which we give the sharp lower bound for the volumes of 
hyperplane sections. This extends Ball’s Loomis-Whitney inequality and dual 
Ball’s Loomis-Whitney inequality to the pL  space, respectively. 
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1. Introduction 

Suppose that 1−nS  is the Euclidean unit sphere. By John’s theorem 

[38] (see also Ball [1]), nB  is the ellipsoid of maximal volume in an origin 

symmetric convex body K if and only if KBn ⊆  and there exist ,,1 "u±  

KSu n ∂∈± − ∩1
k  and ( )ncc ≥> kk 0,,1 "  such that 

.Id
1

niii
i

uuc =⊗∑
=

k
  (1.1) 

Here ⊗  is the tensor product of vectors in n
n Id,R  is the nn ×  identity 

matrix and K∂  is the boundary of K. 

According to Giannopoulos and Papadimitrakis [31] as well as 
Lutwak et al. [52], one call an even Borel measure µ  on the unit sphere 

1−nS  isotropic if 

( ) .Id1 n
S

uudun =µ⊗∫ −
  (1.2) 

In this case, equating traces of both sides we obtain that 

( ) .1 nSn =µ −   (1.3) 

The support function Kh  of a convex compact set K in nR  at nv R∈  

is defined by 

( ) { },:,max KxxvvhK ∈=  

where ⋅⋅,  for the Euclidean scalar product and ⋅  is the induced norm 

in .nR  
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Denote by n
pB  the unit ball of n

pl -space, that is, 

,1,1,:

1

1
∞<≤

















≤












∈= ∑

=

pexxB
p

p
i

n

i

nn
p R  

and 

{ } ,,,,1allfor,1,: ∞==≤∈=∞ pniexxB i
nn "R  

where { }nee ,,1 "  is the standard orthonormal basis of .nR  

Schneider and Weil [68] introduced the notion of pL  zonoids which is 

an kernel ingredient in the pL  Brunn-Minkowski theory. Suppose 1≥p  

and µ  is an even Borel measure on 1−nS  such that its support, supp ,µ  is 

not contained in a subsphere of .1−nS  The pL  zonoid =:pZ  ( )µpZ  

related to µ  is the origin-symmetric convex body whose representation is 

( )( ) ( ) ,,, 1
1

−
µ ∈µ= ∫ −

np
S

p
Z Svudvuvh np  

if ,1=p  this just is the classical zonoid. We let 

( ) ( ) ,,suplim
supp

vuZZ
v

pp µ∈∞→∞ =µ=µ  

and for ,1 ∞≤≤ p  let ( )µ∗
pZ  be the polar of ( ),µpZ  namely, 

( ) ( ) [ ),,1for1,: 1 ∞∈






 ≤µ∈=µ ∫ −

∗ puduxxZ p
S

n
p nR  

( ) { } .forsuppfor1,: ∞=µ∈≤∈=µ∗
∞ puuxxZ nR  

Then ( ) nBZ =µ2  for any even isotropic measure .µ  Obviously, 

( ) ( ) .n
p

n
pnp BBZ ∗== ∗ν   (1.4) 
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For some isotropic measure µ  on ,1−nS  any n-dimensional subspace 

of pL  is isometric to ( )µ∗⋅
pZ  (see, e.g., [44, 51, 53]), where 

( ) ( ) .,,
1

1
np

SZ xuduxx
p

np
R∈







 µ= ∫ −
∗ µ  

Note that the Minkowski functional of a body K 

{ } .,:0min n
K xKxx R∈λ∈≥λ=  

We call a cross measure ν  on 1−nS  if there is an orthonormal basis 

nuu ,,1 "  of nR  such that 

{ } { },,,,,supp 11 nn eeOuu ±±=±±= ""ν  

for some ( ).nOO ∈  Since { }( ) { }( ) 21=−= ii uu νν  for ν,,,1 ni "=  is 

even and isotropic. If we fix a cross measure nν  on ,1−nS  note that 

[ ]∞∈ ,1p  and ( )⋅Γ  is Euler’s Gamma function, then 

( ( ))

( ) ( )

( ) ( )













∞=

≥
+Γ+Γ

+Γ+Γ

=
+

.if,!
2

,1if,
11

11

22
1

22

pn

p
ZV

n

pn

pn

np ν  (1.5) 

In addition, 

( ( ))
( )

( )









∞=

≥
+Γ

+Γ

=∗

.if,2

,1if,
1

12 1

p

pZV
n

p
n

n
p

n

np ν  (1.6) 

( )µ∗
∞Z  plays a crucial role in the reverse isoperimetric inequality. 
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Theorem 1.1. If µ  is an even isotropic measure on ,1−nS  and 

[ ],,1 ∞∈p  then 

( ( )) ( ( )),npp ZVZV ν≥µ  

( ( )) ( ( )).npp ZVZV ν∗∗ ≤µ  

Assuming ,2≠p  equality holds if and only if µ  is a cross measure. 

Theorem 1.1 is the work of Ball [1] and Barthe [8] if µ  is discrete, 

which was extended to arbitrary even isotropic measures µ  by Lutwak et 

al. [51]. The measures on 1−nS  with an isotropic linear image are 
characterized by Böröczky et al. [16]. It is well known that isotropic 

measures on nR  play a central role in the KLS conjecture by Kannan et 
al. [40], see also, e.g., Barthe and Cordero-Erausquin [9], Guedon and 
Milman [32] and Klartag [41]. In particular, the following issues are 
obtained by Li et al. [48] in a recent work: The pL  cosine transform on 

Grassmann manifolds induces finite dimensional Banach norms whose 

unit balls are origin-symmetric convex bodies in ,nR  and they further 

established the reverse isoperimetric type volume inequalities for these 
bodies, which extend the results from the sphere to Grassmann 
manifolds. 

A natural notion of distance between two isotropic measures µ  and ν  

is the Wasserstein distance ( )ν,µδW  which is also called the 

Kantorovich-Monge-Rubinstein distance. In order to give gits definition, 
let ( )wv,∠  be the angle between non-zero vectors v and w; that is, the 

geodesic distance of the unit vectors vv 1−  and ww 1−  on the unit 

sphere. Suppose that ( )1
1Lip −nS  is the family of Lipschitz functions with 

Lipschitz constant at most 1; namely, R→−1: nSf  is in ( )1
1Lip −nS  if 
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( ) ( ) ( )yxyfxf ,∠≤−  for ., 1−∈ nSyx  Then the Wasserstein distance of 

µ  and ν  is defined by 

( ) ( ) .Lip:max, 1
11 






 ∈−µ=µδ −∫ −

n
S

W Sffdfdn νν  

In fact, in this paper, we need the Wasserstein distance of an isotropic 
measure µ  from the closest cross measure. Therefore, in the case of two 

isotropic measures µ  and ,ν  we define 

( ) { ( ) ( )},:,min, nOWWO ∈ΦΦµδ=µδ ∗νν  

where ν∗Φ  denotes the push forward of ν  by .: 11 −− →Φ nn SS  

Recently, a stability version of Theorem 1.1 was established by 
Böröczky et al. [17] as follows: 

Theorem 1.2 (see [17]). Let µ  be an even isotropic measure on ,1−nS  

,2≥n  and let [ ]∞∈ ,1p  with .2≠p  If ( ) 0, >ε≥µδ nWO ν  for [ ),1,0∈ε  

then 

( ( )) ( ) ( ( )),1 3
npp ZVZV νγε+≥µ  

( ( )) ( ) ( ( )),1 3
npp ZVZV ν∗∗ γε−≤µ  

where { }1,2min 23
−=γ − pn cn  for an absolute constant .0>c  

The notion of the generalized n
pl -ball ( )n

n
p

n
p BB ναα = ,, :  formed by 

nν  is defined by (see [46]) 

( ) ,1,1,:

1

1
, ∞<≤

















≤












α∈= ∑

=
α puuxxB

p

i
p

i

n

i

nn
p R  (1.7) 

and 

{ } ,,,,1allfor,1,:, ∞==≤∈=α∞ pniuxxB i
nn "R  
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where ( ) ,,,1,0 niui "=>α  and nν  is a cross measure on 1−nS  such 

that 

{ } { },,,,,psup 11 nnn eeOuu ±±=±±= ""ν  

for some ( ).nOO ∈  

Suppose that µ  is an even isotropic measure on 1−nS  and 1: −α nS  

( )∞+→ ,0  is an even positive continuous function. Much recently, Li and 

Huang [46] defined the “general” pL  zonoid ( )µ= αα ,, : pp ZZ  with 

parametric variables to be the origin-symmetric convex body whose 

support function is given, for each ,nx R∈  by 

( )( ) ( ) ( ) [ ),,1,,
1

1, ∞∈






 µα= ∫ −α µ puduuxxh
p

np
p

S
Z  (1.8) 

and 

( )( ) ( )( ) .,,suplim
psup,, ∞===
µ∈

µ∞→µ αα∞
puxxhxh

u
ZpZ p  

If ν  is a cross measure such that { },,,psup 1 nuu ±±= "ν  we have 

( )( ) ( ) ( ) ( ) ( ),,
1,,

1

,
1

xhxhuuxxh n
p

n
p

p

p BBi
p

i

n

i
Z

α∗
∗

αα
==














α= ∑

=
ν  (1.9) 

for each .nx R∈  For ,1 ∞≤≤ p  let ( )µ∗
α,pZ  be the polar of ( );, µαpZ  i.e., 

( ) ( ) ( ) [ ),,1for1,: 1, ∞∈






 ≤µα∈=µ ∫ −

∗
α puduuxxZ p

S
n

p nR  

( ) { } .forpsupfor1,:, ∞=µ∈≤∈=µ∗
α∞ puuxxZ nR  
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For [ ]∞∈ ,1p  and each ,nx R∈  the origin-symmetric star body 

( )µ∗
α,pZ  in nR  is defined by 

( ) ( ) ( ) ,1,,
1

1,
∞≤≤







 µα= ∫ −
∗
α µ puduuxx

p

np
p

SZ  (1.10) 

and 

.,,sup
psup,

∞==
µ∈

∗
α∞

puxx
uZ  (1.11) 

Note that (1.10) and (1.11) tell us that any n-dimensional subspace of pL  

is isometric to ( )µ∗
α

⋅
,pZ  for some isotropic measure µ  on .1−nS  

In [46], we know that 

( )( ) ( ) ( ) ( ) ( ),,
1,,

1

,
1

xhxhuuxxh n
p

n
p

p

np BBi
p

i

n

i
Z

α∗
∗

αα
==













α= ∑

=
ν  (1.12) 

and 

,1
,

n
p

n
p BOAB −
α =  (1.13) 

where ( )nOO ∈  and { ( ) ( ) }.,,diag 11
1

p
n

p uuA αα= "  The volume of 

the generalized n
pl -ball n

pB α,  and polar body ( )∗α
n
pB ,  in [46] are given by 

( ) ( ) ( ) ( ( )) ( ) ,

11

11
,

pp

i

n

i
npi

n
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p

n
p uZVuBVBV

−

=

∗
−

=
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α= ∏∏ ν  (1.14) 

and 

( )( ) ( ) ( ) ( ( )) ( ) .

11
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n

i
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n

i

n
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n
p uZVuBVBV 
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α= ∏∏

==

∗
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If the unit vectors ( ) ( )nu ii ≥= k
k

1  and positive numbers ( )k 1=iic  are 

satisfied John’s condition 

,Id
1

niii
i

uuc =⊗∑
=

k

 

then the notion of the generalized n
plth-k -unit ball ( )νkk ,

,
,
, : n

p
n
p BB αα =  

formed by ν  is defined by 

( ) .1,1,:

1

1

,
, ∞<≤
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α∈= ∑

=
α puuxcxB

p

i
p

ii
i

nn
p

k
k R  (1.16) 

The main purpose of this article is to generalize the above Theorems 
1.1 and 1.2 to the more general situations of “general” pL  zonoid ( )µα,pZ  

with parametric variables ( ).uα  The following is our main results. 

Theorem 1.3. If µ  is an even isotropic measure on 1−nS  and 

[ ],,1 ∞∈p  and let ( )∞+→α − ,0: 1nS  be an even positive continuous 

function. Let ,n≥k  if there are unit vectors ( )k 1=iiu  and positive numbers 

( )k 1=iic  satisfying John’s condition 

,Id
1

niii
i

uuc =⊗∑
=

k
  (1.17) 

then 

( ( )) ( ( )) ( ) ,

1

1
,

p
ici

i
npp uZVZV 













α≥µ ∏

=
α

k

ν   (1.18) 

( ( )) ( ( )) ( ) .

1

1
,

p
ic

i
i

npp uZVZV
−

=

∗∗
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α≤µ ∏

k

ν  (1.19) 
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If equality holds in (1.18) and (1.19), then there is an origin symmetric 

regular crosspolytope in nR  such that kuu ,,1 "  lie among its vertices. 

