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Abstract

The volume inequalities for general Lp zonoids of even isotropic measures and

for their duals are strengthened by Ball et al.. Motivated by their way, a
stronger version of the Brascamp-Lieb inequality for a family of functions is
proved, which can approximate arbitrary well some Gaussians when equality

holds. Its application gives the L, Loomis-Whitney inequality for even isotropic
measures associated with the support function of Lp projection bodies with

complete equality conditions. Moreover, we establish a dual version of the
Loomis-Whitney inequality for isotropic measures with complete equality
conditions, in which we give the sharp lower bound for the volumes of
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Ball's Loomis-Whitney inequality to the L, space, respectively.
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1. Introduction

Suppose that S"! is the Euclidean unit sphere. By John’s theorem
[38] (see also Ball [1]), B" is the ellipsoid of maximal volume in an origin

symmetric convex body K if and only if B" < K and there exist tu;, -,

+u, € S"1NoK and ¢, -+, ¢, > 0(k > n) such that

N

CilU; ® u; = Idn (11)
i=1

Here ® is the tensor product of vectors in R”, Id,, is the n x n identity
matrix and 6K is the boundary of K.

According to Giannopoulos and Papadimitrakis [31] as well as

Lutwak et al. [52], one call an even Borel measure p on the unit sphere

S ! isotropic if

J' ot ® uduw) = 1, (1.2)

In this case, equating traces of both sides we obtain that
n(s" 1) = n. (1.3)

The support function hg of a convex compact set Kin R" at v e R"

is defined by
hg (v) = max{(v, x) : x € K},
where (;, -) for the Euclidean scalar product and | - | is the induced norm

in R™.



VOLUME INEQUALITIES FOR GENERAL ... 43

Denote by B}, the unit ball of 7 -space, that is,

1
n p
By = xeRn:[ZKx,ei)V)] <14, 1< p<oo,
i1

and
B} ={x e R" :|(x, ¢;)| <L foralli =1, -, n}, p = oo,
where {e;, -+, e, } is the standard orthonormal basis of R".

Schneider and Weil [68] introduced the notion of L, zonoids which is

an kernel ingredient in the L, Brunn-Minkowski theory. Suppose p > 1
and p is an even Borel measure on S "1 guch that its support, supp u, 1s

not contained in a subsphere of S"7'. The L, zonoid Z, := Z,(u)

related to p is the origin-symmetric convex body whose representation is
-1
@ = [ o)Pdu), ve s

if p =1, this just is the classical zonoid. We let

Zy(p) = lim Z,(n) = sup [(u, v)l,
b—x® veESUppu

and for 1 < p < o, let Z,(1) be the polar of Z, (1), namely,
Zy(n) = {x e R": J‘Sn71 (e, w)|P dp(w) < 1} for p € [1, »),

Zy(w) ={x e R" : (x, u) <1 for u € suppp} for p = oo.
Then Zy(u) = B" for any even isotropic measure p. Obviously,

Zp(“n) = (B;)L )* = Bp.. (14)
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For some isotropic measure u on Sl any n-dimensional subspace

of L, isisometric to | - "Z}'}(u) (see, e.g., [44, 51, 53]), where

2

1
Zp(w) = Usn—l [, u)lpdu(u)]p, x € R™.

Note that the Minkowski functional of a body K

|¥|g = min{A > 0:x € AK}, x e R".

We call a cross measure v on S™ ! if there is an orthonormal basis

up, -+, u, of R" such that

suppv = {*uy, -+, tu,} = Oftey, -+, t e, },

for some O € O(n). Since v({y;}) = v({~u;}) =1/2 for i =1, -, n, v is

even and isotropic. If we fix a cross measure v, on S"!, note that

p € [1, ©] and T(-) is Euler’s Gamma function, then

r+2)r1+4%)

: . if p>1,
V(Z,y(vy,)) = T+ 301 +=55)
2n
7, if p = 0.
In addition,
2"T(1 + % )
X _ if p>1,
V(Zp(vn )) = F(l + % )
2", if p=oco.

Z,(u) plays a crucial role in the reverse isoperimetric inequality.

(1.5)

(1.6)
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Theorem 1.1. If p is an even isotropic measure on S™ 1 and

p € [1, ©], then
V(Zp(u)) 2 V(Zp(un )),

V(Zp(n) < V(Zp(vn)).

Assuming p # 2, equality holds if and only if u is a cross measure.

Theorem 1.1 is the work of Ball [1] and Barthe [8] if u is discrete,
which was extended to arbitrary even isotropic measures p by Lutwak et
al. [51]. The measures on S" 1 with an isotropic linear image are
characterized by Boréczky et al. [16]. It is well known that isotropic

measures on R” play a central role in the KLS conjecture by Kannan et
al. [40], see also, e.g., Barthe and Cordero-Erausquin [9], Guedon and
Milman [32] and Klartag [41]. In particular, the following issues are

obtained by Li et al. [48] in a recent work: The L, cosine transform on
Grassmann manifolds induces finite dimensional Banach norms whose

unit balls are origin-symmetric convex bodies in R”, and they further

established the reverse isoperimetric type volume inequalities for these
bodies, which extend the results from the sphere to Grassmann

manifolds.

A natural notion of distance between two isotropic measures p and v
is the Wasserstein distance &y (u, v) which is also called the

Kantorovich-Monge-Rubinstein distance. In order to give gits definition,

let Z(v, w) be the angle between non-zero vectors v and w; that is, the
geodesic distance of the unit vectors ||v||_1v and ||w||_1w on the unit
sphere. Suppose that Lip;(S”!) is the family of Lipschitz functions with

Lipschitz constant at most 1; namely, f: S"'® isin Lip;(S™®1) if
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If(x) = f(y)] < Z(x, y) for x, y € S"" . Then the Wasserstein distance of

pu and v is defined by

ol v) = max{j gra fAn = fdv : f € Lipy(S"7 )}.

In fact, in this paper, we need the Wasserstein distance of an isotropic

measure p from the closest cross measure. Therefore, in the case of two

isotropic measures p and v, we define
8VVO(”G U) = min{SW(M’ (D*U) HLONS O(n)}7
where ®,v denotes the push forward of v by @ : S* 1 — "1,

Recently, a stability version of Theorem 1.1 was established by

Boroczky et al. [17] as follows:

Theorem 1.2 (see [17]). Let u be an even isotropic measure on sl
n > 2, andlet p € [1, ©] with p = 2. If dyo(y, v,) =€ >0 for g € [0, 1),

then
V(Z,(w) 2 (1+ve° WV(Z,(v,)),
V(Zy(w) < (1-ve* WV(Z5(v,)),

7cn3

where y = n min{|p - 2|2, 1} for an absolute constant ¢ > 0.

The notion of the generalized [},-ball By , = B}, (v, ) formed by

v,, is defined by (see [46])

o 1
Bz,a =Jx e R": [ZKx, ui>|poc(ui)] <1y, 1< p<om, (1.7

and

B, ={xeR":[x,uy) <1l forali=1--,n}, p=o,
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where a(x;)>0,i=1,--,n, and v, is a cross measure on S™ 1 such

that

suppv, = {tuy, -, tu,} =0{te, -, te,},
for some O € O(n).

Suppose that p is an even isotropic measure on S" ! and a : S"!
— (0, +0) is an even positive continuous function. Much recently, Li and
Huang [46] defined the “general” L, zonoid Z,, = Z, ,(u) with
parametric variables to be the origin-symmetric convex body whose
support function is given, for each x € R”, by

1

7z a)*) = USM [, u)lpa(u)du(u)j;, pell ) (1.8)

and

h x)= lim h x)= su X, u), p = oo.
Zoaw®) = Bm hz, () = sup [ u), p

If v is a cross measure such that suppv = { + uy, -+, * u,, }, we have

p*,1/a

L »
Rz o) %) = [Z;Kx, ui)lpa(ui)] = h(BE,a)* (¥) = Agn / (x), (1.9
1=
for each x € R". For 1 < p < =, let Z, ,(u) be the polar of Z,, ,(n); ie.,
Zya) = fx < %5 [ o wfPal)duti) <1} for p e [, o),

Zy o) = {x e R" : |(x, u) <1 for u e suppp} for p = .
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For p e[l, ®] and each x € R"”, the origin-symmetric star body

Zy o(n) in R” is defined by

1
"x"Z;,a(H) = (.[sn—l [(x, u>|pa(u)du(u)jp, 1< p <o, (1.10)
and
belzs = sup [x, w), p = oo (1.11)
’ uesuppp

Note that (1.10) and (1.11) tell us that any n-dimensional subspace of L,

is isometric to | - |, ) for some isotropic measure p on S*7L.
p,a

In [46], we know that

i
P

th,a(Vn)(x) = [Zl(‘x’ ui)lpa(ui)] = h(B;)L W) (x) = th (x), (1.12)
i=1 ’

p*,1/o
and

Bl =O0A™'B2, (1.13)

where O € O(n) and A = diag{a(y; )1/p, ey oy, )l/p}. The volume of

the generalized [}, -ball B},

.o and polar body (Bj, )* in [46] are given by

V(Bp o) = V(Bz)[Ha(ui)J ’ = V(Z;(Un ) {Ha(ui )] p, (1.14)
i=1 i=1

and

1

|=

p

v(<B;;,a>*):V<B;*>(f[a(ui)y =v<zp<vn>){f[a(uiﬂ BRE)
i=1 i=1
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If the unit vectors (y; )le(k > n) and positive numbers (c; )le are

satisfied John’s condition

Cilu; ® u; = Idn,

M=

i=1

then the notion of the generalized k-th [ -unit ball Bz:(}; = BZ:g(v)

formed by v is defined by

k D
Bz,’]& =J{x e R": [Zcin, ui>|poc(ui)J <1y, 1<p<ow (1.16)
=1

The main purpose of this article is to generalize the above Theorems

1.1 and 1.2 to the more general situations of “general” L, zonoid Z, ,(u)

with parametric variables a(u). The following is our main results.

Theorem 1.3. If p is an even isotropic measure on S™ ! and
pell, ©], and let «: srt o (0, +0) be an even positive continuous
function. Let k > n, if there are unit vectors (u; )le and positive numbers

(¢; )le satisfying John’s condition

M-

CilU; ® u; = Idn, (117)
=1
then
k >
V(Zp,a (W) 2 V(Z,(0,)) [Ho«ui)ﬁ} , (1.18)
1=1

-1
P

k
V(Z} (W) < V(Z)(0,)) {Ha(um} . (1.19
=1
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If equality holds in (1.18) and (1.19), then there is an origin symmetric
regular crosspolytope in R" such that w,, ---, u;, lie among its vertices.

Conversely, equality holds in (1.18) and (1.19) if k =n and wq, -+, u,
form an orthonormal basis of R".
When k = n and taking u; =¢; with ¢; =1 forall i =1, ---, n, we

see the following fact.

Corolloary 1.4. If p is an even isotropic measure on S™ ! and

p € [1, o], then
V(Zp,a(W) 2 V((Bp o)), (1.20)
V(Z), o(0) < V(B} o). (1.21)

Assuming p # 2, equality holds in (1.20) and (1.21) if and only if n is a

Cross measure.

Theorem 1.5. Let p be an even isotropic measure on S"_l, n=>2,

and let a:S"! > (0, +) be an even positive bounded continuous

function, and p < [1, o] with p # 2. If dyo(u, v,) =€ >0 for € € [0, 1),

and there are unit vectors (ui)f=1 as well as positive numbers (c; ?:1

satisfying John’s condition (1.17), then

; >
V(Zyu () 2 (4 WV(Zy(0,)) (Ho«ui )J , (1.22
=1

V(Zp o) < (1~ 1 W(Z) () {Ho«umj g (1.29
=1

cn3

where y = n~"" min{|p - 2|2, 1} for an absolute constant ¢ > 0.
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Letting k¥ = n and taking u; = e¢; with ¢; =1 forall i =1, ---, n, the

following is a direct result.

Corolloary 1.6. Let p be an even isotropic measure on S”fl, n>2

and let a:S"! > (0, +0) be an even positive bounded continuous
function, and p € [1, o] with p # 2. If Syo(u, v,) 2 € >0 for £ € [0, 1),

then
V(Zy,o(W) 2 (L+v° W(B] o (v,))), (1.24)
V(Z50 () < (1= 76 W(BL o (v,), (1.25)

—cn3

where y = n min{|p — 2|2, 1} for an absolute constant ¢ > 0.

The ideas and techniques of Ball [1], Barthe [6], Lutwak et al. [51],
Boroczky et al. [16] and especially Boroczky et al. [17] play a critical role
throughout this paper. It would be impossible to overstate our reliance on

their work.

In order to obtain a generalized inequality of Theorem 1.1 and a
stability version of Theorem 1.5, we need some basic concepts and facts,
and also need some analytic inequalities such as the estimates of the
derivatives of the corresponding transportation maps established in
Section 4, a basic algebraic inequality provided in Section 4 of [15] and

Aczel’s inequality [43].

The rest of this paper is organized as follows: In Section 2, the
background materials are provided. The Proof of Theorem 1.3 are
completed in Section 3. In Sections 5 and 6, we deal with Theorem 1.5.

Section 7 is dedicated to prove the L, Loomis-Whitney and reverse L,

Loomis-Whitney inequalities.
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2. Background Materials

2.1. Some definitions and notations

For quick later reference we recall some background materials. The

excellent references are the books by Gardner [27] and Schneider [67].

Let K} denote the space of convex bodies in R" equipped with the

Hausdorff metric. For K € K and A € GL(n), we write AK = {Ax : x € K}
for the image of K under A. If A >0, then AK = {Ax : x € K} is the

dilation of K by a factor of A. The polar body K™ of K is defined by
K" ={x eR" :(x, y)<1for all y e K}.

It follows from the definition of the polar K of K that for A € GL(n),

(AK)" = A7'K*, where A™! is the inverse and transpose of A.

The Minkowski functional |x|, of K € Ky (or K is a star body with

respect to the origin) is defined by

|| = min{t > 0 : x e tK},
for x e R". It is easy to verify that | -z = A ().

We need some facts from the L, Brunn-Minkowski theory of convex
bodies. Firey [25] introduced the concept of L, combinations of convex
bodies in the early 1960s, which emerge the new theory. These L,
Minkowski-Firey combinations were shown to lead to an embryonic L,

Brunn-Minkowski theory in the works of Lutwak [54, 55]. This theory
has witnessed a rapid growth. The detailed bibliography on the topic we

refer the reader to Chapter 9 of [67] and the references therein.
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For p>1,K,LeK), and ¢ >0, the Lp Minkowski-Firey

combination K +, ¢-L 1s the convex body whose support function is

given by
ME. 1) = RO+ R ()
The L, mixed volume V,(K, L) of K, L € Ky was defined in [54] by

V(K +, ¢-L) - V(K)

V,(K, L) = £ lim -

g0t

In particular, V,(K, K)=V(K). The L, Minkowski inequality [54]
states that for K, L € K7,

VP(K, LY > V(K" PV(L)?, 2.1
with equality if and only if K and L are dilates when p > 1 and if and
only if K and L are homothetic when p = 1.

It was shown in [54] that there is a positive Borel measure, S,(K, -),

on S" 7! so that

V,(K, L) = % j o MRS, (K. ) 2.2)

for K, L € K, where dS,(K, ) = h}gpdSK() is the L, surface area

measure of K and dSg is the classical surface area measure of K.

An important notion from the L, Brunn-Minkowski theory is the L,

projection body HpK introduced by Lutwak et al. [59]. The L,

projection body [1, K(p > 1) of K € Kg is the origin-symmetric convex

body defined by (also see [46])
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1
P

[ e P as, K )| v st @)

hi1, & (v) = >
V(BL )

where dS,(K, -) is the L, surface area measure of K and Bz* is the
unit ball of the space ZZ*. Here p* is the Hoder conjugate of p; i.e.,

1/p+1/p" =1. The case p =1 is the classical projection body [1K. The

normalization above is chosen so that for p = 1, we have
hyy k() = vol,_ (Klo*) = %j o, wldSg@), ves™, (@4
i

where dSk () is the surface area measure of K.

A compact set K — R" is a star-shaped set (with respect to the

origin) if the intersection of every straight line through the origin with K
is a line segment. Let K — R"” be a compact star-shaped set (with

respect to the origin); the radial function pg : R"\{0} — R is defined by
pr(x) = max{L > 0: Ax € K}.
If pg is positive and continuous, then we call K a star body (with respect

to the origin). Let S) be the class of star bodies (with respect to the

origin) in R”. Two star bodies K and L are said to be dilates (of each

other) if pg(u)/py(x) is independent of u € 8", Tt is easy to see that
for K € S}, p}gl() =g

In the following, we also require some basic facts of the dual Brunn-
Minkowski theory due to Lutwak [56]. Some further details were
provided in [57, 58]. The theory was developed very fast by many authors
[14, 28, 29, 30, 33, 34, 35, 36, 50, 54, 55, 59, 60, 62, 63, 64, 69, 71].
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For p € R, the dual mixed volume Vp(K, L) of K,L e S} was
defined in [56] by

Vo, L) =~ [ e P wph ), (2.5)

where the integration is with respect to spherical Lebesgue measure. In
particular, Vp(K, K)=V(K). A basic inequality for the dual mixed
volumes \7p is the dual Minkowski inequality, which states that, for

K, LeS},
V,(K, L)" < V(K)"PV(L)", 0<p=<n, (2.6)

V,(K, L)" > V(K)" PV(L)’, p<Oorp>n. (2.7)

Equality holds in each of the inequalities if and only if K and L are
dilates.

Suppose p > 0 and K € S). The polar L, -centroid body, F;K, of K
is the body whose Minkowski functional is given, for x € R", by

1

bl @) = { i J Ko Pt 9

Lutwak and Zhang [61] introduced a normalized definition for p > 1.
When p =1, the body 'K is the classical centroid body, which was
defined and investigated by Petty [65]. For more information about the

Lp -centroid body, see, e.g., [21, 22, 34, 59, 63].

By the polar coordinate formula, for u € S™ !, we have
1

»

e @ = gy [ oo 9)7as]

(v ol v>|Pp?;P<v>d<v)j%. @9)
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2.2. An auxiliary analytic stability result

The following two estimates is due to Ball [2]. For a simpler proof of
(1), see [8].

Lemma 2.1. The following two assertions are true:

@) For any tq, ---, t;, > 0, we have

=1

k k
det (Zticiui ® uiJ > Htici. (2.10)
i=1

W) If z = Zlecieiui, for 81, -, 0, € R, then

k
lel? < ci67. (2.11)
i=1
Lemma 2.2. Let k>n+1,4, ,t >0, and let vy, -, v, € R"

satisfy Zle v; ®u; =1d,,. Then

k k
de‘{Ztivi ® Ui) > e*Htgvi’Ui>,
i=1 i=1

where

2
* 1 2 tl "'ti
0 :1+§ Z det[v; , -+, v; ] [#—1 ,

1<y <<, <k

2
tO = Z tll tln det[Uil,'“,Uin] .
1<) <--<ip <k

The following observation from [15] will be estimated the 0" from

below.
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Lemma 2.3 (see [15]). If a, b, x > 0, then

2
1(a? -b2

(xa —1)% + (xb — 1) 2—[ ] .
2\ g2 + b2

We need the following Aczel inequality.

Lemma 2.4 (see [43], p. 200). Let a = (aq, -, a;), b= (b, -, b;) € R”,

and satisfy

k k
alz—Zaiz >0 or blz—Zbi2>0.
J =2

Then

1=

k k k 2
[alz - Zaiz] [b% - szzJ < {01571 - Zaibi] , (2.12)
2 i=2 i

with equality if and only if 9 _ %
b by,
3. Volume Inequalities for General L, Zonoids of

Even Isotropic Measures

The rank one geometric Brascamp-Lieb inequality (3.1) identified by
Ball [2] is an essential case of the rank one Brascamp-Lieb inequality by

Brascamp and Lieb [20]. The reverse form (3.2) is due to Barthe [7] and
8. If w, -,y € S"1 are distinct unit vectors and c1y s Cp >0

satisfy

M=

Ciu; ® u; = Idn,

~
Il
—
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and fi, ---, f; are non-negative measurable functions on R, then

k

k ¢
XLt wras < T[] 6.

i=

and

* k k e
jRnx:Z;UP Hfi(ei)cidx > HUR}Q) . (3.2)

_160u; =1 i=1

In (3.2), the supremum extends over all 8, ---, 6, € R. Note that the

integrand is not a measurable function. Therefore, we need to consider

the outer integral. If k = n, then uy, ---, u,, form an orthonormal basis

and therefore 0y, ---, 0;, are uniquely determined for a given x € R".

Together with Barthe [8], if equality holds in (3.1) or in (3.2) and

none of the functions f; is identically zero or a scaled version of a

Gaussian, then there is an origin symmetric regular crosspolytope in R"

such that uq, ---, u;, lie among its vertices. Conversely, equality holds in
(3.1) and (3.2) if each f; is a scalled version of the same centered

Gaussian, or if £ = n and uq, -+, u,, form an orthonormal basis.

The rank one Brascamp-Lieb inequality has a deeper discussion by
Carlen and Cordero-Erausquin [24]. The higher rank case is reproved by
Lieb [45] and further explored by Barthe [8] (including a discussion of the
equality case). That is again carefully analyzed by Bennett et al. [11]. In
particular, what we need see is the work of Barthe et al [10] for an
enlightening review of the relevant literature and an approach via

Markov semigroups in a quite general framework.

According to the mass transportation by Ball [3], Barthe [7, 8]
provided concise proofs of (3.1) and (3.2). The main ideas of his method
were sketched, because it will be the starting point of subsequent

refinements.
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The following observation due to Ball [1] will often be used. If K is an
origin symmetric convex body in R" with associated norm |- |, and if

p € [1, ©), then

1

V(K) = o 1k gy (3.3)

We note that for p > 1 and A > 0, we have

AP - 1
J' e gy — 9, Pr(1+—). (3.4)
R D

Suppose that each f; is a positive continuous probability density both

2
for (3.1) and (3.2), and g(t) = e ™ is the Gaussian density Here, for

i =1, -, k, we consider the transportation map 7; : R —> R satisfying

J a(w; )T;(¢)

J " f(s)ds = g(s)ds. (3.5)

Obviously, 7; is bijective, differentiable and
fi(t) = glo(u;)T; () - T (t)o(w;), ¢t € R (3.6)

By these transportation maps, we associate the smooth transformation
® : R" > R" given by

O(x) = Y cjolu)T;((u;, x)u;, x e R",

n
1=1
satisfing

n

do(x) = Y cia(wTH(u;, x)u; ® ;.