Conversely, equality holds in (1.18) and (1.19) if n=k  and nuu ,,1 "  

form an orthonormal basis of .nR  

When n=k  and taking ii eu =  with 1=ic  for all ,,,1 ni "=  we 

see the following fact. 

Corolloary 1.4. If µ  is an even isotropic measure on 1−nS  and 

[ ],,1 ∞∈p  then 

( ( )) (( ) ),,,
∗

αα ≥µ n
pp BVZV   (1.20) 

( ( )) ( ).,,
n
pp BVZV α

∗
α ≤µ   (1.21) 

Assuming ,2≠p  equality holds in (1.20) and (1.21) if and only if µ  is a 

cross measure. 

Theorem 1.5. Let µ  be an even isotropic measure on ,2,1 ≥− nSn  

and let ( )∞+→α − ,0: 1nS  be an even positive bounded continuous 

function, and [ ]∞∈ ,1p  with .2≠p  If ( ) 0, >ε≥µδ nWO ν  for [ ),1,0∈ε  

and there are unit vectors ( )k 1=iiu  as well as positive numbers ( )k 1=iic  

satisfying John’s condition (1.17), then 

( ( )) ( ) ( ( )) ( ) ,1

1

1

3
,

p
ic

i
i

npp uZVZV 












αγε+≥µ ∏

=
α

k

ν  (1.22) 

( ( )) ( ) ( ( )) ( ) ,1

1

1

3
,

p
ici

n

i
npp uZVZV

−

=

∗∗
α 













αγε−≤µ ∏ν  (1.23) 

where { }1,2min 23
−=γ − pn cn  for an absolute constant .0>c  
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Letting n=k  and taking ii eu =  with 1=ic  for all ,,,1 ni "=  the 

following is a direct result. 

Corolloary 1.6. Let µ  be an even isotropic measure on ,2,1 ≥− nSn  

and let ( )∞+→α − ,0: 1nS  be an even positive bounded continuous 

function, and [ ]∞∈ ,1p  with .2≠p  If ( ) 0, >ε≥µδ nWO ν  for [ ),1,0∈ε  

then 

( ( )) ( ) (( ( )) ),1 ,
3

,
∗

αα γε+≥µ n
n
pp BVZV ν   (1.24) 

( ( )) ( ) ( ( )),1 ,
3

, n
n
pp BVZV να

∗
α γε−≤µ   (1.25) 

where { }1,2min 23
−=γ − pn cn  for an absolute constant .0>c  

The ideas and techniques of Ball [1], Barthe [6], Lutwak et al. [51], 
Böröczky et al. [16] and especially Böröczky et al. [17] play a critical role 
throughout this paper. It would be impossible to overstate our reliance on 
their work. 

In order to obtain a generalized inequality of Theorem 1.1 and a 
stability version of Theorem 1.5, we need some basic concepts and facts, 
and also need some analytic inequalities such as the estimates of the 
derivatives of the corresponding transportation maps established in 
Section 4, a basic algebraic inequality provided in Section 4 of [15] and 
Aczel’s inequality [43]. 

The rest of this paper is organized as follows: In Section 2, the 
background materials are provided. The Proof of Theorem 1.3 are 
completed in Section 3. In Sections 5 and 6, we deal with Theorem 1.5. 
Section 7 is dedicated to prove the pL  Loomis-Whitney and reverse pL  

Loomis-Whitney inequalities. 
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2. Background Materials 

2.1. Some definitions and notations 

For quick later reference we recall some background materials. The 
excellent references are the books by Gardner [27] and Schneider [67]. 

Let n
oK  denote the space of convex bodies in nR  equipped with the 

Hausdorff metric. For n
oK K∈  and ( ),nGLA ∈  we write  { }KxAxAK ∈= :  

for the image of K under A. If ,0>λ  then  { }KxxK ∈λ=λ :  is the 

dilation of K by a factor of .λ  The polar body ∗K  of K is defined by 

{ }.allfor1,: KyyxxK n ∈≤∈=∗ R  

It follows from the definition of the polar ∗K  of K that for ( ),nGLA ∈  

( ) ,∗−∗ = KAAK t  where tA−  is the inverse and transpose of A. 

The Minkowski functional Kx  of n
oK K∈  (or K is a star body with 

respect to the origin) is defined by 

{ },:0min tKxtx K ∈>=  

for .nx R∈  It is easy to verify that ( ).⋅=⋅ ∗KK h  

We need some facts from the pL  Brunn-Minkowski theory of convex 

bodies. Firey [25] introduced the concept of pL  combinations of convex 

bodies in the early 1960s, which emerge the new theory. These pL  

Minkowski-Firey combinations were shown to lead to an embryonic pL  

Brunn-Minkowski theory in the works of Lutwak [54, 55]. This theory 
has witnessed a rapid growth. The detailed bibliography on the topic we 
refer the reader to Chapter 9 of [67] and the references therein. 
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For ,,,1 n
oLKp K∈≥  and ,0>ε  the pL  Minkowski-Firey 

combination LK p ⋅ε+  is the convex body whose support function is 

given by 

( ) ( ) ( ).⋅ε+⋅=⋅⋅ε+
p
L

p
K

p
LK hhh

p
 

The pL  mixed volume ( )LKVp ,  of n
oLK K∈,  was defined in [54] by 

( )
( ) ( )

.lim,
0 ε

−⋅ε+
=

+→ε

KVLKV
n
pLKV p

p  

In particular, ( ) ( )., KVKKVp =  The pL  Minkowski inequality [54] 

states that for ,, n
oLK K∈  

( ) ( ) ( ) ,, ppnn
p LVKVLKV −≥   (2.1) 

with equality if and only if K and L are dilates when 1>p  and if and 

only if K and L are homothetic when .1=p  

It was shown in [54] that there is a positive Borel measure, ( ),, ⋅KSp  

on 1−nS  so that 

( ) ( ) ( ),,1, 1 uKdSuhnLKV p
p
LS

p n∫ −
=   (2.2) 

for ,, n
oLK K∈  where ( ) ( )⋅=⋅ −

K
p

Kp dShKdS 1,  is the pL  surface area 

measure of K and KdS  is the classical surface area measure of K. 

An important notion from the pL  Brunn-Minkowski theory is the pL  

projection body Kp∏  introduced by Lutwak et al. [59]. The pL  

projection body ( )1≥∏ pKp  of n
oK K∈  is the origin-symmetric convex 

body defined by (also see [46]) 
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( )
( )

( ) ,,,,1 1

1

1
−

∗

∏ ∈















= ∫ −

n
p

p
Sn

p
K SvuKdSuv

BV
vh

p

n
n
pp  (2.3) 

where ( )⋅,KdSp  is the pL  surface area measure of K and n
pB ∗  is the 

unit ball of the space .n
pl ∗  Here ∗p  is the Höder conjugate of p; i.e., 

.111 =+ ∗pp  The case 1=p  is the classical projection body .K∏  The 

normalization above is chosen so that for ,1=p  we have 

( ) ( ) ( ) ,,,2
1vol 1

1 1
−⊥

−∏ ∈== ∫ −
n

K
S

nK SvudSuvvKvh n  (2.4) 

where ( )⋅KdS  is the surface area measure of K. 

A compact set nK R⊂  is a star-shaped set (with respect to the 
origin) if the intersection of every straight line through the origin with K 

is a line segment. Let nK R⊂  be a compact star-shaped set (with 

respect to the origin); the radial function { } RR →ρ 0\: n
K  is defined by 

( ) { }.:0max KxxK ∈λ≥λ=ρ  

If Kρ  is positive and continuous, then we call K a star body (with respect 

to the origin). Let n
oS  be the class of star bodies (with respect to the 

origin) in .nR  Two star bodies K and L are said to be dilates (of each 

other) if ( ) ( )uu LK ρρ  is independent of .1−∈ nSu  It is easy to see that 

for ( ) ., 1
KK

n
oK ⋅=⋅ρ∈ −S  

In the following, we also require some basic facts of the dual Brunn-
Minkowski theory due to Lutwak [56]. Some further details were 
provided in [57, 58]. The theory was developed very fast by many authors 
[14, 28, 29, 30, 33, 34, 35, 36, 50, 54, 55, 59, 60, 62, 63, 64, 69, 71]. 
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For ,R∈p  the dual mixed volume ( )LKVp ,~  of n
oLK S∈,  was 

defined in [56] by 

( ) ( ) ( ) ,1,~
1 duuunLKV p

L
pn

KS
p n ρρ= −∫ −

  (2.5) 

where the integration is with respect to spherical Lebesgue measure. In 

particular, ( ) ( ).,~ KVKKVp =  A basic inequality for the dual mixed 

volumes pV~  is the dual Minkowski inequality, which states that, for 

,, n
oLK S∈  

( ) ( ) ( ) ,0,,~ npLVKVLKV ppnn
p <<≤ −   (2.6) 

( ) ( ) ( ) .or0,,~ nppLVKVLKV ppnn
p ><≥ −   (2.7) 

Equality holds in each of the inequalities if and only if K and L are 
dilates. 

Suppose 0>p  and .n
oK S∈  The polar pL -centroid body, ,Kp

∗Γ  of K 

is the body whose Minkowski functional is given, for ,nx R∈  by 

( ) ( ) .,1
1
p

p
dxyxKVux p

KK 





= ∫∗Γ  (2.8) 

Lutwak and Zhang [61] introduced a normalized definition for .1≥p  
When ,1=p  the body KΓ  is the classical centroid body, which was 
defined and investigated by Petty [65]. For more information about the 

pL -centroid body, see, e.g., [21, 22, 34, 59, 63]. 

By the polar coordinate formula, for ,1−∈ nSu  we have 

( ) ( )
p

p
dxyuKVux p

KK

1

,1






= ∫∗Γ  

( ) ( ) ( ) ( ) .,1
1

1
p

n vdvvuKVpn
pn

K
p

S







 ρ
+

= +∫ −
 (2.9) 
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2.2. An auxiliary analytic stability result 

The following two estimates is due to Ball [2]. For a simpler proof of 
(i), see [8]. 

Lemma 2.1. The following two assertions are true: 

(i) For any ,0,,1 >ktt "  we have 
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tuuct ∏∑

==
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kk
 (2.10) 

(ii) If ,1 iiii ucz θ= ∑ =
k  for ,,,1 R∈θθ k"  then 
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Lemma 2.2. Let ,0,,,1 1 >+≥ kk ttn "  and let nvv R∈k,,1 "  
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The following observation from [15] will be estimated the ∗θ  from 
below. 
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Lemma 2.3 (see [15]). If ,0,, >xba  then 
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We need the following Aczel inequality. 

Lemma 2.4 (see [43], p. 200). Let ( ) ( ) ,,,,,, 11
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with equality if and only if .
1
1

k

k
b
a

b
a

== "  

3. Volume Inequalities for General pL  Zonoids of  

Even Isotropic Measures 

The rank one geometric Brascamp-Lieb inequality (3.1) identified by 
Ball [2] is an essential case of the rank one Brascamp-Lieb inequality by 
Brascamp and Lieb [20]. The reverse form (3.2) is due to Barthe [7] and 

[8]. If 1
1 ,, −∈ nSuu k"  are distinct unit vectors and 0,,1 >kcc "  

satisfy 

,Id
1

niii
i

uuc =⊗∑
=

k
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and kff ,,1 "  are non-negative measurable functions on ,R  then 

( ) ,,
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i
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n
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i
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c
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i
fdxuxf 
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== RR
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 (3.1) 

and 

( ) .sup
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i
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n
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i
i

c
ii

iucx
fdxf 






≥θ ∫∏∏∫
==θ∑=

∗

=
RR

kk

k
 (3.2) 

In (3.2), the supremum extends over all .,,1 R∈θθ k"  Note that the 

integrand is not a measurable function. Therefore, we need to consider 
the outer integral. If ,n=k  then nuu ,,1 "  form an orthonormal basis 

and therefore kθθ ,,1 "  are uniquely determined for a given .nx R∈  

Together with Barthe [8], if equality holds in (3.1) or in (3.2) and 
none of the functions if  is identically zero or a scaled version of a 

Gaussian, then there is an origin symmetric regular crosspolytope in nR  
such that kuu ,,1 "  lie among its vertices. Conversely, equality holds in 

(3.1) and (3.2) if each if  is a scalled version of the same centered 

Gaussian, or if n=k  and nuu ,,1 "  form an orthonormal basis. 

The rank one Brascamp-Lieb inequality has a deeper discussion by 
Carlen and Cordero-Erausquin [24]. The higher rank case is reproved by 
Lieb [45] and further explored by Barthe [8] (including a discussion of the 
equality case). That is again carefully analyzed by Bennett et al. [11]. In 
particular, what we need see is the work of Barthe et al [10] for an 
enlightening review of the relevant literature and an approach via 
Markov semigroups in a quite general framework. 