=1

In this case, dO(x) is positive definite and ® : R” — R" is injective (see

[7, 8]).
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In the following, we start with a generalization of Theorem 1.1.
Proof of Theorem 1.3 in the case Z, ,(u): Set k >n. For

i=1--,%k and any u; € 8" Consider the following probability

densities on R given by

o) VP

if pell, ®);
fie) = {2M+ 5 (3.7)
51[71,1]’ if p =,
where
1, if ¢ e [-1,1],
1q)@) =
0, otherwise.

Let p is discrete, suppp = {ug, -+, up} and p({y;}) =¢; >0,i=1,--, k.
Since p is isotropic, we get u(Snfl) = Zleci = n. From (3.3), (1.10) and
(3.6), it follows that (i) of Lemma 2.1 has ¢ = T/((y;, x))a(y;), the
definition of ® and (i) of Lemma 2.1 have 6; = a(y;)T;((y;, x)), and
finally has the transformation formula. Therefore, if p € [l, »), we

obtain

V(Z;,a(“)) =
F(l +

rifieg)
- ( j {Ha(u )c’] J.Ran‘ (u;, x))idx (3.8)
D
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k 7 k
=V<Z;(vn))[1‘[a(ui)‘ff] jRn[ng(ui)Ti«ul )Cz][HT(ul Jou(us;) ]
i=1 i=1

k p
< V(Zp () {Ha(ui)‘fi]
1=1
X jRn [ﬁenci(a(ui )TL(<ul,x>))2 J det (i cloc(ul )Tvl/«ul’ x))ul ® ul]dx

i=1 i=1

1
k —=

< V(Z3(vy)) (Ha(ui)cij ’ j Rne-’f”®<x>”2 det(dO(x))dx

i=1

_1
k

< V(Z;(Un )) (Ha )CLJ pJ‘ ) —TEHJ’H2dy

=1

1

a(u; ) ] ) (3.9)

—-

—V@(%D{

Il
—_

i

Using the Brascamp-Lieb inequality (3.1) directly and Equation (3.4),

we have

V(Zp,a(n))

I exp[ Zk:cla(ulﬂx ul>| ]
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o1+ L) 4 . .
< ’ ( 1) C; P G
B F(1+§j [ga(lh) J izl (jRﬂ]

_1
P

k
= v<Z;<un>>[Ha(ui>CiJ
1=1

On the other hand, if p = o and f; = %1[_1,1], we give

k

vzt =2 [ T it wprae <2 ([ a) =2
1=1 1

i=
Equality in (3.9) forces equality in the Brascamp-Lieb inequality (3.1).
Thus &k =2n and uq, -, u; produce the vertices of a regular
crosspolytope in R”. Conversely, equality holds in (3.9) if £ = n and

uj, -+, u, form an orthonormal basis of R".

Now suppose that p is an arbitrary isotropic measure on St
Similar to [6], we can construct a sequence p;, k € N, of discrete

isotropic measures such that p converges weakly to p as k — c. This
. . -1
obtain that lim;_,, th’a(“k)(v) = th,a(u)(U) for every v e S"*. From

the fact that the point wise convergence of support functions implies the
convergence of the respective convex bodies in the Hausdorff metric
(see, e.g., [67], Chapter 1), it follows that the continuity of volume and
polarity on convex bodies containing the origin in their interiors finishes

the proof.
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Let each E be a positive continuous probability density both for (3.1)
and (3.2), and also let

2(1-p)
p

k
g(t) = exp| - R(Ha(ui)ci] t?
=1

be the Gaussian density. On the reverse Brascamp-Lieb inequality (3.2),

the transportation map S; : R »> R satisfies

J‘Q(Ui)Si(t)fi(s)ds = jt g(s)ds, (3.10)
g(t) = f(0w;)S; (1) - Sj(alw;), ¢ e R. (3.11)

Moreover,

n

d¥(x) = Zcia(ui )Si (i, )y ®

i=1

holds for the smooth transformation ¥ : R” — R” given by

n
W(x) = ) colu;)S; (i, ¥, x € R”
i=1

In this case, d¥(x) is positive definite and ¥ : R" — R" is injective (see
[7, 8)).

Proof of Theorem 1.3 in the case Z,,(n): Without loss of
generality, since p is discrete, for the lower bound on the volume of the

1 1

L, zonotopes and p € [1, ] we choose p* e [1, =] such that > +— =1
p

If p € [1, ), then define an (auxiliary) origin symmetric convex body by

k

My o(n) = {Zcieiui : Zcia(ui)l_p|9i|p < 1}

k
=1 =1
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We use the reference to p when it do not cause any misunderstanding.

In particular,

SR

k
||x||Mp W = [ gnf Zcia(ui)l—P|ei|PJ , xeR™ (3.12)
’ X

=2 GYil

Define

k
M, o(n) = {Zcieiui 10; /alu;)| <1 fori=1, -, k}

=1
Then if p € [1, »], then

Mp,a(l-l) < Zp*,a(“)' (3.13)

k . k 1—
In fact, let x € M, 4(u). Thus x = Zizlcieiui with Zizlcia(ui) p

6,/ <1 if pe[l,©) and |0;/a(y;)] <1 for i =1, -, k if p = . Let

p € (1, ©). From Holder’s inequality, we obtain that

1=1 1=1 1=1

k k 0k . ?
(x, ) = D iy, v) < [Zcia(ui )H’eipj [ZQ“(%’)(“L" v)l” j <hz, ).

If p =1, then

>

{x, v) = Zciei<ui’ v) < max [(u;, v) = hz, .

i=1 IR}

Furthermore, if p = o, then

Enl

-

(x, v) = Y ¢0;{(u;, v) < Zcia(ui)Kui, v) = hZ1,a(U)'

=1 =1
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For i=1,---,k and any u; e S™ 1 the following probability

densities on R will be considered

1 —aw;)' PP

~(—)e . if pell, o)

)= {205 (3.14)
1 £ -
o L al), a(y)]> if p=o

where

1, if ¢t e [-a(y;), al(y;)],
H—wwxwmn@)={

0, otherwise.

Next if p € [l, »), then from (3.13), the volume formula (3.3), the
norm (3.12) of M, , and the reverse Brascamp-Lieb inequality (3.2), we

have that

V(Z (W) 2 V(Mp (W) =

1 P
1“(1 + l) -[R” eXp( "x"Mp,cx )dx
b
2”r(1 + L)" x ko
i Jo g TR0 as ®19
+ ) x:zizlcieiui i=1
k

ZV(Z;;(vn))L;n[ sup | £ |detla(y))dy

k .
‘I—’(y)=z:l.=1 ¢;i0ju; i=1

k k
ZV(Z;S(vn))jR [H (o2t )S; (i >»Ci]det D ciau;)S( ul,y»ui@ui]dy
=1

=1

k
= V(Zya)f {H (e )S; (s, >>>cl} [H (@)1 (s, y>>>0i]dy
=1 i=1

o~
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k
vz, [Hg«ui, y>>6i}dy
=1

p-1

k P 9
=VZy )| [ Jotw)? | [ e ay
i=1

1 1

k . k —
= V(Zy )| [ o) | - V(zp*(un»[]‘[a(ui)cl)” : (3.16)
i=1 i=1

By the reverse Brascamp-Lieb inequality (3.2), we also have

V(Z . (W) 2 V(M (1) = ﬁ [ exp(= e}, | Jax
+ —_
p

n
R x:Zlecieiui =1

+

\

k o 27T 1+—= i k 2
N\ " (1 1) o p
o LT [

1 1

k T k ;
=V(Zy(vy)) [Ha(ui)ci}’ = V(Zp*(Vn )) {Ho‘(”i)ci}) .
i=1 i=1

Finally, if p = oo, then }71 = %1[_(1(%.)’ a(y;)] and

. k
V(Zo@) 2 VI, o) =2" [ swp [0 ax

R x=z;€:1 ciO;u; i=1
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Equality in (3.16) forces equality in the reverse Brascamp-Lieb

inequality. Thus k = 2n and uy, ---, u;, form the vertices of a regular

crosspolytope in R". Conversely, equality holds in (3.16) if £ = n and

ui, -, u, form an orthonormal basis of R". ]
4. The Transportation Maps

Since p e[l, ©] and the map a:S" ! — (0, ) is a continuous

positive function, the density functions is considered

_al) @b e e, o),
0p(s) = 21“(1 " %j
5 1116), e
1 : W B e b e [, ),
Gp(s) = 2r(1 " Fj
5100, tee

For each u € 8™, the strictly increasing function ¢ pu Vpu RoR

for p e [1, ©)¢y , : (-1,1) > R and ¢, , : R — (-1, 1) is defined by

t a(w)ep, () _
[ epas = [T a(s)as, (1)
o(up, ) t
I_ i 0p(s)ds = j‘_ 09(s)ds. (4.2)
Hence,
0p(t) = Da(a@op, ()0, u )(w), (4.3)

02(t) = Tp(a(@lp, (), u (t)olw). (4.4)
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Using

s—s? <log(l+s)<sif s> —%,
and the following properties of the T" function:

(1) log I'(¢) is strictly convex for ¢ > 0;

(i) T(1) = T(@) =

(iif) r(1 +%j < F(l +%) —Jn /2

(iv) T has a unique minimum on (0, ©) at xp;, = 1.4616--- with
[(xpin) = 0885603 ---. In particular, I'(¢) > 0.8856 for ¢ > 0, T is strictly

decreasing on [0, x,,;, | and strictly increasing on [1.5, «).

From (1)-(iv), the density functions involved satisfy

ou)
2e(l(u)

o)
< _ o,
< o,(s) < 5% 0.8956 for p e [1, »] and s € [0, 1], (4.5)

1

~ 1
2o @I-p < 0p(s) < 9% 0.8956 for p € [1, o] and s € [0, 1]. (4.6)
e .

Since e/ 0.8856 < 3.1, we have

a(u) -1 L:|
0puls) € [O, e j for s e [O, 31| 4.7)

Indeed, let

1 -1 1
a7z = 0.t 0.5

Then from (4.1), (4.5) and (4.6), it follows that

3.1_1a(u) 4 B (X(u)ﬂop7u(t)~ Ot(u)
2% 0.8856 IOQP(S)dS = Io o(s)ds > 0
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this is a contradiction. Thus together (4.3) with (4.7) get that

W <@ y(t) < 3.lezot(u)eZ(m(u)il_1)_1 for p € [1, ] and s € [0, %}
(4.8)
Similarly, since e/ 0.8856 < 3.1, we have
Up,ul(s) € [0, eo‘(”)l_p_lj for s e [0, L} (4.9)
3.1

This implies

1 L-p_ 1
wp,u(ﬁ) > e(’-(u) 1 _ wp,u(t)’ t e (O, ﬂ:|’

we have

3.1‘10L(u) ¢ ~ a(ulp, u(t) _ o)
2% 0.8856 _[092(3)d3 = .“o Opls)ds = =, =,

this is a contradiction. Then, (4.4) and (4.9) yield that

a(w)l=P-1
e <) < 30T o ana s e o, L]
(4.10)

The following simple estimate will play a crucial role in the proofs of
Lemmas 4.2 and 4.3.

Lemma 4.1 (see [17]). For p € (1, 3\{2} and a > 0, let f(t) = at —
ptP7 for t [0, 1].

(@ If pe(1,2), f(r) <0 for some T € (0, 1] and ¢t € (0, 7/2], then

f(t) < p(p _2}1)_53 ~ p) L¢P 1
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M) If p (2, 3), f(T) >0 for some 7 € (0,1] and t € (0, 7/ 2], then

f@) > plp-1(p-2) _2}1)_80 =2) 41,

For ease of notations, let ¢, = ¢, , and ¥, =y, ,.
Lemma 4.2. Let p € [1, ©]/ {2} and t € (0, % ), and let o : 8"
(0, o) be a continuous bounded function. Then

2 - plau)e! @

oh(t) < - 18 -tif pell,2), (4.11)
o) > w A3 pe (23], 4.12)
o (t) > 0.2a(u) - 2 if p e (3,]. (4.13)

Proof. First, we let ¢ = ¢,. Thus ¢(0) =0 as ¢ is odd. From the

fact that ¢ is strictly increasing, we have ¢(t) > 0 if ¢ > 0.

Let p € [1, ]/ {2}. For ¢ > 0, differentiating (4.1) gives the formula

a(u)e*a(u)tp _ ooty 0'(t)ou(w)

, 4.14
i+ 1) Ny @19
le.,
F(]_ + L) 2 .p

o'(t) = f o) (0(t)* ") (4.15)

F‘l + ;i

Differentiating again, we have
9'(0) = alw) [2ol)' (1) - P (0). (4.16)

The following argument is to use the value

t, = (2/p)p2 for p e [1, o\ {2).
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The function p tp 1s continuously extended to p = 2 by ity = el 2,

and then this function is increasing on [1, «). In particular, ¢ p 2 1/2 for
p € [1, o).

Moreover, we use the following fact to obtain that for given

t € (0,1/e), p — ptP~! is a decreasing function of p > 1.

First, we prove that for p € [1, 2) and ¢ € (0, i ). Thus we obtain

_ 2= pla(upe'
48

Q'(t) < -t, which proves (4.11).

In this case, ¢'(0)<1 by (4.15), (i), (i) and (iv). Since ¢ is
continuous, there exists a largest s,, € (0, «] such that ¢'() <1 if 0 < ¢

< sp. Thus, if t € (0, s, ), then ¢(t) < ¢, and in turn (4.16) yields that

o"(2) = afu) 2o()o'(t) - ptP o'(t) < aulw) (2 - ptP L )o'(t).

For pe[l,2) and t €[0,t,], we have 2t — ptP~! < 0. In particular,
¢'(t) is monotone decreasing on (0, min{s,, ¢, }), which in turn implies

that s, > ¢,,. We obtain from (4.8) that

_ -1 1-a(u)
0'"(t) < ot - pt? 3?01‘(”)6 for ¢ e (o, %) 4.17)

Now we distinguish two cases. If 1.5 < p < 2, then from (4.17) and

Lemma 4.1 (a), we obtain

pp-1)@ - ploe ™™ 5 §@- plafu)e =

(P// t < _
® 3.1x 24P 3.1x 225
_ 1-a(u)
< - (2 p)(xz(z)e -t, for t e (0, %) (4.18)
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If 1 < p <1.5, then when estimating the right-hand side of (4.17) for a

given t € (0, %), Let p = 1.5. Using Lemma 4.1 (a), inequality (4.18) to

obtain that if 1 < p < 1.5 and ¢ e (0, i ), then

(2t~ ptP o™ _ (2 1.5t% Ja(ue! )

9'(t) <

c_@2- 1.5)a(u)e1_°°(u) _
B 24

Lo _ (2= plae ™)
48

t. (4.19)

Second, if 2 < p < 2.3 and t € (0, i ), then we prove that ¢"(¢) >
L1
(- 2awr 13
5 .

In this case, ¢'(0) > 1 by (4.15), (i), (iii) and (iv). Since ¢’ is continuous,
there exists a largest s, € (0, ] such that ¢'(t) >1 if 0 <t < s,. Thus

if ¢ € (0, s, ), then ¢(¢) > ¢, and in turn (4.16) yields that

¢"(2) = () (20()p'E) - ptP ' (t) > alu) (2t — ptP L )'(t).

For p > 2 and ¢ € [0, t, ], we have 2t - ptP1 > 0. In particular, ¢'(¢) is
monotone increasing on (0, min{s,, ¢, }), which, in turn, implies that

Sp 21y We have that

P
o'(t) > au) (26 - ptP1) it t e (0, % ). (4.20)

From (4.20) and Lemma 4.1 (b), we have

a(wpp-1)(P-2) p1 20w (p-2) 13 _a@)(p-2) 13
24—p 22 2

. 1
if t e (O, Z)

o'(t) >
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If p>283andt e (0, %), then ¢"(¢) > 0.20(u )™, the proof of (4.12)

is completed.
In this case, ¢'(0) > g by (4.15), (i)-(iv). Since ¢’ is continuous,
there exists largest s, < (0, i] such that o¢'(¢) > g if te(0,sp).

Thus if ¢ € (0, s, ], then o(t) > gt. Since p > pt?7! is a decreasing

function of p > 1, we get
' p-1 T p-1 T 1.3
o(u) (2(p(t)(p (¢) - pt )2 a(u)(gt - pt ) > a(u) (Et - 2.3t ) >0,
for 0 <s,, <1/4. Thus (4.16) implies that

9'(t) = alu) (20()0(t) - Pt Jp'(t) > au(w) (gt - 2.3151-3)%,
for ¢ € (0, Sp ]. Particularly, we deduce that s p = % Thus Lemma 4.1(b)

gives that

¢'(t) > (G/Z)'Z'Sl'i'?"o'?’“(”)~t1-3 > 0.20(u) - 3 for t e (0, %)
2 .

If p=o and ¢ > 0, then ¢"(t) > a(u)t, which obtains the proof of
(4.14). Differentiating (4.1) we prove that for ¢ € (-1, 1),

00) = (14 L)orn - I gtwie (4.21)

0'() = 2a(wo(t)o'(1)*. (4.22)
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Since ¢(t) > 0 for ¢ > 0, we get ¢"(t) > 0 by (4.22), this implies that ¢'(¢)

N

is monotone increasing for ¢ > 0. Therefore ¢'(t) > ¢'(0) = 775 by (4.21),

in turn, which from (4.22) gives that

, V)
Q"(¢) > 20u(u) - | t> a(u)t for ¢t € (0, 1).
Thus all estimates of Lemma 4.2 have been proved for ¢". O

Lemma 4.3. Let p € [l, »]/{2} and t € (0, % ), and let o : 8"

— (0, o) be a continuous function. Then

v () > %ﬁ‘p) t ifpell,2), (4.23)
" a(u)el_a(u)(p - 2) 1.3 .
py(t) < - Bl -t if pe(2 3], (4.24)
1-a(u)
¥y (t) < —% A3 i pe (8, »l (4.25)

Proof. To simplify notation, let p = Yp- Since y 1is odd, we have
¥(0) = 0. This gives y(t) > 0 if ¢ > 0. Turning to y", we just sketch the

main steps. In this case, differentiating (4.2) obtains the formulas

F(l lj
P(t) = —— P2 o) ey~ (4.26)
1“(1 + l) ,
2
') = aluw) (o) T (0) - 20 (0). (4.27)
First,for 1< p<2 and ¢t € (0, %), we obtain that »"(¢) > _a(u)l(z}_ p) -1,

which gives (4.23).
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If p €[l1, 2), then '(0) > 1 by (i), (ii) and (iv). Similar to the proof of

Lemma 4.2, we get

v(t) = a() (pp@)PLo'(t) - 2t '(t) > o) (ptP~t —2t)  for t(O, %j

(4.28)

If 1.5 < p < 2, then it follows from (4.28) and Lemma 4.1 (a) that

a@p(p - -p) p1_ 1*WEC-P)  awe-p)
94-p 92.5 8

1
for ¢t e (0, §)

If 1 < p <£1.5, then when estimating the right-hand side of (4.28) for

v'(t) >

a given t € (0, % ), p > ptP7! is a decreasing function of p > 1. We may

let p =1.5. In fact, (4.28) obtains that if 1 < p <1.5 and ¢ € (0, % ),

then

(1) > alw) (ptP™! = 2t) > aw) (1.5t%° - 2t) > o) (2_ L5) 5 O‘(”)iz_ p) .,
(4.29)

Next, for 2 < p <23 and t e (0, % ), we will show that y"(¢) <

_owW)P-2) 13
7

If p € (2, 2.3], then p'(0) <1 by (i)-(iv). From the arguments similar
to the ones used in the proof of Lemma 4.2, we give

0'(t) = o) (ot w'(0) ~ 2p0) < —alw) (2 ~ ptP ()

. a(u)et @2 — ptP 1)
3.1

1
<0f0rte(0, ﬂ)
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It follows from Lemma 4.1 (b) that

w"(t) < - 0L(u)el_a(U)l)(I) _ 1) (p _ 2) . tp—l < — 20L(u)el_a(u)(p - 2) ] t1'3
3.1-2P71 3.1.92

a@e™W(p —2) 14 1
< - 7 -t forte(O,g)

OL(u)el—oc(u) ‘

Set p > 2.3 and t € (0, % ). We now prove that »"(¢) < — 11

t13, which gives the proof of (4.24).
In this case, »'(0)<2/+~n by ()-(iv). There exists a maximal
sp € (0,%] such that if te(0,s,), then ¥'(t)< 2/vJn. Thus if

t € (0, s,), then y(t) < (2/ Vr)-t, and, in turn, (4.27) yields that
v(t) = a(w) (o) 0'(0) - 26 (1) < alar) ([%jpptpl - zt}a'(t). (4.30)

Take ¢ < (0, % ],

d 2 Y a1 2t
“ 1o (_) pt? = —+log—= < 0 for p € (2, ),
dp g{ N p g\/g p ( )

(4.30) gets that if ¢ € (0, s, ], then

0'(t) = a(u) (po@)?0'(t) - 2to'(t)
2.3 2.3
<a(u>[(%j ~2-3t1‘3—2t]1/f(t)=a(u)~f(t)(%j V), (4.31)

where

2.3
f(t) = 2.3¢12 - z(gj L.
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Here f( % ) < 0, thus with T = %, Lemma 4.1 (b) has

2.3-1.3-0.3 .13 13 1
f(t)<—T~t <-027-t forte(O,Ej,

Together (4.10) with (4.31), we obtain

o)l (%)23 102741 plealn) 13

" _ T — _1
p'(¢) < 31 < 5l for t e (0, 10).
, 2a(u)
Finally, for p = © and ¢ (0 ) we pove ¥"(t) < — 51 b this

gives the proof of (4.25).

Differentiating (4.2) it follows that if ¢ > 0, then

"\ 1 —aw)r? _ 2 —a(u)?
Vit = e = 2 olwr?
i+ ) Vn
2
¥'(t) = — 20w e’ (2 ).