According to the mass transportation by Ball [3], Barthe [7, 8] 
provided concise proofs of (3.1) and (3.2). The main ideas of his method 
were sketched, because it will be the starting point of subsequent 
refinements. 
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The following observation due to Ball [1] will often be used. If K is an 

origin symmetric convex body in nR  with associated norm K⋅  and if 

[ ),,1 ∞∈p  then 

( ) .
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1 dxe

p
nKV

p
K

n
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 +Γ

=
R

 (3.3) 

We note that for 1≥p  and ,0>λ  we have 

.112
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 +Γλ=

−λ−∫ pdte ppt
R

 (3.4) 

Suppose that each if  is a positive continuous probability density both 

for (3.1) and (3.2), and ( )
2tetg π−=  is the Gaussian density Here, for 

,,,1 k"=i  we consider the transportation map RR →:iT  satisfying 

( )
( ) ( )
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i
t ii

∫∫
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Obviously, iT  is bijective, differentiable and 

( ) ( ) ( )( ) ( ) ( ) ., R∈α′⋅α= tutTtTugtf iiiii   (3.6) 

By these transportation maps, we associate the smooth transformation 
nn RR →Θ :  given by 
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1

n
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i
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satisfing 
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i
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In this case, ( )xdΘ  is positive definite and nn RR →Θ :  is injective (see 

[7, 8]). 
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In the following, we start with a generalization of Theorem 1.1. 

Proof of Theorem 1.3 in the case ( ) :, µα
∗
pZ  Set .n≥k  For  

k,,1 "=i  and any .1−∈ n
i Su  Consider the following probability 

densities on R  given by 
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where 

[ ]( )
[ ]





 −∈

=−
.otherwise,0

,1,1if,1
1 1,1

t
t  

Let µ  is discrete, { }kuu ,,supp 1 "=µ  and { }( ) .,,1,0 k"=>=µ icu ii  

Since µ  is isotropic, we get ( ) .1
1 ncS ii

n ==µ ∑ =
− k  From (3.3), (1.10) and 

(3.6), it follows that (i) of Lemma 2.1 has ( ) ( ),, iiii uxuTt α′=  the 

definition of Θ  and (ii) of Lemma 2.1 have ( ) ( ),, xuTu iiii α=θ  and 

finally has the transformation formula. Therefore, if [ ),,1 ∞∈p  we 

obtain 
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Using the Brascamp-Lieb inequality (3.1) directly and Equation (3.4), 
we have 
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On the other hand, if ∞=p  and [ ],12
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1,1−=if  we give 
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Equality in (3.9) forces equality in the Brascamp-Lieb inequality (3.1). 
Thus n2=k  and kuu ,,1 "  produce the vertices of a regular 

crosspolytope in .nR  Conversely, equality holds in (3.9) if n=k  and 

nuu ,,1 "  form an orthonormal basis of .nR  

Now suppose that µ  is an arbitrary isotropic measure on .1−nS  

Similar to [6], we can construct a sequence ,, N∈µ kk  of discrete 

isotropic measures such that µ  converges weakly to µ  as .∞→k  This 

obtain that ( )( ) ( )( )vhvh pp ZZ µµ∞→ αα
= ,,lim

kk  for every .1−∈ nSv  From 

the fact that the point wise convergence of support functions implies the 
convergence of the respective convex bodies in the Hausdorff metric    
(see, e.g., [67], Chapter 1), it follows that the continuity of volume and 
polarity on convex bodies containing the origin in their interiors finishes 
the proof. 
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Let each if
~  be a positive continuous probability density both for (3.1) 

and (3.2), and also let 
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be the Gaussian density. On the reverse Brascamp-Lieb inequality (3.2), 
the transportation map RR →:iS  satisfies 
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holds for the smooth transformation nn RR →Ψ :  given by 
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In this case, ( )xdΨ  is positive definite and nn RR →Ψ :  is injective (see 
[7, 8]). 

Proof of Theorem 1.3 in the case ( ) :µαp,Z  Without loss of 

generality, since µ  is discrete, for the lower bound on the volume of the 

pL  zonotopes and [ ]∞∈ ,1p  we choose [ ]∞∈∗ ,1p  such that .111 =+
∗pp  

If [ ),,1 ∞∈p  then define an (auxiliary) origin symmetric convex body by 

( ) ( ) .1: 1

11
,













≤θαθ=µ −

==
α ∑∑ p

i
p

ii
i

iii
i

p ucucM
kk

 



TONGYI MA 64

We use the reference to µ  when it do not cause any misunderstanding. 

In particular, 
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For k,,1 "=i  and any ,1−∈ n
i Su  the following probability 

densities on R  will be considered 
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Next if [ ),,1 ∞∈p  then from (3.13), the volume formula (3.3), the 

norm (3.12) of α,pM  and the reverse Brascamp-Lieb inequality (3.2), we 
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By the reverse Brascamp-Lieb inequality (3.2), we also have 
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Equality in (3.16) forces equality in the reverse Brascamp-Lieb 
inequality. Thus n2=k  and kuu ,,1 "  form the vertices of a regular 

crosspolytope in .nR  Conversely, equality holds in (3.16) if n=k  and 

nuu ,,1 "  form an orthonormal basis of .nR    

4. The Transportation Maps 

Since [ ]∞∈ ,1p  and the map ( )∞→α − ,0: 1nS  is a continuous 

positive function, the density functions is considered 
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For each ,1−∈ nSu  the strictly increasing function RR →/ϕ :, ,, upup v  
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Using 

( ) ,2
1if1log2 −≥≤+≤− sssss  

and the following properties of the Γ  function: 

(i) ( )tΓlog  is strictly convex for ;0>t  
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this is a contradiction. Thus together (4.3) with (4.7) get that 
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The following simple estimate will play a crucial role in the proofs of 
Lemmas 4.2 and 4.3. 

Lemma 4.1 (see [17]). For ( ) { }2\3,1∈p  and ,0>a  let ( ) −= attf  

1−ppt  for [ ].1,0∈t  

(a) If ( ) ( ) 0,2,1 ≤∈ τfp  for some ( ]1,0∈τ  and ( ],2,0 τ∈t  then 

( ) ( ) ( ) .
2

21 1
4

−
−

⋅
−−

−< p
p tppptf  
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(b) If ( ) ( ) 0,3,2 ≥∈ τfp  for some ( ]1,0∈τ  and ( ],2,0 τ∈t  then 

( ) ( ) ( ) .
2

21 1
4

−
−

⋅
−−

> p
p tppptf  

For ease of notations, let upp ,ϕ=ϕ  and .,upp vv /=/  

Lemma 4.2. Let [ ] { }2,1 ∞∈p  and ( ),8
1,0∈t  and let →α −1: nS  

( )∞,0  be a continuous bounded function. Then 

( ) ( ) ( ) ( )
[ ),2,148

2 1
∈⋅α−−<ϕ′′

α−
pifteupt

u
p  (4.11) 

( ) ( ) ( ) ( ],3,25
2 3.1 ∈⋅α−>ϕ′′ piftuptp  (4.12) 

( ) ( ) ( ].,32.0 3.1 ∞∈⋅α>ϕ′′ piftutp  (4.13) 

Proof. First, we let .pϕ=ϕ  Thus ( ) 00 =ϕ  as ϕ  is odd. From the 

fact that ϕ  is strictly increasing, we have ( ) 0>ϕ t  if .0>t  

Let [ ] { }.2,1 ∞∈p  For ,0>t  differentiating (4.1) gives the formula 

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ,
11 2

11

2

+Γ
αϕ′=

+Γ
α ϕα−α− uteeu tu

p

tu p

 (4.14) 

i.e., 

( )
( )
( )

( ) ( ( ) ).
1
1 2

1
2
1 pttu

p
et −ϕα

+Γ

+Γ
=ϕ′  (4.15) 

Differentiating again, we have 

( ) ( ) ( ) ( )( ) ( ).2 1 tptttut p ϕ′−ϕ′ϕα=ϕ′′ −  (4.16) 

The following argument is to use the value 

( ) [ ) { }.2\,1for2 2
1

∞∈= − ppt pp  



VOLUME INEQUALITIES FOR GENERAL … 71

The function ptp 6  is continuously extended to 2=p  by ,21
2

−= et  

and then this function is increasing on [ ).,1 ∞  In particular, 21≥pt  for 

[ ).,1 ∞∈p  

Moreover, we use the following fact to obtain that for given 

( ) 1,1,0 −∈ pptpet 6  is a decreasing function of .1≥p  

First, we prove that for [ )2,1∈p  and ( ).4
1,0∈t  Thus we obtain 

( ) ( ) ( ) ( )
,48

2 1
teupt

u
⋅α−−<ϕ′′

α−
 which proves (4.11). 

In this case, ( ) 10 <ϕ′  by (4.15), (i), (ii) and (iv). Since ϕ′  is 

continuous, there exists a largest ( ]∞∈ ,0ps  such that ( ) 1<ϕ′ t  if t<0  

.ps<  Thus, if ( ),,0 pst ∈  then ( ) ,tt <ϕ  and in turn (4.16) yields that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ).22 11 tpttutptttut pp ϕ′−α<ϕ′−ϕ′ϕα=ϕ′′ −−  

For [ )2,1∈p  and [ ],,0 ptt ∈  we have .02 1 ≤− −pptt  In particular, 

( )tϕ′  is monotone decreasing on ( { }),,min,0 pp ts  which in turn implies 

that .pp ts ≥  We obtain from (4.8) that 

( ) ( ) ( ) ( )
.1.3

1,0for1.3
2 11






∈α−<ϕ′′

α−−
teupttt

up
 (4.17) 

Now we distinguish two cases. If ,25.1 <≤ p  then from (4.17) and 

Lemma 4.1 (a), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

eup
teupppt

u
p

p

u
⋅

×

α−
−<⋅

×

α−−
−<ϕ′′

α−
−

−

α−

5.2

1
4
3

1
4

1

21.3

2

21.3
21  

( ) ( ) ( )
.4

1,0for,24
2 1






∈⋅α−−<

α−
tteup u

 (4.18) 
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If ,5.11 ≤≤ p  then when estimating the right-hand side of (4.17) for a 

given ( ),4
1,0∈t  Let .5.1=p  Using Lemma 4.1 (a), inequality (4.18) to 

obtain that if 5.11 ≤≤ p  and ( ),4
1,0∈t  then 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1.3
5.12

1.3
2 15.011 uup eutteupttt

α−α−− α−
≤

α−
<ϕ′′  

( ) ( ) ( ) ( ) ( ) ( )
.48

2
24

5.12 11
teupteu uu
⋅α−−≤⋅α−−≤

α−α−
 (4.19) 

Second, if 3.22 ≤< p  and ( ),4
1,0∈t  then we prove that ( ) >ϕ ′′ t  

( ) ( ) .2
2 3.1

11

tup p
⋅α− −

 

In this case, ( ) 10 >ϕ′  by (4.15), (i), (iii) and (iv). Since ϕ′  is continuous, 

there exists a largest ( ]∞∈ ,0ps  such that ( ) 1>ϕ′ t  if .0 pst <<  Thus 

if ( ),,0 pst ∈  then ( ) ,tt >ϕ  and in turn (4.16) yields that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ).22 11 tpttutptttut pp ϕ′−α>ϕ′−ϕ′ϕα=ϕ′′ −−  

For 2>p  and [ ],,0 ptt ∈  we have .02 1 ≥− −pptt  In particular, ( )tϕ′  is 

monotone increasing on ( { }),,min,0 pp ts  which, in turn, implies that 

.pp ts ≥  We have that 

( ) ( ) ( ) ( ).2
1,0if2 1 ∈−α>ϕ′′ − tpttut p  (4.20) 

From (4.20) and Lemma 4.1 (b), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3.13.1
2

1
4 2

2
2

22
2

21 tputputppput p
p ⋅

−α
=⋅

−α
>⋅

−−α
>ϕ′′ −

−
 

.4
1,0if 




∈t  
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If 3.2≥p  and ,8
1,0 




∈t  then ( ) ( ) ,2.0 3.1tut α>ϕ′′  the proof of (4.12) 

is completed. 