1-a(u)
From (4.10), we obtain that p"(¢) < —% for ¢ e (O, %)

In summary, we have established all estimates of Lemma 4.3 for y".

5. The Volume of Z,

In this section, we establish a stability result for the volume of Z;,a

stated in Theorem 1.5. The other part of this theorem is given in Section
6. In order to prove the stability theorem, we need some lemmas from

literature [17] which are basic estimates on isotropic measures.
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For o € (0, %] and v e S"!, we consider the following closed and
open spherical caps:

Qv, o) = {ue S" : (u, v) > cosa},
O, a) = {u e S : (u, v) > cosa}.

Lemma 5.1. If p is an isotropic measure on S™ ', v e 8™, and

o e (0, g), then

p(ﬁ(v, cx)) + u(ﬁ(— v, cx)) >1-ncos? a.

Lemma 5.2. Let p = o~ ()= /2 1 s an isotropic measure on
S"L. then there exist vy, -+, v, € S"' such that w(Q(v;, B)) = B", for
i=1,--,n, and such that if w; € Qu;, B), for iefl, -, n}, then

|det[wy, -+, w,] = 2np.

Lemma 5.2 states that for any isotropic measure p on S™ 1 there

exist spherical caps Xj, ---, X, S"! whose p-measure is bounded

from below and which have the additional property that for any vectors

w; € X;,1e{l, -, n}, also the determinant |det[w;, -+, w,] is bounded

from below.

Lemma 5.3. For an isotropic measure p on 8™, let vy, ---, v, € sn1

and B be as in Lemma 5.2. For every i € {1, ---, n} and n € (0, B),

(1) there exists q; € Q(v;, B) such that

KO, )N Qg B) = 2,
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(i1) or there exist ¥, W9 < Q(v;, B) such that
" :
u(\y;) > ™ for j =1, 2,

log — ag| = X for a; € ¥, and ay € Vs.
Jn
The points q1, q5 and the sets W1, Wy can be chosen independently of
n e (0, B).
Lemma 5.4. For u, ug € S™' with (u, uy) > 0, we have V(Eyu) 2

kK, | 240", where k,, is the n-dimensional measure of the unit ball in R",

and

[1]

b~

1 1
u,u = {y € Oan : <y7 u> 2 %’ <y’ u0> 2 %7 <y’ u_u0> 2 120
(5.1)

Lemma 5.5. If by, -, b, € S*\, and s;, -, 5, € R" satisfy |ls;| <

|det[by, -, b,] / 4n, then

|det[b1 + 81, 0, bn + Sn]l 2 |det[b1’ ) bn]l/z

Lemma 5.6. Let n > 2, let t (0, ], and let uq, -+, u, € S* L

4™ p)

If

Q(u, arecos(%—t)) N{xuy, -, tu,} =0,

forany u e S”fl, then there exists a cross measure v such that

Sy (suppv, {+ uy, -, tu,}) < 4"n!-t.



80 TONGYI MA

Lemma 5.7. Let n be an even isotropic measure, and let v be a cross
measure on Sn71 with suppv = {iw17 e, E wn} If 5 € |:0’ %) and

w € [0, 1) are such that

u(S"INUE, (Q(w;, 8)U Q- w;, 8)) < o
then
Sy (u, v) < 2nd + 2nno.
Suppose that a:S" 1 - (0, +x) is an even positive bounded

continuous function and

oy = max o(u), a, = min o).
ueS™1 ueS™1
Meanwhile, let
. . n-1
8o = min {afu;) - oluj)| : wy, uj € S
1, if 0<oau)<1,

Y1 = minl{l, el_a(u)} =
ueS"" el if au) > 1,

and yy = minfl, §,} as well as y3 = min{l, a,,}. Clearly, y;, yg, vy < 1.

Proposition 5.8. If p e [l, ©)\{2}, u is an even discrete isotropic

measure on S"Y, and
V(Zp () 2 (L= eV(Zp o (vs)),
for some ¢ € (0, 1), then there exists a cross measure v on 8" such that
Sy (u, v) < n max {|p - 2|_%, 1} . s%,

for some absolute constant ¢ > 0.
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Proof. Next, we will prove that for any 0 < n < B"/(2n),
* 3 . *
V(Zpa@) < (1= 0 minl(p - 2%, 1)1 €, [V(Z500n). G2

or there exists a cross measure v satisfying
Sy (u, v) < n™, (5.3)

for some absolute constant ¢ > 0. Here C, = C, 1C, 9 <1 and

2
2
C ]_:(Otm) . YlYZ <1
a, = b
exp -1
2(1-0,; )
e
n
_ Y3
C(l,2 = not‘?‘w <1.
exp| —*—+oapy —n-1
p(ez(l—a;}) M J

Without loss of generality, suppose that p is discrete, suppp = {7, -+, U |

and ¢; = u({w;}). For ¢y = min{c; :i=1,---,k} and i=1, -, k, we

define m; =minfm e Z : m>1 and ¢; /m < ¢y}, and let k = Zlemi.
We consider &:{l,---, k} > {1, -, k} such that #&1({i})) =m; for
i=1,-,k, and define

u; = gy and ¢; = () / M),
for i =1, -, k. The system (uq, -, uy, ¢1, -+, ¢, ) is even (i.e., origin

symmetric) in the following sense: Any u € S™ ! occurs as u; exactly as

many times as —u, and if u; = —u;, then ¢; = c;.
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In particular, Zleciui ®u; =1d,, and Zleci =n, and for any

Borel X c 8™ ! we have

WX)= ) a

ujeX

The reason for the renormalization is that

%co <¢ <¢cyg fori=1,--,k (5.4)

7Ttt2

Moreover, let ¢, = ¢, , denoted in (4.1), g(¢t) = e™™ , f; be defined as in

3.7), for i =1, ---, k. Then from (3.5), it follows that

l .
o(u;) Jt oalw)ld? g _ I“(”L)‘Pu(t)e_mz ds,

21“(1 + l) -
p
namely,
1 2
au;) p1 o) ? _ = mla(u; Joy (1)) o' (t)o(y;). (5.5)

Taking the log of both sides of (5.5), we have
~logT (1 + %) ~log2+ %log ;) — ot ) [P = — mla(w)oy (1))

log(y (). (5.6)

We define T : R® — R” by

T(y = Zcz(pu <y’ )a(ul )uz’ (57)

k
=1
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for each y € R”™. The differential of T'is given by

k
dT(y) = chu ® w0, ((y, u;))olw;). (5.8)
i=1

Since ¢, > 0 and o > 0, the matrix d7(y) is positive definite for each
x € R". Therefore, the transformation 7 : R” — R" is injective.

By (3.3), (1.10), (3.8) and (5.6), we have

V(Zp, o)

_Zég:l Cia(ui ) ‘<xv ui>‘p dx

=1

T(laXﬁmm]

12

k
I exp {_ TCZ i (a(ul )(Pu x u ))2 Z 1Og((Pu (<x u; >)a(uz ))Cl }

L

k k
jeﬂﬁZwmmwwWMgmwwmwﬂw

=1

(5.9)
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For each fixed x € R", we estimate the product of the two terms in

(5.9) in the integral sign. To estimate the first term in (5.9), we use (2.11)
with 6; = ¢, ((y, ;))a(y;), i =1, ---, k. Hence the definition of 7T gives

k
2 T (y)|?

exp| -1y ei(alu; o, (v, u))? | < e TN, (5.10)

i=1

To estimate the second term, we use Lemma 2.2 with v; = JZ - U

and ¢ = ¢, ({5, u;))a(y;), at each y € R", and write 0"(y) and ¢y(y) to

denote the corresponding 8 > 1 and ¢, > 0. In particular, if {ij, ---, i,,}
c {1, -, k} and y € R", then we assume
! ! 2
, u¢ e , u- u- e u-
:Cil"'cin det[uil, R uln]2 \/(P(<y L1>) (p(<y ln>)a’( ll) (X( ln) _1
to(y)
(5.11)
Therefore, for
* 1 . .
0 (y):1+§ . Z N(LI""’Ln; y) (412)
1<y <--<ip <k
Lemma 2.2 gives
k
[ Ttot (. wi)at)) < 0% ()" det(dT(y)). (5.19)
i=1
From (5.9), (5.10) and (5.13), we obtain
n
2”1‘(1 + lj k -5 ,
V(Zp,a(w) < —p[ alu; )J [, 07078 dear(y)ay.
F(l + %) i=1 R

(5.14)
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To give a lower bound for 0*(y), using (4.8) and (4.7) to obtain

al(u)” _1
ﬁ < (p’u(t) < 3-lea(u)e () ) 1

(5.15)
3.1e¢

and

W) < ——— 5.16
Py (t) < 7()_ (5.16)

for p € [1, «] and ¢ € [0, %]

-1

We consider the vectors vy, -+, v, € S" provided by Lemma 5.2

such that
wQ;, B) >p" fori=1,-,n
| detfwy, -+, w,] = 2np for w; € Qv;, B) and i € {1, -+, n}, (5.17)
B = o), ~(re1)/2,

The remaining discussion is split into three cases, where the first two
correspond to the two cases in Lemma 5.3.

Case 1. There exist [ € {1, ---, n} and ¥;, W9 < Q(v;, B) such that
u(‘P)> forj—12and

oy —asf = % for a; € ¥; and ag € Y.

In this case, we prove

V(Zpa) € ——5— : F(l + j [ﬁa )CLJ _(1 _pen’ min{(p - 2)%, 1} - n2 'C“)’
( p) =
(5.18)

for some absolute constant ¢ > 0.
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We may let that [ = n and
Hj: {l € {1, [N k} LU € ‘PJ} # 0,

for j =1, 2. Possibly after interchanging the roles of ¥; and ¥5 we may
assume that #[[; < #[[,. Let

TIHl —)H2,

be an injective map. Given u;; € Qvj, ) for j=1,---,n-1 and

u; € ‘¥, we have Ur(i,) € Yo, together (5.4) with (5.17) yields

2
ciy e ciy ¢ detfuy e,y ]

17 Vip
i > 4n®BPe; e (e [2).
2
Ciy = Cip_y * Cliy) detluy s ooty s i) ]
(5.19)
Since B < n/4, we have (u; , u.; ) >0 if u; € ¥;. Lemma 5.4 shows
that V(E, ,,) 2 #, /240" for u, ug € S™1 with (u, up) > 0, where

Eu,uo 1s defined in (5.1). In particular, if y € Euin’u ) then

(i

1
(y, um), (y, uT(in)> < 3 and

- o us n_
<y’ uln > - <y’ uT(ln)> - <y, uln uT(L}’L)> Z 120\/; ’
In order to simplicity, we still set ¢ = ¢, = ¢, ,. Notice that ¢" is

continuous, and Lemma 4.2 obtains that if ¢ [31—0, 0.1] and u e S™!,

then
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B 1.3 B
M(L) ~a(u)y > o2 ~a(wlyy, if pell, 3]\{2},
, 48 (30 o12
lo"(2)] > N
0.2 (%) colw) > 279 - aluw), if p>3.
(5.20)

Thus, using the mean-value theorem for derivatives to obtain

o' ({3, wi, ) = O'(( 35 i)

lp -2 lp - 2| :
———="n"au)y > Ny, if pell, 3\{2},
5 12%1204n Poglogy
%n~a(u)>%n-am, if p>3.
29120n 219Vn

The following algebraic inequality ([43], p. 162) will be useful. If
x,y 20 and p =1, then

lx — 3P <|xP - yP|. (5.21)

2(aw) -1
From Lemma 2.3 and 0 < ¢'(¢) < 3.1e%We (a1 for p e [1, ©)\{2}

and ¢ € (0, 0.1] (cf. (5.15) and (5.16)), Aczel inequality (2.12) and an

algebraic inequality (5.21), it follows that

o g )0ty )0 g ety )i, Yoy, ) Y
to()

SO w0y wy D)0, wr Nty ) - aluy,_oung)) )
+ -1
to()

R @0y wy, Vo, ) = @', e ) Ve, ) )P
20 (v, wy, Neluy, )+ 0y, e, ) Vot ) )P

N ‘@'((3’, u;, ) - o'((2, uT(in)))Z‘la(uin ) - “(”T(uin))2|
) 203 (0'((3, g, ) + (2, i, )))P
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@, 15, ) = 03, wrgi ) )P len(us, ) - oty )
203 0/, w3, ) + 09 i,

>

_ minfl, (p -2} 5

2
. (am j , Y1Y2
245y 5374 [ J
exp -1

_ %M
o21-an)

Notice that

%M 4
62(1*0%1 )

2
Ca,l — (am j . YIYZ < 1
apm
exp( ]

Together this estimate with (5.11) and from (5.19), we obtain that if
p € [1, ©»)\{2} and uj; € Qv;, B) for j=1,-,n-1,u ¥, and

Y€ By u,) then

N(il’ g1y In y)+ N(il’ g1, T(in); y)

: 2
2,2 miny1, (p — 2 9
> 2n°B Ciy Ciy 1 Cin { 455 )} ‘n” - Cy 1
2%n
Ifu; ¥ and y € R", then we define
0, 5 ¢ Zu ey
, BPn(p - 2 o : =
o(in, 03 ¥) = =—"——n" - Cq 1, if yeg, s,y 20d P € [1, 31\ {2};
2 n n
B2n 2 . -
2771 Co 1 if ye By, uniy) and p > 3.
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In particular, if w;; € Qvj, ) for j=1,-,n-1,u e¥ and y € R”,
then
N(ih Tty infl’ in; y)+ N(il’ ) in717 T(in); y) 2 cil "'Cing(in’ o y)'
(5.22)

Substituting (5.22) into (5.12), and then by (5.17), we know that if
y € R", then

. 1 :
' () 21+ > ¢ iy €y 0lin, @5 )
uj; €Q(vj,B),j=1,--,n-1

n-1
1+ %u}um@j, B))J D Ciylin, 5 )

Ui, ¥
n(n-1)
>14 8 5 Z ¢; 0(in, o ¥).
uin Ellll
Here
n(n-1) n(n-1) 2,
. 2

uine‘{"l 2

Thus if x € R", then
. 1 Bn(n—l) ) .
0" S 1-F— Y ¢ olins o ). (5.23)
Uin E\P]_

From (5.14) and (5.23), we will obtain

V(Zp, o)

n
2”r(1 + l) k -
. p

a(uifi} [ O dear()dy
1 R"

e

1=



90 TONGYI MA

k p
< V(Z}, o)) (Ho«ui >J
=1

_prny) o)
X J‘Rn [1 Z can(Ln; Qa; y) e det(dT(y))dy

4
uin € \Fl

1

k » )
= V(Z}(vy)) (Ha(ui)ci] IRne*“HT(y)H det(dT(y))dx
i=1

iz T o\ B”(" ) AT
V(Z () | [ [ e ) > i el o e
=1

ui E\Pl
x det(dT'(y))dy.

Thus

J‘ TP det(dT(y))dy < J e (5.24)
R" R"

If ye Ei, (i,) (in), then (5.10), (5.12), (5.13), (5.15) and (5.16) obtain

that

9 k
e*ﬂHT(y)H > exp (— TCZCL((X(U/ )(Pu«yf L>))2J

=1

k
. p( o )ZCJ

1=1

2
oy,

2 -1
e cAlmand) (5.25)
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.
det(dT(y)) = | J(ohllo ui)ate; )
i=1

k
> H(?) 17 1el-al) ) Hoc(ul)c‘

=1
k
= 3.1_"en(1_°‘(”))1—[ o(u; )
i=1

_ 1-
> 8.1 M-em )y
> 3.1 -am)yn, (5.26)

Therefore

2"r (1 + ljn -
V(Z}, (W) < {Ha(u )CLJ
)

e Z i Bn(n—l) V('—'zn Ln)) B%n min{(p - 2)2 1} e, |,
n 4 (3. 1en)n 944

Ui, 591

where C, = Cy1Cq,9 <1. Since V(E; ;)2 r, /240", if u; e ¥,
according to Lemma 5.4, and

Z G, ZH(‘P1)>2—n,

u;, ¥

we give (5.18).

Case 2. There exists q; € Q(v;, B), for i =1, -, n, such that

wQ(g;, n)) = *— for i=1,n, (5.27)
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and
n( U7 (Q(g;, 2n) U Q(-g;, 2n))) < n —n. (5.28)

In this case, we show

n 1y
V(Z},4(W) < %@ ~ = min{(p - 2)%, 1} - 1’ 0j (5.29)
+ N
D

for some absolute constant ¢ > 0. The argument is very similar to the

one in Case 1.

Let

¥ = S"IN(UL (Qfg;, 2n)U Q- g;, 2n))).

It follows from (5.17) that any x € R” can be written in the form

n
x = ) hi(x)a;.
i1

Since u(‘f’) <n by (5.28), the triangle inequality ensures that there

exists some i € {1, -+, n} satisfying [A;(x)| > 1/n. Thus we may reindex
q1s -+ ¢ in such a way that
W) > % for ¥ = {x € ¥ : |1, (x) >1/n}. (5.30)

From (5.17), we obtain that if x € ¥, then

| detlqr, -+, qp1, x| 2 [ det[qr, -+, @p1, @]/ 0 2 2B
In the following, for u;; € Q(gj, m) for j=1,--, n-1, from Lemma 5.5
with b =q;, 8y =u; —q; for [ =1,-n-1,b, =xe¥, and s, =0,

where
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B 28 1 .
J<n< P = 2P « = =1 ...
|SL| =mn= on 4n ~ 4n | det[ql’ > dn-1> x]l; 2 1’ , I,
we get
1
|det[uil’ T uin_l’ x]l 2 §| det[Ql’ s dn-1s x]l 2 B (5-8]-)

We observe that ¥ = —¥. Hence, for

[y ={ie{l, -, k}:u ¥},

there exists [1' < [Iy with #[['= %#HQ, and a bijection T : [['— [Io\IT'

such that if i e [I', then uz;) = —u;.
Since n < B", (5.27) gets

n

Bn
= u(Q >t > L
¢i = wW(Qqp, M) yrlrm

u; €Q(qp,m)

This implies that we can find a minimal (with respect to inclusion) set
[, < {1, -, k} such that u; € Q(q,,, n) for i € [1; and

Z ¢ > E?—n. (5.32)
iEHl

By minimality and (5.4), we have
‘o 1)< L
2 #I1; -1)< -
Further, by (5.30) and again by (5.4), it follows that

CO#HQZ Z Cj Zﬂ

. n’
Jells
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Thus

C C
Doty Q-1

which yields #1119 > 4(#11;-1) if #[1;> 2. In any case, we deduce that
#11,> 2#T1; .

We prove that there exists an injective map 7 : [[; > [Is such that if

i € [l;, then
(ui, uT(ii)) > 0. (5.33)

In addition, if i € [1;, then u; € Q(g,, n) and u;) ¢ Qgy, 2n), thus

i = uai) | 2 %

Given u;; € Q(gj,m) for j=1,--,n-1 and i, €[l;,we have

7(i,) € [1y. By (5.4), (5.17) and (5.31), we obtain

2
“cin,l : cin det[ui17 ) uln] 9
> B ey, (e /2).

Ciy €y~ Caliy) ettty o g,y (i) ]

(5.34)

By (5.33), we have that Lemma 5.4 applies to Ey, . In particular,
n

’ uT(in)

we obtain V(Z; .;)) > #, /240", andif y € E; . ), then
1
<y7 uin>9 <y’ u‘r(ln)> < §7 and

(y, u;, )= (o, uT(in)> = (v, Ui, — uT(in)> > A
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From (5.20), we have

0 15, )= 0 ey ) > R oy,

2(a(u) -1
If i, ell;, from Lemma 2.3, 0 < ¢/(t)< 3.1e%x)e (a1 for
pe[l, ©\{2} and ¢ € (0, 0.1] (cf. (5.15) and (5.16)), Aczel inequality

(2.3) and a simple algebraic inequality (5.21), we obtain

to(y)

(w«y, i) 00 w4, ) U g, Ny ) — oy, o, ) 1T

SO wy N0y w03, umgy Vel ) oy, Jalun)) )
+ -1
to(y)

L (0w, Doy, ) = 9, g Dty P
20w, ey, )+ @', sy Nour, )

g ‘cp’((y, u;, ) = o'((3, uT(in)>)2‘|a(uin V' - altry, )|
B 2037 (0'((3, uz, ) + (3, ) )P

@, i, )= (s uri Pl ) = alingu, )P
2037 (0' (3 1 )+ 0'(3, i, )))F

2

. 9
> minil, (41; nk) BSOSV (5.35)
2

Thus from (5.11) and (5.34), we have that if u;; € Q(vj, B) for j =1, -,

n-1,i, ell; and y € B, str(iy) then

(i

N(il’ 1y Ins y)+ N(il’ g1, T(in); y)

2 .
S Boc; -y ~min{l, (p—2)2}. 2 ¢
> 5 247 n o,l-
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If i, e [1; and y € R", then define
O’ 1f Y ¢ Euin’uT(in);

oin, o3 ¥) = 2 min —22,1 . —_
B tp ) }-n2-Ca,1, if yeZy, 4.\
248 in> Yr(in)

n

In particular, if u;; € Q(v;, ) for j=1,---,n-1,i, ell; and y € R",
then
N(iy, s bty by ¥) + NQips oy by 7(0,)5 ) 2 ¢ ¢ 0y, 05 ¥)-
(5.36)

Substituting (5.36) into (5.12) and then using (5.17), we get for y € R"

that
1 .
0" (y) =1+ 3 Z ¢y e Ciy o €y oI, 45 )
uj; eQ(vj,B), j=1,--,n-1
inelly

1 n-1

=1+ 5| [ [m@w. )| D e 0lin. s 3)

Jj=1 inelly

n(n-1)
>1+ B 5 Z CinQ(in’ o; y).
inelly

Similarly as before, we have

n(n-1) . n(n-1) 2,
inel_ll 2
Thus if y € R”, then
n(n-1)
* -1 .
07 (y) " <1 _ﬁT Z ¢; oin, o ¥). (5.37)

inelly
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Together (5.14) with (5.37), we deduce
V(Zp,o(w)

< T ((1 i lj) [Ha(u )Cl] _IR" e_nHT(y)HZ det(dT(y))dx
p

_ onr ((1 ljj {Ha(uz )CLJ % Bn(Z—l) Z ¢ _[Rn o(i,, o y)e‘“HT(x)Hz
p

i, elly

x det(dT'(y))dx.