In this case, ( ) 20 π>ϕ′  by (4.15), (i)-(iv). Since ϕ′  is continuous, 

there exists largest ( ]4
1,0∈ps  such that ( ) 2

π>ϕ′ t  if ( ).,0 pst ∈  

Thus if ( ],,0 pst ∈  then ( ) .2 tt π>ϕ  Since 1−pptp 6  is a decreasing 

function of ,1≥p  we get 

( ) ( ) ( )( ) ( ) ( ) ,03.2222 3.111 ≥




 −πα≥





 −πα≥−ϕ′ϕα −− ttupttuptttu pp  

for .4/10 ≤< ps  Thus (4.16) implies that 

( ) ( ) ( ) ( )( ) ( ) ( ) ,23.222 3.11 π





 −πα>ϕ′−ϕ′ϕα=ϕ′′ − ttutptttut p  

for ( ].,0 pst ∈  Particularly, we deduce that .4
1=ps  Thus Lemma 4.1(b) 

gives that 

( ) ( ) ( ) ( ) .8
1,0for2.0

2
3.03.13.22 3.13.1

7.1 




∈⋅α>⋅

α⋅⋅⋅π
>ϕ ′′ ttutut  

If ∞=p  and ,0>t  then ( ) ( ) ,tut α>ϕ′′  which obtains the proof of 

(4.14). Differentiating (4.1) we prove that for ( ),1,1−∈t  

( ) ( ) ( ) ( ) ( ) ,22
11

22 tutu eet ϕαϕα π=




 +Γ=ϕ′  (4.21) 

( ) ( ) ( ) ( ) .2 2ttut ϕ′ϕα=ϕ′′  (4.22) 
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Since ( ) 0>ϕ t  for ,0>t  we get ( ) 0≥ϕ′′ t  by (4.22), this implies that ( )tϕ′  

is monotone increasing for .0≥t  Therefore ( ) ( ) 20 π=ϕ′≥ϕ′ t  by (4.21), 

in turn, which from (4.22) gives that 

( ) ( ) ( ) ( ).1,0for22
3

∈α>






 πα≥ϕ′′ ttutut  

Thus all estimates of Lemma 4.2 have been proved for .ϕ′′   

Lemma 4.3. Let [ ] { }2,1 ∞∈p  and ( ),10
1,0∈t  and let 1: −α nS  

( )∞→ ,0  be a continuous function. Then 

( ) ( ) ( ) [ ),2,116
2

∈⋅
−α

>′′/ piftputvp  (4.23) 

( ) ( ) ( )( ) ( ],3,211
2 3.1

1
∈⋅−α−<′′/

α−
piftpeutv

u
p  (4.24) 

( ) ( ) ( )
( ].,311

3.1
1

∞∈⋅α−<′′/
α−

pifteutv
u

p  (4.25) 

Proof. To simplify notation, let .pvv /=/  Since v/  is odd, we have  

( ) .00 =/v  This gives ( ) 0>/ tv  if .0>t  Turning to ,v ′′/  we just sketch the 

main steps. In this case, differentiating (4.2) obtains the formulas 

( ) ( ) ( ( ) ),

2
11

11 2ttvu p
eptv −/α






 +Γ






 +Γ

=′/  (4.26) 

( ) ( ) ( ) ( )( ) ( ).21 tvttvtvputv p ′/−′//α=′′/ −  (4.27) 

First, for 21 <≤ p  and ,8
1,0 




∈t  we obtain that ( ) ( )( ) ,16

2 tputv ⋅
−α

>′′/  

which gives (4.23).  
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If [ ),2,1∈p  then ( ) 10 >′/v  by (i), (ii) and (iv). Similar to the proof of 

Lemma 4.2, we get 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) .2
1,0for22 11





∈−α>′/−′//α=′′/ −− ttptutvttvtvputv pp  

(4.28) 

If ,25.1 <≤ p  then it follows from (4.28) and Lemma 4.1 (a) that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) tput
pu

tppputv p
p ⋅

−α
>⋅

−α
>⋅

−−α
>′′/ −

− 8
2

2

2

2
21

5.2
4
3

1
4  






∈ 8

1,0for t  

If ,5.11 ≤≤ p  then when estimating the right-hand side of (4.28) for 

a given ( ) 1,1,0 −∈ pptpet 6  is a decreasing function of .1≥p  We may 

let .5.1=p  In fact, (4.28) obtains that if 5.11 ≤≤ p  and ( ),1,0 et ∈  

then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .16
2

8
5.1225.12 5.01 tpututtutptutv p ⋅

−α
≥⋅

−α
≥−α≥−α>′′/ −  

(4.29) 

Next, for 3.22 ≤< p  and ( ),4
1,0∈t  we will show that ( ) <′′/ tv  

( ) ( ) .7
2 3.1tpu

⋅
−α

−  

If ( ],3.2,2∈p  then ( ) 10 <′/v  by (i)-(iv). From the arguments similar 

to the ones used in the proof of Lemma 4.2, we give 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )tvpttutvttvtvputv pp ′/−α−<′/−′//α=′′/ −− 11 22  

( ) ( )( ) .1.3
1,0for01.3

2 11





∈<

−α
−<

−α−
tptteu pu
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It follows from Lemma 4.1 (b) that 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 3.1
2

1
1

1

1

21.3
22

21.3
21 tpeutpppeutv

u
p

p

u
⋅

⋅

−α
−<⋅

⋅

−−α
−<′′/

α−
−

−

α−
 

( ) ( )( ) .8
1,0for7

2 3.1
1






∈⋅

−α
−<

α−
ttpeu u

 

Set 3.2≥p  and ( ).10
1,0∈t  We now prove that ( ) ( ) ( )

⋅α−<′′/
α−

11
1 ueutv  

,3.1t  which gives the proof of (4.24). 

In this case, ( ) π<′/ 20v  by (i)-(iv). There exists a maximal  

( ]5
1,0∈ps  such that if ( ),,0 pst ∈  then ( ) .2 π<′/ tv  Thus if 

( ),,0 pst ∈  then ( ) ( ) ,2 ttv ⋅π</  and, in turn, (4.27) yields that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ).222 11 tvtptutvttvtvputv p
p

p ′/









−








π
α<′/−′//α=′′/ −−  (4.30) 

Take ( ],2
1,0∈t  

( ),,2for02log12log 1 ∞∈<
π

+=



















π
− pt

pptdp
d p

p
 

(4.30) gets that if ( ],,0 pst ∈  then 

( ) ( ) ( ) ( )( ) ( )tvttvtvputv p ′/−′//α=′′/ − 21  

( ) ( ) ( ) ( ) ( ),223.22 3.2
3.1

3.2
tvtfutvttu ′/








π
⋅α=′/










−⋅








π
α<  (4.31) 

where 

( ) .223.2
3.2

3.1 tttf
−








 π−=  
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Here ( ) ,05
1 <f  thus with ,5

1=τ  Lemma 4.1 (b) has 

( ) .10
1,0for27.0

2
3.03.13.2 3.13.1

7.1 




∈⋅−<⋅⋅⋅−< ttttf  

Together (4.10) with (4.31), we obtain 

( )
( ) ( ) ( ) ( ) ( )

.10
1,0for111.3

27.0 3.113.13.221






∈⋅α−<

⋅⋅⋅α
−<′′/

α−
π

α−

tteuteu
tv

uu

 

Finally, for ∞=p  and ( ),1.3
1,0∈t  we pove ( ) ( ) ,1.3

2 tutv ⋅α−<′′/  this 

gives the proof of (4.25).  

Differentiating (4.2) it follows that if ,0>t  then 

( ) ( ) ( ) ,2

2
11

1 22 tutu eetv α−α−

π
=






 +Γ

=′/  

( ) ( ) ( ) .2 ttvutv ′/α−=′′/  

From (4.10), we obtain that ( ) ( ) ( )

1.3
2 1 teutv

uα−α−<′′/  for .1.3
1,0 





∈t  

In summary, we have established all estimates of Lemma 4.3 for .v ′′/  

 

5. The Volume of ∗
αp,Z  

In this section, we establish a stability result for the volume of ∗
α,pZ  

stated in Theorem 1.5. The other part of this theorem is given in Section 
6. In order to prove the stability theorem, we need some lemmas from 
literature [17] which are basic estimates on isotropic measures. 
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For ( ]2,0 π∈α  and ,1−∈ nSv  we consider the following closed and 

open spherical caps: 

( ) { },cos,:, 1 α≥∈=αΩ − vuSuv n  

( ) { }.cos,:,~ 1 α>∈=αΩ − vuSuv n  

Lemma 5.1. If µ  is an isotropic measure on ,, 11 −− ∈ nn SvS  and 

,2,0 




 π∈α  then 

( )( ) ( )( ) .cos1,~,~ 2 α−≥α−Ωµ+αΩµ nvv  

Lemma 5.2. Let ( ) ( ) .2 211 +−+−=β nn n  If µ  is an isotropic measure on 

,1−nS  then there exist 1
1 ,, −∈ n

n Svv "  such that ( )( ) ,, n
iv β≥βΩµ  for 

,,,1 ni "=  and such that if ( ),, βΩ∈ ii vw  for { },,,1 ni "∈  then 

[ ] .2,,det 1 β≥ nww n"  

Lemma 5.2 states that for any isotropic measure µ  on ,1−nS  there 

exist spherical caps 1
1 ,, −⊆ n

n SXX "  whose µ -measure is bounded 

from below and which have the additional property that for any vectors 
{ },,,1, niXw ii "∈∈  also the determinant [ ]nww ,,det 1 "  is bounded 

from below. 

Lemma 5.3. For an isotropic measure µ  on ,1−nS  let 1
1 ,, −∈ n

n Svv "  

and β  be as in Lemma 5.2. For every { }ni ,,1 "∈  and ( ),,0 β∈η  

(i) there exists ( )βΩ∈ ,ii vq  such that 

( ) ( )( ) ,4,, nqv
n

ii
β≥βΩβΩµ ∩  
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(ii) or there exist ( )βΩ⊆ΨΨ ,, 21 iv  such that 

( ) ,2,14 =β≥Ψµ jforn
n

j  

.221121 Ψ∈Ψ∈η≥− aandafor
n

aa  

The points 21, qq  and the sets 21, ΨΨ  can be chosen independently of 

( ).,0 β∈η  

Lemma 5.4. For 1
0, −∈ nSuu  with ,0, 0 ≥uu  we have ( ) ≥Ξ 0,uuV  

,240n
nκ  where nκ  is the n-dimensional measure of the unit ball in ,nR  

and 

.120,,30
1,,30

1,:1.0 0
00, 0 






 −

≥−≥≥∈=Ξ
uuuuyuyuyBy n

uu  

(5.1) 

Lemma 5.5. If ,,, 1
1

−∈ n
n Sbb "  and n

nss R∈,,1 "  satisfy ≤is  

[ ] ,4,,det 1 nbb n"  then 

[ ] [ ] .2,,det,,det 111 nnn bbsbsb "" ≥++  

Lemma 5.6. Let ,2≥n  let ,
!4

1,0 





∈

n
t n  and let .,, 1

1
−∈ n

n Suu "  

If 

{ } ,0,,1arecos, 1 /≠±±













 −Ω nuut

n
u "∩  

for any ,1−∈ nSu  then there exists a cross measure ν  such that 

{ }( ) .!4,,,supp 1 tnuu n
nH ⋅≤±±δ "ν  
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Lemma 5.7. Let µ  be an even isotropic measure, and let ν  be a cross 

measure on 1−nS  with { }.,,supp 1 nww ±±= "ν  If 




 π∈δ 4,0  and 

[ )1,0∈w  are such that 

( ) ( )( )( ) ,,,\ 1
1 ω≤δ−ΩδΩµ =
−

ii
n
i

n wwS ∪∪  

then 

( ) .22, 2ωπ+δ≤δ nnuW ν  

Suppose that ( )∞+→α − ,0: 1nS  is an even positive bounded 

continuous function and 

( ) ( ).min,max
11

uu
nn Su

m
Su

M α=αα=α
−− ∈∈

 

Meanwhile, let 

{ ( ) ( ) },,:min 1
1

−
≤<≤α ∈α−α=δ n

jijikji
Suuuu  

{ ( )}
( )

( ) ( )





>α

≤α<
==γ

α−

α−

∈ − ,1if,

,10if,1
,1min

1
1

1 1 ue

u
e

u
u

Su n
 

and { }αδ=γ ,1min2  as well as { }.,1min3 mα=γ  Clearly, .1,, 321 ≤γγγ  

Proposition 5.8. If [ ) { } µ∞∈ ,2\,1p  is an even discrete isotropic 

measure on ,1−nS  and 

( ( )) ( ) ( ( )),1 ,, npp ZVZV ν∗
α

∗
α ε−≥µ  

for some ( ),1,0∈ε  then there exists a cross measure ν  on 1−nS  such that 

( ) ,1,2max, 3
1

3
23

ε⋅




 −≤µδ −pncn

W ν  

for some absolute constant .0>c  
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Proof. Next, we will prove that for any ( ),20 nnβ<η<  

( ( )) {( ) } ( ( )),1,2min1 ,
32

,
3

np
cn

p ZVpnZV ν∗
αα

∗
α 





 ⋅η⋅−−<µ C  (5.2) 

or there exists a cross measure ν  satisfying 

( ) ,, η≤µδ cn
W nν   (5.3) 

for some absolute constant .0>c  Here 12,1, ≤= ααα CCC  and 

( )

,1
1exp

2

21
2

1,

112

≤





























−

γγ
⋅







α
α

=

−α−

α
α

m

M

e

M
mC  

( )