Now we use again (5.24) as well as the estimates (5.25) and (5.26) if
Y € Ej (;,)- This implies

2T (1 1 jn -
V(Z} W) < {Ha(u i J
1+3)

o1 Z . Bn(n 1) V(._l () ) B mln{(ﬁ3 2) 1} 2 ,
e (3.1e™ )" 2

Since V(E; +(,)) = #n /240" for i, € [1;, from (5.32) we give (5.29).

Case 3. There exists q; € Q(v;, B) for i =1, -+, n, such that
n( U7, (g, 2n)U Q(-g;, 2n))) > n—n.

In this case, we show that there exists a cross measure v such that

Sw (v, 1) < n, (5.38)

for some absolute constant ¢ > 0.
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2
We claim that ~|1- n(L - t) >mn for ¢ =2n, for n<1/(2n).
2 Jn

Thus Lemma 5.1 obtains that Q(u, arccos( % - 211)) intersects
n
"1 Q£ q;, 2n) for any u € S, In turn, we have that

Q(u, arccos(i—4n)jﬂ {taqr, -, g, =0,
n

for any u e 8!, since 4n <1/(4"n!). Therefore Lemma 5.6 obtains

that there exists a cross measure v such that

Sg(suppy, {+ qp, -+, +q,}) < 4"n!- 4n.
In particular, (5.38) is given from Lemma 5.7.

According to Lemma 5.3, Cases 1, 2 and 3 cover all possible even

isotropic measure p. This implies that we have proved (5.2) in Cases 1

and 2, and (5.3) in Case 3. O
Proof of Theorem 1.5 in the case of Z}, ,(n): Let p e [1, )\ {2}

and p is a discrete even isotropic measure on S™t, and let Sy (u, v,)

> ¢ > 0 for some ¢ € (0, 1). Then Proposition 5.8 gives that

p

k
V(Zp o) < (1 va3)v<z;;<vn>>[1‘[a<ui>cl} , (5.39)
1=1

cnS

where y = n~“" min{|p - 2|2, 1} for an absolute constant ¢ > 0. Since

any even isotropic measure can be weakly approximated by discrete even

isotropic measures (see, e.g., Barthe [6]), we give (5.39), and in turn

Theorem 1.5 in the case of Z}, ,(u), for any even isotropic measure p on

S" 1 and p e [1, o\ {1}.
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Since for any isotropic measure p, we obtain
lim Z;, o) = Z:o, o (1)
P>

Since the factor y in (5.39) is independent of p e (2, »), we have the

case p = o, U

6. The Case of the General L}.D Zonoids in Theorem 1.5

Similar to the argument of V(Z,, ,(u)), we give the proof of Theorem

1.5. We suppose again that p is a discrete even isotropic measure for
p € (1, o\{2}. For p* € (1, ), define %+ i* = 1. We will show that if
p

n € (0, 1), then

1

*
D
b

3 k
V(Z pu,a (1) > (1 — " min{(p-2)%,1}-1? - Ca)V(Zp* (vn))[Ha(ui )Ci}
=1

(6.1)

or there exists a cross measure v satisfying
Sy (i, v) < n™, 6.2)
for some absolute constant ¢ > 0. Since if p € [%, 3], then p* € [g, 3]

and [p-2//2 <|p" -2| < 2p-2, (6.1) and (6.2) obtain Theorem 1.5 for
V(Zp,a(l'l))-
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Again, let suppv = {ug, ---, uz }, and let ¢; = u({%;}). For ¢y = min
{¢;:i=1,---,k}and i =1, -, k, we define m; = min{m € Z : m > 1 and
¢;/m<cy}, andlet k = Zi.;:lﬁi. We consider & : {1, -, k} > {1, -, k}
such that #&71({i}) = m; for i =1, ---, k, and define
w; = Uyp) and ¢; = ) [ mg(p),
for i =1, -, k. The system (uq, -, uy, ¢y, -+, ¢;,) is even (i.e., origin
symmetric) in the following sense: For any u e S™ 1 oceurs as u; exactly
as many times as — u, and if u; = —u;, then ¢; = c;.
In particular, Zleciui ®u; =1d,, and Zleci =n, and for any

Borel X c 8™ !, we have

HX)= )

u;eX

The reason for the renormalization is that

%CO <c; ¢y fori=1,-,k

Furthermore, let v, = v, = v, , defined in (4.2), f; is defined in (3.14),
and

2(1-p)

p

.
ﬂﬂ=%p—{TIMWWJ it
i=1

is the Gaussian density.
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We define the map A : R® — R” by

k
1=1

Ay = Zciwu«y, u;))ou(u; Ju;, (6.3)

for each y € R”™. The differential of A is given by

N

dA(y) = Zciui ® uivy, ((y, u;)oly;). (6.4)
=1
Since ¥, > 0 and o > 0, the matrix dA(y) is positive definite for each

y € R". Hence, the transformation A : R” — R" is injective.

First applying (3.15) and from (6.4), we have

V(Z e (W)= V(Mo (W)

ep)
27T 1+ — N ko
e T § O

k .
x=2i=1 ¢iOu; i=1

[\

2”F(1+ljn . ko
——L [ 1 s []R) |det(d(ay)ay
R A)=3F e i=1

\Y

(14 L g :
MJ - {ﬁﬁ-(a(ui Wu (3, ui>>>cl']
i=1

K
x de{zci% (s w Do Ju; ® uijdy-

i=1



102 TONGYI MA

To estimate the second term, we apply Lemma 2.2 with v; = \/a - Uy

and t; = v, (3, u;))o(y;), at each y e R", and write 0%(y) and #(y) to

denote the corresponding 0" > 1 and ¢, > 0. In particular, if {ij, -+, i, }
c {1, -, k} and y € R", then we now set

to()

o3 )V 0. g g )y, ) 1}?

2
= cil "'Cin det[uil, ey, uin] {

(6.5)

Therefore, from the notation

') =1+3 > Nl ini 3. (6.6

1<y <<y <k
Lemma 2.2 and (3.11) have

V(Z, o)

nfy, 1Y
> M [ Low []ljz-(a(ui Wu (3. ui»)qJ

F1+£j
D

J
X (H(% (v, w;))olu;) de
i-1

wp(y, 1) |
= % IRn 0" (y) ui[ (g((, w;))) ]dy

F(l +
b
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)” 2(1-p)

k p
= F(1—+%j IRn 0"(y)exp - T{H o )C‘) Il b dy

I
[\
S
-
7N\
—
+
S|
N—
S
7\
—
Q
~_~
=
SN
N('b
N
|z~,
—
D
*
—
I\
N
Q
a
N
Q.
I\)

[
[\
S
-
7\
—
+
S|
N—
S
7\
—
Q
~_~
=
SN—
N!'b
N—e—
|H
—
N
D
*
—_
[\
N
Q\
a
~
o
Q.
N

Therefore, (6.1) and (6.2) can be proved as (5.2) and (5.3) in Proposition
5.8. This finishes the proof. O

7. The L, Loomis-Whitney and Reverse L,

Loomis-Whitney inequality

The classical Loomis-Whitney inequality [49] states that for a convex
body K in R”,

k

V(K" < Hvoln_l(lqef), (7.1)
=1

with equality if and only if K is a coordinate box (a rectangular
parallelepiped whose facets are parallel to the coordinate hyper planes),

where K|eiL denotes the orthogonal projection of K onto the

1-codimensional space e;- perpendicular to e; and {e;, -, e,} is the

standard orthonormal basis of R". Note that the Loomis-Whitney

inequality is of isoperimetric type. In fact, let S(K) denote the surface area

of K. Then S(K) > 2vol,_;(Klei") for i =1, ---, n. From (7.1), we obtain
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V(K" < 27"S(K)",

an isoperimetric inequality without the best constant. The Loomis-
Whitney inequality is one of the fundamental inequalities in convex
geometry and has been studied intensively; see, e.g., [1, 4, 6, 12, 13, 18,
29, 23, 47, 70].

In particular, the Loomis-Whitney inequality still holds along a
sequence of directions satisfying John’s condition [39], which is showed
Ball [4]. Especially, for a convex body K in R”, if there are unit vectors
(u; )le and positive numbers (c; )§=1 satisfying John’s condition (1.17),

then

o

V(K" < l_Ivoln_l(muiL ). (7.2)

=1
Obviously, the inequality (7.2) reduces to (7.1) when k& = n and taking
uj =e; with¢; =1 foralli =1, -, n.

Recently, Li and Huang [46] established an the L, version of the
Loomis-Whitney inequality related to the support function of L,
projection bodies with complete equality conditions. For p > 1, K € K}

and p is an even isotropic measure on S" !, we have

V(KY 7 < exp “Snl log Ay, K(u)du(u)}. (7.3)

For 1 < p # 2, equality in (7.3) holds if and only if p=v is a cross

measure on S"' and K is the generalized lz* -ball formed by v. For

p =1, equality in (7.3) holds if and only if u = v is a cross measure on

S" ! and K is a box formed by v (up to translations).
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This section is mainly to extend Ball’'s Loomis-Whitney inequality
(7.2) to the L, setting belonging to the L, Brunn-Minkowski theory

(called as the L, Loomis-Whitney inequality). Further, we give the
complete equality conditions for the L, version of the Loomis-Whitney

inequality.

The following intertwining properties of [], and ]_[;, with linear

transformations were obtained by Lutwak et al. [59] for p >1 and by

Petty [66] for p = 1.
Lemma 7.1. Suppose p > 1 and K € K. Then for A € GL(n),
M, AK = |det AMPA™T1,K and [T}, AK =|det AP AT} K.
(7.4)
In particular,

n-p

[M,(cK)=c? I, K, c>0. (7.5)

Motivated by the ways of Ball [4] and Li [46], we prove the L,

Loomis-Whitney inequality in Theorem 7.2.
Theorem 7.2. Let K be a convex body in R"™, n>2, and let
p € [l, o] with p # 2. If u is an even isotropic measure on S™ 1 and

there are unit vectors (u; )le(k > n) as well as positive numbers (c; ?:1

satisfying John’s condition (1.17), then

) k
V()5 < [1nfi, «tw. (7.6)
=1
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For1< p # 2 and k = n equality in (7.6) holds if and only if u is a cross
measure on S"™ ' and suppp ={*u, -, tu,) with (u; )iy is an
orthonormal basis of R", as well as K is the generalized lg* -ball formed
by v; namely, there are positive numbers (cxi):.l:l such that
1
n * P*
K ={x e R": (ZKx, u;)P ocij <1,
i=1
where suppp = { *uy, -+, *u, } and (u;);_, is an orthonormal basis of
R". For p =1 equality in (7.6) holds if and only if n is a cross measure

on 8" ' and K is a box formed by p (up to translations); namely, there is

a vector x5 € R" and positive numbers (o;);_; such that
n
K = Zai[— Ui, ui]+ X0»
i=1

where suppp = { £ uy, -+, * u, } and (u;);_, is an orthonormal basis of R".

Proof. Suppose

a(u) = hﬁ’;K(u), (7.7)

for u e S™!. By (2.1), (2.2), the definitions of Zp (1) (1.7) and [,K

(2.3), Fubini’s theorem and (1.3), it follows that

V(K)n_p < V(Zp,a(u))_pvp(K’ Zp,a(“))n

_w Zp’a(u))—p(l [ aht, @S, (K. U)jn

n
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= V(Zp,a(M))_p(% J.S”’l J.S"’l K, )P a(w)dp(u)dS , (K, v)jn

=V(Z,, a(u))‘p& an_l I g K, v)|P a(w)dS (K, v)du(u)jn

V() P VEL A (ot

V(B )P
V(Zp o)

From (1.19) of Theorem 1.3, (1.4) and (7.7), we get

VKY 7 < Vzlz(i ) < HhH (W), (7.8)

which is the desired inequality.
If k=n, from the equality condition of L, Minkowski inequality
(2.1), the equality of inequality (7.8) holds if and only if K and Z,, , are

dilates when p >1 (K and Z are dilates when p =1). Theorem 1.3

P,
implies that equality of the second inequality in (7.8) holds if and only if

| 18 a cross measure on S™1 when p # 2 and k = n, and thus by (1.12),

Z, o is the generalized I, -ball BZ*,I/a formed by v. Hence K is a

dilation of the generalized lz* -ball formed by the cross measure v, which

is still the generalized ZZ* -ball formed by v when 2= p >1 and k =n

(K coincides with the box formed by v up to translations when p =1).
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Conversely, when 1 < p # 2 and k£ = n, we will prove that equality
in (7.8) holds if K is the generalized ZZ* -ball formed by v; i.e., there are
positive numbers (a;);"; such that

1

n Tx
K =:xeR" {ZKx, u; )P (xin <1t (7.9)
=1

where suppv = { * 1y, -+, * u, } and (u;); is an orthonormal basis of R".

From (7.8), it is sufficient to verify that K and Z are dilates. By (1.13),

D0
we obtain

K =By, . =O0A"'B,
where O is an orthogonal matrix such that Oe; = u; for i =1, ---, n and
A = diag{ai/p, - a}/p} is a diagonal matrix. Together (7.7) with (7.4),

we get

au;) = hﬁi &) = by 0atBy, )W)

P .
\det Arl/p(OA_l )7t1_[p(Bz* )(ul)

= |det Al (g, (A0 w;)

—_ 7p n .

= |det Alhl—[p (B, )(Ael)

-p 1
= |det Alhl’lp(BZ* )(ai/l’ei )

= |det Alhl:[l;) (Bz* )(ei )(Xi_l 5
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for every i =1, -+, n. Notice that hﬁl;(Bg* J(e;) is a constant for all

i =1, -, n. Thus, there exists a constant ¢ > 0 such that a(y;) = coci_l

for every k =1, ---, n. Thus from (1.12) and (7.9), we have
Zp,a(V) = B"

p*1/a

1

n Tw
* —1|P
—Jx eR" [z K, w)P o () 1} <1
1=1

! 1

n T x
=Jx e R": {ZKx, u; )P c_l(xl}p <1l=c?K.
1=1

That is, K and Z are dilates when 1 < p # 2 and k£ = n. When p =1,

p,a
the proof is the same, according to the observation that [T(K + xg) = [TK
for every xy € R". O

Notice that when p =1, it follows from (2.4) and the inequality (7.6)
that Ball’s Loomis-Whitney inequality (7.2). In addition, if let £ = n and
u; =e; with ¢; =1 forall i =1, ---, n in (7.6), the inequality (7.6) can be

written as
n-p n
V(K) p < thp ) (7.10)
=1

where K is a convex body in R”, and v is a cross measure on S™ 1 with

suppv = {4y, ---, +u, ). Notice that for every u e S® ' and K e K7,

lim thK(u) = hys(u) = 1/pg (w). Then inequality (7.6) reduces to the
pP—>0

following the interesting inequality:
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k
V() 2 | [rx(w)?, (7.11)
i=1

with equality in (7.11) if and only if ¥ = n and p is a cross measure on
S" 1 and suppp = {#uy, -+, +u,} with (1;);_; is an orthonormal basis of

R", as well as K is the generalized I, -ball formed by p.

The following lemmas is to establish a dual version of the Loomis-
Whitney inequality for isotropic measures with complete equality

conditions.

Lemma 7.3. Let K € S and let p € (0, «]. If n is an even isotropic
measure on S™Y, and there are unit vectors (u; )le as well as positive

numbers (cl) _, satisfying John’s condition (1.17), then

(7.12)

k
V(K) < (n + p)» V(B
=1

For p # 2 and k = n, there is equality if and only if u is a cross measure

on S™ ! and K is a generalized I, -ball formed by v.

Proof. Set

o)t =J‘ . 1|(u )| P %P (v)dv, (7.13)

for u e S™!. From (2.5), (2.7), the definition of Z;,a (1.10), Fubini’s

theorem, and (1.3), it follows that

VIKY™? < V(Z o) T (K, Zh )" = V(Zh, o)) [ [ S (v)dv]

_vwmmw(j Pic Pl j

Snl
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V(2L ([ ol 0P st o 01|

n

_ V(Z;,a(u))p(% [ ( [ v>|ppygp(v)du(u)ja(u)dvj"

=V(Z}, (W),

Together this with (1.19) of Theorem 1.3 and from (2.9), we obtain

VK) s < V(Z)ow) < V(B) [Ha(uiﬁ} !

i=1
n n k
= V(B (n+ p)o VEYs | [hal .
i=1 P

namely,

k
< L n e
V(K) < (n+ p)» V(B )gllul mg (7.14)
which is the desired inequality.

Now, we give the characterization of equalities in (7.14). According to

the dual Minkowski inequality (2.7), the equality of the first inequality
(7.14) holds if and only if K and Z;a are dilates. Theorem 1.3 implies that

equality of the second inequality in (7.14) holds if and only if p is a cross

measure on " when p = 2 and k = n. Namely, Z;,a

is a generalized
I,-ball By , formed by v when p # 2 and k = n. Therefore, we obtain

that equality in (7.14) holds if and only if K is a dilation of the generalized

lz -ball formed by the cross measure v, which is still a generalized

lz -ball formed by the cross measure u, when p # 2 and k = n.
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Conversely, if £ = n we will prove that equality in (7.14) holds if K is

a generalized lg -ball formed by the cross measure v, i.e., there are

positive numbers (a;)?; such that

1
n p
K={xeR": [ZKx, ui>|p(xi] <1t
=1

where suppv = {+uy, -, *u,} and (u;)"; is an orthonormal basis of R".

*

By (7.14), it is sufficient to verify that K and Z p,a are dilates when

p # 2 and k = n. From (1.13), we have
-1
K = 047'BL,
where O € O(n) such that Oe; = u; for i =1,---,n and A = diag{ai/p,

- oc}/p} is a diagonal matrix. Together (7.13) with (2.9), we have

)™ = [ M oPp P @dv = (v )] [, 9)Pdy

(wi Y)Pdy

= (n+p)j

-1
0A™'B}

~ (n+ p)|det A|*1jBn|(A—t0fui, 2)|Pdz

p

= (n + p)|det A|710Li_lj‘ le;, z)|Pdz,
Bn

p

for every i =1, -+, n. Note that I J|(e;, 2)|Pdz is a constant for all
By

i =1,--,n This implies that there exists a constant ¢ > 0 such that

a(u;) = ca; for every i =1, ---, n. Recall that
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Zho ={x e R": ( j gl u)|pa(u)du(u))% <1

lxern [ZKx, ui>|pa(ui)]p <1

i=1

1
1! P
=¥ eR": [ZK% ui>|p00tij <1y = ¢YPK,
i1

le., Kand Z;,a are dilates when p # 2 and k = n. O

Notice that for every u € S"! and K € K7, l}l_rfio"u”F;K = lullgr =hx (@),

lim V(B,) = 2", and lim (n + p)% =1, then inequality (7.12) deduces
pP—>© p—>®

to the following the interesting inequality:

B

k
V(K) < 2”HhK(ui G = 2"1_[v01n_1(K|uiL )i, (7.15)

1=1 1=1

with equality if and only if £ = n and p is a cross measure on S n-1 " and
suppp = {fuy, -, tu,} with (x;)’; is an orthonormal basis of R", as

well as K is a generalized ZZ -ball formed by p.

Fortunately, the comparison between inequality (7.2) and inequality

(7.15) is a very interesting result.

Fradelizi [26] established the following sharp estimates which is vital
to the proof of our theorem. The symmetric case (p > 0) of (7.16) was
given by Milman and Pajor [63]. The case p = 2 is due to Hensley [37].

We also see [5] for related inequalities.
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Lemma 7.4. Let p >1 and let K be a convex body in R" whose

centroid is at the origin. For u e S™ 1 we have

-1/p

n+p

1 pp—AC.9 - , (7.16)
P 2vol, ((KNu™)| ,

with equality if and only if K is a double cone in the direction u; and

¢n, pV(K)

max vol,,_;((K + x)Nut) ,
xeR"

(7.17)

<
el <

with equality if and only if K is a cone in the direction u, where

1
B n n+p en » ¢ n-1 ;
Cn,p = ((n n 1) J:1|t| (1 - ;) dt| .

Combining (7.12), (7.16), (1.4) and (1.6), we directly have the
following dual Loomis-Whitney inequality.

Lemma 7.5. Let K be a convex body in R", and let p € [1, ©]. If u is
an even isotropic measure on S™*, and there are unit vectors (u; )le as
well as positive numbers (c; )le satisfying John's condition (1.17), then
n

1“(1 + ﬁj (’”np)p k
V(KY'! > Po - Hvoln_l(K Nut)i.  (7.18)
n"(n + p)EF(l + ;) i=1

Lemma 7.5 gives a whole family of inequalities when p varies. This

includes the pase p = 1. The equality conditions in the results above lead
to a sharp inequality for p =1, and the equality condition is also

characterized.
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Theorem 7.6. Let K be a convex body in R (n > 2). If u is an even

isotropic measure on S"', and there are unit vectors (u; )le as well as

positive numbers (c; )le satisfying John’s condition (1.17), then

k
- ! .
VEY ] et B A (7.19)
1=

If k = n, equality holds if and only if n is a cross measure on S™ 1 and
suppp = {*uy, -+, *u,}, and (y;)i_, is an orthonormal basis of R" and

K is a generalized lf’ -ball formed by p.

Proof. We need to examine only the equality conditions of (7.18).
Since (7.18) follows from (7.12) and (7.16), the equality condition of (7.12)

has that p is a cross measure on S" ' and K is a generalized ZZ -ball
formed by p when p # 2 and k = n. This is because the centroid of the
generalized lz -ball lies on the origin. The equality condition of (7.16) gets
that K is a double cone in the direction of the support of u. Clearly, only
the generalized [P -ball formed by the cross measure p is satisfied.
Hence K is a generalized llp -ball formed by the cross measure p. The
equality condition of (7.19) is proved. O

Similarly, together (7.12) with (7.17) has the following inequality.

Theorem 7.7. Let K be a convex body in R™(n >2), and let

p € [1, o). If u is an even isotropic measure on S™ 1 and there are unit
vectors (ui)le as well as positive numbers (ci)le satisfying John’s

condition (1.17), then
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1"(1 + ﬁ) k
V(K)n—l > p max VOln_l((K + x) N uLJ_ )Ci'

n"(n + p)%l“(l + %)c,’f’p i=1 *<R”
(7.20)
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