.1
1exp 112

2
3

2, ≤





























−π−α+

γ
=

−α−

πα
α

n

M
e m

M
C  

Without loss of generality, suppose that µ  is discrete, { }kuu ,,supp 1 "=µ  

and ({ }).ii uc µ=  For { }k,,1:min0 "== icc i  and ,,,1 k"=i  we 

define { 1:min ≥∈= mmmi Z  and },0cmci ≤  and let .1 ii m∑ =
= kk  

We consider { } { }kk ,,1,,1: "" →ξ  such that { }( )i1# −ξ  im=  for 

,,,1 k"=i  and define 

( ) ( ) ( ) ,and iiiii mccuu ξξξ ==  

for .,,1 k"=i  The system ( )kk ccuu ,,,,, 11 ""  is even (i.e., origin 

symmetric) in the following sense: Any 1−∈ nSu  occurs as iu  exactly as 

many times as –u, and if ,ji uu −=  then .ji cc =  



TONGYI MA 82

In particular, niiii uuc Id1 =⊗∑ =
k  and ,1 ncii =∑ =

k  and for any 

Borel ,1−⊆ nSX  we have 

( ) .i
Xu

cX
i
∑
∈

=µ  

The reason for the renormalization is that 

.,,1for2
1

00 k"=≤< iccc i  (5.4) 

Moreover, let upu ,ϕ=ϕ  denoted in (4.1), ( ) i
t fetg ,
2π−=  be defined as in 

(3.7), for .,,1 k"=i  Then from (3.5), it follows that 

( ) ( ) ( ) ( )
,112

2
1

dsedse

p

u ttututi uip
ip π−

ϕα

∞−

α−

∞− ∫∫ =





 +Γ

α  

namely, 

( ) ( ) ( ) ( )( ) ( ) ( ).112

2
1

i
tutui utee

p

u ui
p

ip
ϕϕ′=






 +Γ

α ϕαπ−α−  (5.5) 

Taking the log of both sides of (5.5), we have 

( ) ( ) ( ) ( )( )2log12log11log tutuupp u
p

ii ϕαπ−=α−α+−




 +Γ−  

( ) ( )( ).log utu αϕ′+   (5.6) 

We define nnT RR →:  by 

( ) ( ) ( ) ,,
1

iiiui
i

uuuycyT αϕ= ∑
=

k
  (5.7) 
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for each .ny R∈  The differential of T is given by 

( ) ( ) ( ).,
1

iiuiii
i

uuyuucydT αϕ′⊗= ∑
=

k

 (5.8) 

Since 0>ϕ′u  and ,0>α  the matrix ( )ydT  is positive definite for each 

.nx R∈  Therefore, the transformation nnT RR →:  is injective. 

By (3.3), (1.10), (3.8) and (5.6), we have 

( ( ))µ∗
α,pZV  

( ) dxe

p
ndxe

p
n

p
iiii

n

p

pZ
n

uxuc
x

,1,

1

1

1

1 α∑−
−

=
∗
α ∫∫






 +Γ

=





 +Γ

=
k

RR
 

( )
p

ic
i

i

n
n

u

p
n
p

1

11

112 −

=













α






 +Γ






 +Γ

= ∏
k

 

( ) ( )( ) ( ) ( )( ) dxuuxuxuc i
n

c
iiu

i
iuii

i 











αϕ′+ϕαπ−× ∑∑∫
==

,log,exp
1

2

1

kk

R
 

( )
p

ic
i

i

n
n

u

p
n
p

1

11

112 −

=













α






 +Γ






 +Γ

= ∏
k

 

( ) ( )( ) ( ) ( )( ) .,,exp
1

2

1
dxuuxuxuc i

n
c

iiu
i

iuii
i














αϕ′













ϕαπ−× ∏∑∫

==

kk

R
 

(5.9) 
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For each fixed ,nx R∈  we estimate the product of the two terms in 

(5.9) in the integral sign. To estimate the first term in (5.9), we use (2.11) 
with ( ) ( ) .,,1,, k"=αϕ=θ iuuy iiui  Hence the definition of T gives 

( ) ( )( ) ( ) .,exp
22

1

yT
iuii

i
euyuc π−

=

≤












ϕαπ− ∑

k
 (5.10) 

To estimate the second term, we use Lemma 2.2 with iii ucv ⋅=  

and ( ) ( ),, iiui uuyt αϕ′=  at each ,ny R∈  and write ( )y∗θ  and ( )yt0  to 

denote the corresponding 1≥θ∗  and .00 >t  In particular, if { }nii ,,1 "  

{ }k,,1 "⊆  and ,ny R∈  then we assume 

( )yii n ;,,1 "N  

[ ]
( ) ( ) ( ) ( )

( ) .1
,,

,,det
2

0
2

11
11














−

ααϕ′ϕ′
= yt

uuuyuy
uucc nn iiii

iniini
""

""  

(5.11) 

Therefore, for 

( ) ( ).;,,2
11 1

1 1

yiiy n
ii n

"
"

N∑
≤<<≤

∗ +=θ
k

 (4.12) 

Lemma 2.2 gives 

( ) ( )( ) ( ) ( )( ).det, 1

1
ydTyuuy ic

iiu
i

−∗

=

θ≤αϕ′∏
k

 (5.13) 

From (5.9), (5.10) and (5.13), we obtain 

( ( )) ( ) ( ) ( ) ( )( ) .det
1

112 2
1

1

1
, dyydTeyu

p
n
pZV yTc

i
i

n
n

p n

p
i π−−∗

−

=

∗
α θ













α






 +Γ






 +Γ

≤µ ∫∏ R

k
 

(5.14) 
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To give a lower bound for ( ),y∗θ  using (4.8) and (4.7) to obtain 

( ) ( ) ( ) ( ( ) )
,1.3

1.3
1 1

1
112 −α

−α

−−α
<ϕ′<

ueu
uu et

e
 (5.15) 

and 

( )
( )

,1
11 −α−

<ϕ
uu

e
t  (5.16) 

for [ ]∞∈ ,1p  and [ ].1.3
1,0∈t  

We consider the vectors 1
1 ,, −∈ n

n Svv "  provided by Lemma 5.2 

such that 

( )( ) ;,,1for, niv n
i "=β>βΩµ  

[ ] ( ) { },,,1and,for2,,det 1 nivwnww iin "" ∈βΩ∈β≥   (5.17) 

( ) ( ) .2 211 +−+−=β nn n  

The remaining discussion is split into three cases, where the first two 
correspond to the two cases in Lemma 5.3. 

Case 1. There exist { }nl ,,1 "∈  and ( )βΩ⊆ΨΨ ,, 21 lv  such that 

( ) and,2,1for4 =β≥Ψµ jn
n

j  

.andfor 221121 Ψ∈Ψ∈η≥− aa
n

aa  

In this case, we prove 

( ( )) ( ) {( ) } ,1,2min1
1

112
22

1
,

3
1






 ⋅η⋅−−













α






 +Γ






 +Γ

≤µ α
−

−

=

∗
α ∏ Cpnu

p
n
pZV cnc

i
i

n
n

p
p

i
k

 

(5.18) 

for some absolute constant .0>c  
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We may let that nl =  and 

{ { } } ,0:,,1 /≠Ψ∈∈=∏ jij ui k"  

for .2,1=j  Possibly after interchanging the roles of 1Ψ  and 2Ψ  we may 

assume that .## 21 ∏≤∏  Let 

,: 21 ∏→∏τ  

be an injective map. Given ( )βΩ∈ ,ji vu j  for 1,,1 −= nj "  and 

,1Ψ∈niu  we have ( ) ,2Ψ∈niuτ  together (5.4) with (5.17) yields 

[ ]

( ) [ ( ) ]
( ).24

,,,det

,,det
11

1111

111 22
2

2

nn

nnnn

nnn
iii

iiiiii

iiiii
cccn

uuuccc

uuccc
⋅β≥







⋅

⋅

−

−−

−
"

""

""

ττ

 

(5.19) 

Since ,4π<β  we have ( ) 0, >nn ii uu τ  if .1Ψ∈niu  Lemma 5.4 shows 

that ( ) n
nuuV 2400, κ≥Ξ  for 1

0, −∈ nSuu  with ,0, 0 ≥uu  where 

0,uuΞ  is defined in (5.1). In particular, if ( ) ,, nini uuy τΞ∈  then 

( ) and,8
1,,, <niin uyuy τ  

( ) ( ) .
120

,,,
n

uuyuyuy nnnn iiii
η≥−=− ττ  

In order to simplicity, we still set .: ,upp ϕ=ϕ=ϕ  Notice that ϕ′′  is 

continuous, and Lemma 4.2 obtains that if [ ]1.0,30
1∈t  and ,1−∈ nSu  

then 
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( )
( ) ( ) [ ] { }

( ) ( )








>α⋅>α⋅






∈γα⋅
−

>γα⋅




−

≥ϕ′′
− .3if,230

12.0

,2\3,1if,
2

2
30
1

48
2

9
3.1

1121
3.1

puu

pupup

t  

(5.20) 

Thus, using the mean-value theorem for derivatives to obtain 

( ) ( ( ) )nn ii uyuy τ,, ϕ′−ϕ′  

( ) [ ] { }

( )









>α⋅η>α⋅η

∈γα⋅η
−

>γα⋅η
−

≥
.3if,

2
1

1202
1

,2\3,1if,
2

2
1202

2

199

119112

p
n

u
n

p
n

pu
n

p

m

m
 

The following algebraic inequality ([43], p. 162) will be useful. If 
0, ≥yx  and ,1≥p  then 

.ppp yxyx −≤−   (5.21) 

From Lemma 2.3 and ( ) ( ) ( ( ) ) 1112
1.30 −α −−α

<ϕ′<
ueuet  for [ ) { }2\,1 ∞∈p  

and ( ]1.0,0∈t  (cf. (5.15) and (5.16)), Aczel inequality (2.12) and an 

algebraic inequality (5.21), it follows that 

( ) ( ) ( ) ( ) ( ) ( )
( )

2

0
1

,,, 1111













−

αααϕ′⋅ϕ′ϕ′
−−

yt
uuuuyuyuy nnnn iiiiii ""

 

( ) ( ) ( ( ) ) ( ) ( ) ( ( ) )
( )

2

0
1

,,, 1111













−

αααϕ′⋅ϕ′ϕ′
+ −−

yt
uuuuyuyuy nnnn iiiiii ττ ""

 

( ) ( ) ( ( ) ) ( ( ) )( )
( ) ( ) ( ( ) ) ( ( ) )( )2

2

,,2

,,

nnnn

nnnn

iiii

iiii

uuyuuy

uuyuuy

ττ

ττ

αϕ′+αϕ′

αϕ′−αϕ′
≥  

( ) ( ( ) ) ( ) ( ( ) )

( ) ( ( ) )( )22

2222

,,2

,,

nn

ninnn

iiM

uiii

uyuy

uuuyuy

τ

ττ

ϕ′+ϕ′α

α−αϕ′−ϕ′
≥  
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( ) ( ( ) )( ) ( ) ( ( ) )

( ) ( ( ) )( )22

22

,,2

,,

nn

ninnn

iiM

uiii

uyuy

uuuyuy

τ

ττ

ϕ′+ϕ′α

α−αϕ′−ϕ′
≥  

{ ( ) }

( )

.
1exp

2
2,1min

2

12

21
2

2
45

2

1 





























−

α

γγ
⋅







α
α

⋅η⋅
−

≥

−α− me

n
p

MM
m  

Notice that 

( )

.1
1exp

2

12

21
2

1,

1

≤































−

α

γγ
⋅







α
α

=

−α−

α

me
MM

mC  

Together this estimate with (5.11) and from (5.19), we obtain that if 
[ ) { }2\,1 ∞∈p  and ( )βΩ∈ ,ji vu j  for ,,1,,1 1Ψ∈−= niunj "  and 

( ) ,, nini uuy τΞ∈  then 

( ) ( ( ) )yiiiNyiiiN nnnn ;,,,;,,, 1111 τ−− + ""  

{ ( ) } .
2

2,1min2 1,
2

45

2
22

11 α⋅η⋅
−

⋅β≥
−

C
n

pcccn inii n"  

If 1Ψ∈niu  and ,ny R∈  then we define 

( )

( )

( )
( ) [ ] { }

( )













>Ξ∈⋅ηβ

∈Ξ∈⋅η−β

Ξ∈/

=α

α

α

.3andif,
2

;2\3,1andif,
2

2

;if,0

;,

,1,
2

44

2

,1,
2

44

22
,

pyn

pypn

y

yi

nini

nini

nini

uu

uu

uu

n

τ

τ

τ

C

C�  
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In particular, if ( )βΩ∈ ,ji vu j  for 1,1,,1 Ψ∈−= niunj "  and ,ny R∈  

then 

( ) ( ( ) ) ( ).;,;,,,;,,, 11111 yiccyiiiNyiiiN niinnnn n α≥+ −− �""" τ  

(5.22) 

Substituting (5.22) into (5.12), and then by (5.17), we know that if 

,ny R∈  then 

( )
( )

( )yicccy niii
njvu

nn
jji

;,2
11 11

1,,1,,
α⋅+≥θ

−∑
−=βΩ∈

∗ �"
"

 

( ( )) ( )yicv ni
u

j

n

j
n

ni

;,,2
11

1

1

1
α













βΩµ+= ∑∏

Ψ∈

−

=

�  

( )
( ).;,21

1

1
yic ni

u

nn

n
ni

αβ+≥ ∑
Ψ∈

−
�  

Here 

( )
( )

( )
( ) .1

22;,2 1,
2

44

2
1

11

1

<⋅η⋅βΨµβ≤αβ
α

−

Ψ∈

−

∑ C� nyic
nn

ni
u

nn

n
ni

 

Thus if ,nx R∈  then 

( )
( )

( ).;,21
1

11 yicy ni
u

nn

n
ni

αβ−≤θ ∑
Ψ∈

−
−∗ �  (5.23) 

From (5.14) and (5.23), we will obtain 

( ( ))µ∗
α,pZV  

( ) ( ) ( ) ( )( )dyydTeyu

p
n
p yTc

i
i

n
n

n

p
i det

1

112 2
1

1

1

π−−∗
−

=

θ












α






 +Γ






 +Γ

≤ ∫∏ R

k
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( ( )) ( )
p
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i

i
np uZV

1

1
,

−

=

∗
α 













α≤ ∏

k

ν  

( )
( ) ( ) ( )( )dyydTeyic yT

ni
u

nn

n
ni

n det;,41
2

1

1
π−

Ψ∈

−














αβ−× ∑∫ �

R
 

( ( )) ( ) ( ) ( )( )dxydTeuZV yTc
i

i
np n

p
i det

2
1

1

π−
−

=

∗ ∫∏ 












α=

R

k

ν  

( ( )) ( )
( )

( ) ( ) 2

1

1

;,4
1

1

yT
ni

u

nn
c

i
i

np eyicuZV nn
ni

p
i π−

Ψ∈

−
−

=

∗ αβ













α− ∫∑∏ �

R

k

ν  

( )( ) .det dyydT×  

Thus 

( ) ( )( ) .1det
22

=≤ π−π− ∫∫ dzedyydTe zyT
nn RR

 (5.24) 

If ( ),, nn iiy τΞ∈  (in), then (5.10), (5.12), (5.13), (5.15) and (5.16) obtain 

that 

( ) ( ) ( )( ) 












ϕαπ−≥ ∑

=

π− 2

1
,exp

2
iuii

i

yT uyuce
k

 

( ) 













α−

πα
−> ∑

=
− i

im

M c
e

k

1
12

2

1
exp  

( ) ,
112

2

−α−

απ
−

= me
Mn

e  (5.25) 
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( )( ) ( ) ( )( ) iciiu
i

uuyydT αϕ′≥ ∏
=

,det
1

k

 

 ( )( ) ( ) ii c
i

i

cu

i
ue α> ∏∏

=

α−−

=

kk

1

11

1
1.3  

 ( )( ) ( ) ici
i

unn ue α= ∏
=

α−−
k

1

11.3  

 ( ) n
m

nn Me α> α−− 11.3  

 ( ) .1.3 3
1 nnn Me γ≥ α−−  (5.26) 

Therefore 

( ( )) ( )
p

ic
i

i

n
n

p u

p
n
pZV

1

1
,

1

112 −

=

∗
α 













α






 +Γ






 +Γ

≤µ ∏
k

 

( ) ( ( ) )

( )
{( ) } ,
2

1,2min
1.341 2

44

22,1

1













⋅η⋅

−β
⋅

Ξ
⋅β−× απ

−

Ψ∈
∑ Cpn

e

V
c n

iinn
i

u

nn
n

ni

τ  

where .12,1, ≤= ααα CCC  Since ( ( ) ) ,240,
n

nii nnV κ≥Ξ τ  if ,1Ψ∈niu  

according to Lemma 5.4, and 

( ) ,41
1

nc
n

i
u

n
ni

β>Ψµ=∑
Ψ∈

 

we give (5.18). 

Case 2. There exists ( ),, βΩ∈ ii vq  for ,,,1 ni "=  such that 

( )( ) ,,,1for4, ninq
n

i "=β≥ηΩµ   (5.27) 
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and 

( ( ) ( )( )) .2,2,1 η−≤η−ΩηΩµ = nqq ii
n
i ∪∪   (5.28) 

In this case, we show 

( ( )) {( ) } ,1,2min1
1

112
22

,
3






 ⋅η⋅−−






 +Γ






 +Γ

<µ α
−∗

α Cpn

p
n
pZV cn

n
n

p  (5.29) 

for some absolute constant .0>c  The argument is very similar to the 
one in Case 1. 

Let 

( ( ) ( )( )).2,2,\~
1

1 η−ΩηΩ=Ψ =
−

ii
n
i

n qqS ∪∪  

It follows from (5.17) that any nx R∈  can be written in the form 

( ) .
1

ii

n

i
qxx λ= ∑

=

 

Since ( ) η≤Ψµ ~  by (5.28), the triangle inequality ensures that there 

exists some { }ni ,,1 "∈  satisfying ( ) .1 nxi ≥λ  Thus we may reindex 

nqq ,,1 "  in such a way that 

( ) { ( ) }.1:~for nxxn n ≥λΨ∈=Ψη≥Ψµ   (5.30) 

From (5.17), we obtain that if ,Ψ∈x  then 

[ ] [ ] .2,,,det,,,det 1111 β≥≥ −− nqqqxqq nnn ""  

In the following, for ( )ηΩ∈ ,ji qu j  for ,1,,1 −= nj "  from Lemma 5.5 

with lilll qusqb l −== ,  for ,,1,1 Ψ∈=−= xbnl n"  and ,0=ns  

where 
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[ ] ,,,1,,,,det4
1

4
2

2 11 nixqqnnns ni "" =≤β=β≤η≤ −  

we get 

[ ] [ ] .,,,det2
1,,,det 1111 β≥≥ −−

xqqxuu nii n ""   (5.31) 

We observe that .Ψ−=Ψ  Hence, for 

{ }{ },:,,12 Ψ∈∈=∏ iui k"  

there exists 2∏⊆∏′ with ,#2
1# 2∏=∏′  and a bijection ∏′∏→∏′ \:~ 2τ  

such that if ,∏′∈i  then ( ) .~ ii uu −=τ  

Since ,nβ<η  (5.27) gets 

( )
( ( )) .84,

,
nnqc

n
ni

qu ni

η≥β≥ηΩµ=∑
ηΩ∈

 

This implies that we can find a minimal (with respect to inclusion) set 
{ }k,,11 "⊆∏  such that ( )ηΩ∈ ,ni qu  for 1∏∈i and 

.8
1

nci
i

η≥∑
∏∈

 (5.32) 

By minimality and (5.4), we have 

( ) .81#2 1
0

n
c η≤−∏  

Further, by (5.30) and again by (5.4), it follows that 

.#
2

20 ncc j
j

η≥≥∏ ∑
∏∈
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Thus 

( ),1#2#8 1
0

2
0 −∏≥∏

cc  

which yields ( )1#4# 12 −∏≥∏  if .2# 1 ≥∏  In any case, we deduce that 

.#2# 12 ∏≥∏  

We prove that there exists an injective map 21: ∏→∏τ such that if 

,1∏∈i then 

( ) .0, ≥iii uu τ   (5.33) 

In addition, if ,1∏∈i  then ( )ηΩ∈ ,ni qu  and ( ) ( ),2, ηΩ∈/ ni quτ  thus 

( ) .2
η≥− ii uu τ  

Given ( )ηΩ∈ ,ji qu j  for 1,,1 −= nj "  and ,1∏∈ni we have 

( ) .2∏∈niτ  By (5.4), (5.17) and (5.31), we obtain 

[ ]

( ) [ ( ) ]
( ).2

,,,det

,,det
11

1111

111 2
2

2
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nnnn

nnn
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iiiiii

iiiii
ccc

uuuccc

uuccc
⋅β≥








⋅

⋅

−

−−

−
"

""

""

ττ

 

(5.34) 

By (5.33), we have that Lemma 5.4 applies to ( ) ., nini uu τΞ  In particular, 

we obtain ( ( ) ) ,240,
n

nii nnV κ≥Ξ τ  and if ( ),, nn iiy τΞ∈  then 

( ) and,8
1,,, <nn ii uyuy τ  

( ) ( ) .
2240,,, 8
η>η≥−=− nnnn iiii uuyuyuy ττ  

 

 



VOLUME INEQUALITIES FOR GENERAL … 95

From (5.20), we have 

( ) ( ( ) ) { } ( ) .
2

1,2min,, 120 ηγα⋅
−

>ϕ′−ϕ′ upuyuy nn ii τ  

If ,1∏∈ni  from Lemma 2.3, ( ) ( ) ( ( ) ) 1112
1.30 −α −−α

<ϕ′<
ueuet  for 

[ ) { }2\,1 ∞∈p  and ( ]1.0,0∈t  (cf. (5.15) and (5.16)), Aczel inequality 

(2.3) and a simple algebraic inequality (5.21), we obtain 

( ) ( ) ( ) ( ) ( ) ( )
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2

0
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,,, 1111
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αααϕ′⋅ϕ′ϕ′
−−

yt
uuuuyuyuy nnnn iiiiii ""
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,,2
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iiii

uuyuuy
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( ) ( ( ) ) ( ) ( ( ) )
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iiM
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uuuyuy

τ

ττ

ϕ′+ϕ′α

α−αϕ′−ϕ′
≥  

( ) ( ( ) )( ) ( ) ( ( ) )

( ) ( ( ) )( )22
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,,2
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ninnn

iiM
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uuuyuy
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ττ

ϕ′+ϕ′α

α−αϕ′−ϕ′
≥  

{ ( ) } .
2

2,1min
1,

2
47

2
α⋅η⋅

−
≥ Cp  (5.35) 

Thus from (5.11) and (5.34), we have that if ( )βΩ∈ ,ji vu j  for ,,1 "=j  

1,1 ∏∈− nin and ( ) ,, nini uuy τΞ∈  then 

( ) ( ( ) )yiiiNyiiiN nnnn ;,,,;,,, 1111 τ−− + ""  

{ ( ) } .
2

2,1min
2 1,

2
47
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1

α⋅η⋅
−

⋅
β

≥ Cpcc nii "  
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If 1∏∈ni and ,ny R∈  then define 
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{( ) }
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In particular, if ( )βΩ∈ ,ji vu j  for 1,1,,1 ∏∈−= ninj " and ,ny R∈  

then 

( ) ( ( ) ) ( ).;,;,,,;,,, 11111 yiccyiiiNyiiiN niinnnn n α≥+ −− �""" τ  

(5.36) 

Substituting (5.36) into (5.12) and then using (5.17), we get for ny R∈  

that 
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Similarly as before, we have 
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Thus if ,ny R∈  then 
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11 yicy ni
i

nn

n
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αβ−≤θ ∑
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−
−∗ �  (5.37) 
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Together (5.14) with (5.37), we deduce 

( ( ))µ∗
α,pZV  

( ) ( ) ( )( )dxydTeu

p
n
p yTc

i
i

n
n

n

p
i det

1

112 2
1

1

π−
−

=
∫∏ 













α






 +Γ






 +Γ

≤
R

k

 

( )
( )

( ) ( ) 2

1

1

;,41

112 1

1

xT
ni

i

nn
c

i
i

n
n

eyicu

p
n
p

nn
n

p
i π−

∏∈

−
−

=

αβ













α






 +Γ






 +Γ

− ∫∑∏ �
R

k

 

( )( ) .det dxydT×  

Now we use again (5.24) as well as the estimates (5.25) and (5.26) if 

( )., nn iiy τΞ∈  This implies 

( ( )) ( )
p

ic
i

i

n
n

p u

p
n
pZV

1

1
,

1

112 −

=

∗
α 













α






 +Γ






 +Γ

≤µ ∏
k

 

( ) ( ( ) )

( )
{( ) } .
2

1,2min
1.341 2

48

22,1

1













⋅η⋅

−β
⋅

Ξ
⋅β−× απ

−

∏∈
∑ Cp

e

V
c n

iinn
i

i

nn
n

n

τ  

Since ( ( ) ) n
nii nnV 240, κ≥Ξ τ  for ,1∏∈ni  from (5.32) we give (5.29). 

Case 3. There exists ( )βΩ∈ ,ii vq  for ,,,1 ni "=  such that 

( ( ( ) ( ))) .2,2,1 η−>η−ΩηΩµ = nqq ii
n
i ∪∪  

In this case, we show that there exists a cross measure ν  such that 

( ) ,, η≤µδ cn
W nν   (5.38) 

for some absolute constant .0>c  
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We claim that η>















 −−

2112
1 t

n
n  for ,2η=t  for ( ).21 n<η  

Thus Lemma 5.1 obtains that ( )





 η−Ω 21arccos,

n
u  intersects 

( )η±Ω= 2,1 i
n
i q∪  for any .1−∈ nSu  In turn, we have that 

( ) { } ,0,,41arccos, 1 /≠±±





 η−Ω nqq

n
u "∩  

for any ,1−∈ nSu  since ( ).!414 nn<η  Therefore Lemma 5.6 obtains 

that there exists a cross measure ν  such that 

( { }) .4!4,,,supp 1 η⋅≤±±δ nqq n
nH "ν  

In particular, (5.38) is given from Lemma 5.7. 

According to Lemma 5.3, Cases 1, 2 and 3 cover all possible even 
isotropic measure .µ  This implies that we have proved (5.2) in Cases 1 

and 2, and (5.3) in Case 3.   

Proof of Theorem 1.5 in the case of ( ) :, µα
∗
pZ  Let [ ) { }2\,1 ∞∈p  

and µ  is a discrete even isotropic measure on ,1−nS  and let ( )nWO ν,µδ  

0>ε≥  for some ( ).1,0∈ε  Then Proposition 5.8 gives that 

( ( )) ( ) ( ( )) ( ) ,1

1

1

3
,

p
ic

i
i

npp uZVZV
−

=

∗∗
α 













αγε−≤µ ∏

k

ν  (5.39) 

where { }1,2min 23
−=γ − pn cn  for an absolute constant .0>c  Since 

any even isotropic measure can be weakly approximated by discrete even 
isotropic measures (see, e.g., Barthe [6]), we give (5.39), and in turn 

Theorem 1.5 in the case of ( ),, µ∗
αpZ  for any even isotropic measure µ  on 

1−nS  and [ ) { }.1\,1 ∞∈p  
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Since for any isotropic measure ,µ  we obtain 

( ) ( ).lim ,, µ=µ ∗
α∞

∗
α∞→

ZZ pp
 

Since the factor γ  in (5.39) is independent of ( ),,2 ∞∈p  we have the 

case .∞=p   

6. The Case of the General pL  Zonoids in Theorem 1.5 

Similar to the argument of ( ( )),, µ∗
αpZV  we give the proof of Theorem 

1.5. We suppose again that µ  is a discrete even isotropic measure for 

( ) { }.2\,1 ∞∈p  For ( ),,1 ∞∈∗p  define .111 =+
∗pp  We will show that if 

( ),1,0∈η  then 

( ( )) {( ) } ( ( )) ( ) ,1,2min1

1
3

1

32
,

∗

∗ 












α





 ⋅η⋅−−>µ ∏

=
α

−
α∗

p
ic

i
i

np
cn

p uZVpnZV
k

νC  

(6.1) 

or there exists a cross measure ν  satisfying 

( ) ,, η≤µδ cn
W nν   (6.2) 

for some absolute constant .0>c  Since if [ ],3,2
3∈p  then [ ]3,2

3∈∗p  

and ,22222 −≤−≤− ∗ ppp  (6.1) and (6.2) obtain Theorem 1.5 for 

( ( ))., µαpZV  
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Again, let { },,,supp 1 kuu "=ν  and let ({ }).ii uc µ=  For min0 =c  

{ }k,,1: "=ici  and ,,,1 k"=i  we define { 1:min ≥∈= mmmi Z  and 

},0cmci ≤  and let .1 ii m∑ =
=

kk  We consider { } { }kk ,,1,,1: "" →ξ  

such that { }( ) imi =ξ−1#  for ,,,1 k"=i  and define 

( ) ( ) ( ) ,and iiiii mccuu ξξξ ==  

for .,,1 k"=i  The system ( )kk ccuu ,,,,, 11 ""  is even (i.e., origin 

symmetric) in the following sense: For any 1−∈ nSu  occurs as iu  exactly 

as many times as − u, and if ,ji uu −=  then .ji cc =  

In particular, niiii uuc Id1 =⊗∑ =
k  and ,1 ncii =∑ =

k  and for any 

Borel ,1−⊆ nSX  we have 

( ) .i
Xu

cX
i
∑
∈

=µ  

The reason for the renormalization is that 

.,,1for2
1

00 k"=≤< iccc i  

Furthermore, let uppu vvv ,/=/=/  defined in (4.2), if
~  is defined in (3.14), 

and 

( ) ( )

( )

,exp 2

1

12






























απ−=

−

∏
=

tutg
p

p

ic
i

i

k

 

is the Gaussian density. 
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We define the nn RR →Λ :map  by 

( ) ( ) ,,
1

iiiui
i

uuuyvcy α/=Λ ∑
=

k
  (6.3) 

for each .ny R∈  The differential of Λ  is given by 

( ) ( ) ( ).,
1

iiuiii
i

uuyvuucyd α′/⊗=Λ ∑
=

k
  (6.4) 

Since 0>′/uv  and ,0>α  the matrix ( )ydΛ  is positive definite for each 

.ny R∈  Hence, the transformation nn RR →Λ :  is injective. 

First applying (3.15) and from (6.4), we have 

( ( )) ( ( ))µ≥µ αα∗ ,, pp MVZV  

( ) dxf

p
n
p i

iiii
n

c
ii

iucx

n
n

θ





 +Γ






 +Γ

= ∏∫
=θ=

∗

∑ =

~sup
1

112

11

k

kR
 

( )
( ) ( )( )dyydf

p
n
p i

iiii
n

c
ii

iucy

n
n

Λ













θ






 +Γ






 +Γ

≥ ∏∫
=θ=Λ

∗

∑ =

det~sup
1

112

11

k

kR
 

( ) ( )( ) 












/α






 +Γ






 +Γ

≥ ∏∫
=

i
n

c
iuii

i

n
n

uyvuf

p
n
p ,~

1

112

1

k

R
 

( ) ( ) .,det
1

dyuuuuyvc iiiiui
i














⊗α′/× ∑

=

k
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To estimate the second term, we apply Lemma 2.2 with iii ucv ⋅=  

and ( ) ( ),, iiui uuyvt α′/=  at each ,ny R∈  and write ( )y∗θ  and ( )yt0  to 

denote the corresponding 1≥θ∗  and .00 >t  In particular, if { }nii ,,1 "  

{ }k,,1 "⊆  and ,ny R∈  then we now set 

( )yii n ;,,1 "N  

[ ]
( ) ( ) ( ) ( )

( ) .1
,,

,,det
2

0
2 11

11 












−

ααϕ′ϕ′
= yt

uuuyuy
uucc nn

nn
iiii

iiii
""

""  

(6.5) 

Therefore, from the notation 

( ) ( ).;,,2
11 1

1 1

yiiy n
ii n

"
"

N∑
≤<<≤

∗ +=θ
k

 (6.6) 

Lemma 2.2 and (3.11) have 

( ( ))µ
α∗,pZV  

( ) ( ) ( )( ) 












/αθ
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 +Γ

≥ ∏∫
=
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n
n

uyvufy

p
n
p ,~

1
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p
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n
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i
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=
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( ) ( )

( )

dyyuy

p
n
p p

p

i
n

c
i

i

n
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απ−θ






 +Γ






 +Γ

=

−
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=

∗ 2

1
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112 k
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( ) ( ) dzezu

p
n
p zc

i
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n
n

n

p
p

i
2
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11

112
π−∗

=

θ
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 +Γ

= ∫∏
−
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( ) ( ) .
1

112 2
1

1
dzezu

p
n
p zc

i
i

n
n

n

p
i π−∗

=

θ












α






 +Γ






 +Γ

= ∫∏
∗

R

k

 

Therefore, (6.1) and (6.2) can be proved as (5.2) and (5.3) in Proposition 
5.8. This finishes the proof.   

7. The pL  Loomis-Whitney and Reverse pL  

Loomis-Whitney inequality 

The classical Loomis-Whitney inequality [49] states that for a convex 

body K in ,nR  

( ) ( ),vol 1
1

1 ⊥
−

=

− ∏≤ in
i

n eKKV
k

 (7.1) 

with equality if and only if K is a coordinate box (a rectangular 
parallelepiped whose facets are parallel to the coordinate hyper planes), 

where ⊥
ieK  denotes the orthogonal projection of K onto the                      

1-codimensional space ⊥
ie  perpendicular to ie  and { }nee ,,1 "  is the 

standard orthonormal basis of .nR  Note that the Loomis-Whitney 
inequality is of isoperimetric type. In fact, let ( )KS  denote the surface area 

of K. Then ( ) ( )⊥
−≥ in eKKS 1vol2  for .,,1 ni "=  From (7.1), we obtain 
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( ) ( ) ,21 nnn KSKV −− ≤  

an isoperimetric inequality without the best constant. The Loomis-
Whitney inequality is one of the fundamental inequalities in convex 
geometry and has been studied intensively; see, e.g., [1, 4, 6, 12, 13, 18, 
29, 23, 47, 70]. 

In particular, the Loomis-Whitney inequality still holds along a 
sequence of directions satisfying John’s condition [39], which is showed 

Ball [4]. Especially, for a convex body K in ,nR  if there are unit vectors 

( )k 1=iiu  and positive numbers ( )k 1=iic  satisfying John’s condition (1.17), 

then 

( ) ( ) .vol 1
1

1 icin
i

n uKKV ⊥
−

=

− ∏≤
k

  (7.2) 

Obviously, the inequality (7.2) reduces to (7.1) when n=k  and taking 

ii eu =  with 1=ic  for all .,,1 ni "=  

Recently, Li and Huang [46] established an the pL  version of the 

Loomis-Whitney inequality related to the support function of pL  

projection bodies with complete equality conditions. For n
oKp K∈≥ ,1  

and µ  is an even isotropic measure on ,1−nS  we have 

( ) ( ) ( ) .logexp 1 





 µ≤ ∏∫ −

−
uduhKV K

S pn
p

pn
 (7.3) 

For ,21 ≠< p  equality in (7.3) holds if and only if ν=µ  is a cross 

measure on 1−nS  and K is the generalized n
pl ∗ -ball formed by .ν  For 

,1=p  equality in (7.3) holds if and only if ν=µ  is a cross measure on 

1−nS  and K is a box formed by ν  (up to translations). 



VOLUME INEQUALITIES FOR GENERAL … 105

This section is mainly to extend Ball’s Loomis-Whitney inequality 
(7.2) to the pL  setting belonging to the pL  Brunn-Minkowski theory 

(called as the pL  Loomis-Whitney inequality). Further, we give the 

complete equality conditions for the pL  version of the Loomis-Whitney 

inequality. 

The following intertwining properties of p∏ and ∗∏p with linear 

transformations were obtained by Lutwak et al. [59] for 1>p  and by 

Petty [66] for .1=p  

Lemma 7.1. Suppose 1≥p  and .n
oK K∈  Then for ( ),nGLA ∈  

.detdet 11 KAAAKandKAAAK p
p

pp
tp

p
∗−∗− ∏=∏∏=∏  

(7.4) 

In particular, 

( ) .0, >∏=∏
−

cKccK pp
p

pn

 (7.5) 

Motivated by the ways of Ball [4] and Li [46], we prove the pL  

Loomis-Whitney inequality in Theorem 7.2. 

Theorem 7.2. Let K be a convex body in ,2, ≥nnR  and let 

[ ]∞∈ ,1p  with .2≠p  If µ  is an even isotropic measure on ,1−nS  and 

there are unit vectors ( ) ( )nu ii ≥= k
k

1  as well as positive numbers ( )k 1=iic  

satisfying John’s condition (1.17), then 

( ) ( ).
1

i
c

Kp
i

uhKV ip
pn

∏∏
=

≤
− k

 (7.6) 
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For 21 ≠< p  and n=k  equality in (7.6) holds if and only if µ  is a cross 

measure on 1−nS  and { }nuu ±±=µ ,,supp 1 "  with ( )niiu 1=  is an 

orthonormal basis of ,nR  as well as K is the generalized n
pl ∗ -ball formed 

by ;ν  namely, there are positive numbers ( )nii 1=α  such that 

,1,:

1

1 















≤













α∈=

∗∗

∑
=

p
i

p
i

n

i

n uxxK R  

where { }nuu ±±=µ ,,supp 1 "  and ( )niiu 1=  is an orthonormal basis of 

.nR  For 1=p  equality in (7.6) holds if and only if µ  is a cross measure 

on 1−nS  and K is a box formed by µ  (up to translations); namely, there is 

a vector nx R∈0  and positive numbers ( )nii 1=α  such that 

[ ] ,, 0
1

xuuK iii

n

i
+−α= ∑

=

 

where { }nuu ±±=µ ,,supp 1 "  and ( )niiu 1=  is an orthonormal basis of .nR  

Proof. Suppose 

( ) ( ),uhu p
Kp

−
∏=α  (7.7) 

for .1−∈ nSu  By (2.1), (2.2), the definitions of ( )µα,pZ  (1.7) and Kp∏  

(2.3), Fubini’s theorem and (1.3), it follows that 

( ) ( ( )) ( ( ))npp
p

p
pn ZKVZVKV µµ≤ α

−
α

−
,, ,  

( ( )) ( ) ( )
n

p
p
ZS

p
p vKdSvhnZV

pn 






µ=
α−∫−

α ,1
,1,  
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( ( )) ( ) ( ) ( )
n

p
p

SS
p

p vKdSuduvunZV nn 






 µαµ= ∫∫ −−
−

α ,,1
11,  

( ( )) ( ) ( ) ( )
n

p
p

SS
p

p udvKdSuvunZV nn 






 µαµ= ∫∫ −−
−

α ,,1
11,  

( ( )) ( ) ( ) ( ) ( )
n

p
K

n
p

p
p uduuhBVZV

p
n
p









µαµ= ∏∗

−
α,  

( )

( ( ))
.

,
p

p

pn
p

ZV

BV

µ
=

α

∗  

From (1.19) of Theorem 1.3, (1.4) and (7.7), we get 

( )
( )

( ( )) ( ),
1,

i
c

Kp
ip

n
p uhZV

BV
KV ip

pn

∏∏
=α

∗ ≤
µ

≤
− k

 (7.8) 

which is the desired inequality. 

If ,n=k  from the equality condition of pL  Minkowski inequality 

(2.1), the equality of inequality (7.8) holds if and only if K and α,pZ  are 

dilates when 1>p  (K and α,pZ  are dilates when 1=p ). Theorem 1.3 

implies that equality of the second inequality in (7.8) holds if and only if 

µ  is a cross measure on 1−nS  when 2≠p  and ,n=k  and thus by (1.12), 

α,pZ  is the generalized n
pl ∗ -ball n

pB α∗ 1,  formed by .ν  Hence K is a 

dilation of the generalized n
pl ∗ -ball formed by the cross measure ,ν  which 

is still the generalized n
pl ∗ -ball formed by ν  when 12 >≠ p  and n=k  

(K coincides with the box formed by ν  up to translations when 1=p ). 
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Conversely, when 21 ≠< p  and ,n=k  we will prove that equality 

in (7.8) holds if K is the generalized n
pl ∗ -ball formed by ;ν  i.e., there are 

positive numbers ( )nii 1=α  such that 

,1,:

1

1 















≤












α∈=

∗∗

∑
=

p
i

p
i

n

i

n uxxK R  (7.9) 

where { }nuu ±±= ,,supp 1 "ν  and ( )niiu 1=  is an orthonormal basis of .nR  

From (7.8), it is sufficient to verify that K and α,pZ  are dilates. By (1.13), 

we obtain 

,1
,

n
p

n
p BOABK

i ∗
−

α∗ ==  

where O is an orthogonal matrix such that ii uOe =  for ni ,,1 "=  and 

{ }p
n

pA 11
1 ,,diag αα= "  is a diagonal matrix. Together (7.7) with (7.4), 

we get 

( ) ( ) ( )( )iBOApi
p

Kpi uhuhu n
p∗

−∏
−
∏ ==α 1  

( ) ( )
( )i

p
BpOAA

uh n
p

tp
−

∏ ∗
−−−= 11det

 

( )( )i
p

Bp uAOhA n
p

1det −−
∏ ∗

=  

( )( )i
p

Bp AehA n
p

−
∏ ∗

= det  

( )( )i
p

i
p

Bp ehA n
p

1det α= −
∏ ∗

 

( )( ) ,det 1−−
∏ α=

∗ ii
p

Bp ehA n
p  
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for every .,,1 ni "=  Notice that ( )( )i
p

Bp eh n
p

−
∏ ∗

 is a constant for all 

.,,1 ni "=  Thus, there exists a constant 0>c  such that ( ) 1−α=α ii cu  

for every .,,1 n"=k  Thus from (1.12) and (7.9), we have 

( ) n
pp BZ α∗α = 1,, ν  

( )
















≤












α∈=

∗∗ −

=
∑ 1,:

1

1

1

p
ii

p
i

n

i

n uuxx R  

.1,:
11

1

1
Kccuxx pp

i
p

i

n

i

n ∗∗∗
=

















≤












α∈= −

=
∑R  

That is, K and α,pZ  are dilates when 21 ≠< p  and .n=k  When ,1=p  

the proof is the same, according to the observation that ( ) KxK ∏=+∏ 0  

for every .0
nx R∈   

Notice that when ,1=p  it follows from (2.4) and the inequality (7.6) 

that Ball’s Loomis-Whitney inequality (7.2). In addition, if let n=k  and 

ii eu =  with 1=ic  for all ni ,,1 "=  in (7.6), the inequality (7.6) can be 

written as 

( ) ( ),
1

iKp

n

i
uhKV p

pn

∏∏
=

≤
−

 (7.10) 

where K is a convex body in ,nR  and ν  is a cross measure on 1−nS  with 

{ }.,,supp 1 nuu ±±= "ν  Notice that for every 1−∈ nSu  and ,n
oK K∈  

( ) ( ) ( ).1lim uuhuh KKKp p ρ== ∗∏∞→
 Then inequality (7.6) reduces to the 

following the interesting inequality: 
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( ) ( ) ,
1

iciK
i

uKV ρ≥ ∏
=

k

  (7.11) 

with equality in (7.11) if and only if n=k  and µ  is a cross measure on 

1−nS  and { }nuu ±±=µ ,,supp 1 "  with ( )niiu 1=  is an orthonormal basis of 

,nR  as well as K is the generalized n
pl ∗ -ball formed by .µ  

The following lemmas is to establish a dual version of the Loomis-
Whitney inequality for isotropic measures with complete equality 
conditions. 

Lemma 7.3. Let p
oK S∈  and let ( ].,0 ∞∈p  If µ  is an even isotropic 

measure on ,1−nS  and there are unit vectors ( )k 1=iiu  as well as positive 

numbers ( )k 1=iic  satisfying John’s condition (1.17), then 

( ) ( ) ( ) .
1

i
p

p
n c

Ki
i

n
p uBVpnKV ∗Γ

=
∏+≤
k

 (7.12) 

For 2≠p  and ,n=k  there is equality if and only if µ  is a cross measure 

on 1−nS  and K is a generalized n
pl -ball formed by .ν  

Proof. Set 

( ) ( ) ,,1
1 dvvvuu pn

K
p

Sn
+− ρ=α ∫ −

 (7.13) 

for .1−∈ nSu  From (2.5), (2.7), the definition of ∗
α,pZ  (1.10), Fubini’s 

theorem, and (1.3), it follows that 

( ) ( ( )) ( ( )) ( ( )) ( ) ( )
n

Z
pn

KS
p

p
n

pp
p

p
pn dvvvnZVZKVZVKV

pn 






 ρρµ=µµ≤ ∗
α−

+∗
α

∗
α−

∗
α

+ ∫ ,1
1,~

,,,  

( ( )) ( )
( ) 








ρµ=

µ
+∗

α ∗
α−∫ dvvvnZV p

Z
pn

KS
p

p
pn ,1

1
,  
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( ( )) ( ) ( ) ( )
n

pn
K

p
SS

p
p dvvuduvunZV nn 







 ρ






 µαµ= +∗
α ∫∫ −−

,1
11,  

( ( )) ( ) ( ) ( )
n

pn
K

p
SS

p
p dvuudvvunZV nn 







 α






 µρµ= +∗
α ∫∫ −−

,1
11,  

( ( )) .,
p

pZV µ= ∗
α  

Together this with (1.19) of Theorem 1.3 and from (2.9), we obtain 

( ) ( ( )) ( ) ( )
p

ip
pn c

i

n

i

n
pp uBVZVKV

1

1
,

−

=

∗
α 













α≤µ≤ ∏

+
 

( ) ( ) ( ) ,
1

i
p

p
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namely, 
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p
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=
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k

 (7.14) 

which is the desired inequality. 

Now, we give the characterization of equalities in (7.14). According to 
the dual Minkowski inequality (2.7), the equality of the first inequality 

(7.14) holds if and only if K and ∗
α,pZ  are dilates. Theorem 1.3 implies that 

equality of the second inequality in (7.14) holds if and only if µ  is a cross 

measure on 1−nS  when 2≠p  and .n=k  Namely, ∗
α,pZ  is a generalized 

n
pl -ball n

pB α,  formed by ν  when 2≠p  and .n=k  Therefore, we obtain 

that equality in (7.14) holds if and only if K is a dilation of the generalized 
n
pl -ball formed by the cross measure ,ν  which is still a generalized        

n
pl -ball formed by the cross measure ,µ  when 2≠p  and .n=k  
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Conversely, if n=k  we will prove that equality in (7.14) holds if K is 

a generalized n
pl -ball formed by the cross measure ,ν  i.e., there are 

positive numbers ( )nii 1=α  such that 

,1,:

1

1 















≤












α∈= ∑

=

p

i
p

i

n

i

n uxxK R  

where { }nuu ±±= ,,supp 1 "ν  and ( )niiu 1=  is an orthonormal basis of .nR  

By (7.14), it is sufficient to verify that K and ∗
α,pZ  are dilates when 

2≠p  and .n=k  From (1.13), we have 

,1 n
pBOAK −=  

where ( )nOO ∈  such that ii uOe =  for ni ,,1 "=  and { ,diag 1
1

pA α=  

}p
n
1, α"  is a diagonal matrix. Together (7.13) with (2.9), we have 

( ) ( ) ( ) dyyupndvvvuu p
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( ) dyyupn p
i

BOA n
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( ) dzzuOAApn p
i

tt
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p
,det 1 −− ∫+=  

( ) ,,det 11 dzzeApn p
i

B
i n

p∫
−− α+=  

for every .,,1 ni "=  Note that dzze p
iBn

p
,∫  is a constant for all 

.,,1 ni "=  This implies that there exists a constant 0>c  such that 

( ) ii cu α=α  for every .,,1 ni "=  Recall that 
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α∈= ∑R  

i.e., K and ∗
α,pZ  are dilates when 2≠p  and .n=k    

Notice that for every 1−∈ nSu  and ( ),lim, uhuuK KKKp
n
o p

==∈ ∗∗Γ∞→
K  

( ) ,2lim nn
pp

BV =
∞→

 and ( ) ,1lim =+
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p
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pn
p

 then inequality (7.12) deduces 

to the following the interesting inequality: 

( ) ( ) ( ) ,vol22 1
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==
∏∏ =≤
kk

 (7.15) 

with equality if and only if n=k  and µ  is a cross measure on ,1−nS  and 

{ }nuu ±±=µ ,,supp 1 "  with ( )niiu 1=  is an orthonormal basis of ,nR  as 

well as K is a generalized n
pl -ball formed by .µ  

Fortunately, the comparison between inequality (7.2) and inequality 
(7.15) is a very interesting result. 

Fradelizi [26] established the following sharp estimates which is vital 
to the proof of our theorem. The symmetric case ( )0>p  of (7.16) was 

given by Milman and Pajor [63]. The case 2=p  is due to Hensley [37]. 

We also see [5] for related inequalities. 
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Lemma 7.4. Let 1≥p  and let K be a convex body in nR  whose 

centroid is at the origin. For ,1−∈ nSu  we have 
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 (7.16) 

with equality if and only if K is a double cone in the direction u; and 
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 (7.17) 

with equality if and only if K is a cone in the direction u, where 
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Combining (7.12), (7.16), (1.4) and (1.6), we directly have the 
following dual Loomis-Whitney inequality. 

Lemma 7.5. Let K be a convex body in ,nR  and let [ ].,1 ∞∈p  If µ  is 

an even isotropic measure on ,1−nS  and there are unit vectors ( )k 1=iiu  as 

well as positive numbers ( )k 1=iic  satisfying John's condition (1.17), then 

( )
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 (7.18) 

Lemma 7.5 gives a whole family of inequalities when p varies. This 
includes the pase .1=p  The equality conditions in the results above lead 

to a sharp inequality for ,1=p  and the equality condition is also 

characterized. 
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Theorem 7.6. Let K be a convex body in ( ).2≥nnR  If µ  is an even 

isotropic measure on ,1−nS  and there are unit vectors ( )k 1=iiu  as well as 

positive numbers ( )k 1=iic  satisfying John’s condition (1.17), then 

( ) ( ) .vol!
1

1

1 ic
in

i
n

n uK
n
nKV ⊥

−
=

− ∏≥ ∩
k

 (7.19) 

If ,n=k  equality holds if and only if µ  is a cross measure on 1−nS  and 

{ },,,supp 1 nuu ±±=µ "  and ( )niiu 1=  is an orthonormal basis of nR  and 

K is a generalized pl1 -ball formed by .µ  

Proof. We need to examine only the equality conditions of (7.18). 
Since (7.18) follows from (7.12) and (7.16), the equality condition of (7.12) 

has that µ  is a cross measure on 1−nS  and K is a generalized n
pl -ball 

formed by µ  when 2≠p  and .n=k  This is because the centroid of the 

generalized n
pl -ball lies on the origin. The equality condition of (7.16) gets 

that K is a double cone in the direction of the support of .µ  Clearly, only 

the generalized pl1 -ball formed by the cross measure µ  is satisfied. 

Hence K is a generalized pl1 -ball formed by the cross measure .µ  The 

equality condition of (7.19) is proved.   

Similarly, together (7.12) with (7.17) has the following inequality. 

Theorem 7.7. Let K be a convex body in ( ),2≥nnR  and let 

[ ].,1 ∞∈p  If µ  is an even isotropic measure on ,1−nS  and there are unit 

vectors ( )k 1=iiu  as well as positive numbers ( )k 1=iic  satisfying John’s 

condition (1.17), then 
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